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ABSTRACT

We consider several variants of the active contour model without edges,4 extended here to the case of noisy and
blurry images, in a multiphase and a multilayer level set approach. Thus, the models jointly perform denoising,
deblurring and segmentation of images, in a variational formulation. To minimize in practice the proposed
functionals, one of the most standard ways is to use gradient descent processes, in a time dependent approach.
Usually, the L2 gradient descent of the functional is computed and discretized in practice, based on the L2

inner product. However, this computation often requires theoretically additional smoothness of the unknown,
or stronger conditions. One way to overcome this is to use the idea of Sobolev gradients.8,13,19 We compare
in several experiments the L2 and H1 gradient descents for image segmentation using curve evolution, with
applications to denoising and deblurring. The Sobolev gradient descent is preferable in many situations and
gives smaller computational cost.

Keywords: functional minimization, gradient descent, Sobolev gradients, image segmentation, image restora-
tion, implicit representation.

1. INTRODUCTION

In this work we consider several variants of the active contour model without edges,4 extended here to the case of
noisy and blurry images, in a multiphase and a multilayer level set approach. Thus, the models jointly perform
denoising, deblurring and segmentation of images. To minimize in practice the proposed functionals, one of the
most standard ways is to use gradient descent processes, in a time dependent approach. Usually, the L2 gradient
descent of the functional is computed and discretized in practice, based on the L2 inner product. However,
this computation often requires theoretically additional smoothness of the unknown, or stronger conditions (for
instance, having second order derivatives of the unknown in the space L2 of square integrable functions, when
the functional to be minimized is of first order). In other words, the assumptions of the problem imply the
existence of a weak solution only, while the L2 gradient descent assumes a strong solution.

To overcome this, J.W. Neuberger13 has formalized in Lecture Notes in Mathematics, in 1997, the theory of
Sobolev gradients for weak solutions in a function space approach. When the minimization is well posed, the
specific Sobolev gradient imposed by the function space of the unknown is the right framework and is satisfied
by the weak solution. However, the formulation of the L2 gradient requires strong solution.

For practical purposes, there are several choices of the Sobolev gradient to be used for the gradient descent
method. More recently, in two different interesting works by G. Sundaramoorthi, A. Yezzi, A.C. Mennucci,19

and by G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven, O. Faugeras,8 related ideas have been applied to curve
evolution problems, showing cases when the use of Sobolev gradients is more beneficial than the L2 gradient,
especially in the area of shape metrics.

Further author information (send correspondence to M.J.):
M.J.: gomtaeng@math.ucla.edu, G.C.: senninha@math.ucla.edu, G.S.: ganeshs@ucla.edu
L.A.V.: lvese@math.ucla.edu, A.L.Y.: yuille@stat.ucla.edu



In the discrete case, the Sobolev gradients can be interpreted as preconditioning of the original time-dependent
L2 descent flow, or as descent flows obtained for different choices of matrix norms.

Following the approach of J.W. Neuberger,13 and inspired by the above mentioned work, we will compute
and compare here the L2 and Sobolev H1 gradients for the specific problem of joint segmentation, denoising
and deblurring, in a variational level set approach. We will see that the Sobolev H1 gradient gives improved
results in terms of quality and speed. Related works for segmentation using Sobolev gradients have also been
proposed by G. Dogan, P. Morin and R. Nochetto,9 although not in an implicit level set approach, and by L.
Bar and G. Sapiro1 in a recent parallel work. Another work using Sobolev gradients for image analysis is by
W.B. Richardson.16

The outline of the paper is as follows. In the next subsection we present our framework of construction of the
Sobolev H1 gradient, in a general fashion. In Section 2 we present several region-based variational segmentation
models for joint object detection, denoising and deblurring, and we formulate their corresponding L2 and H1

gradient descents. Section 3 presents several experimental results and comparisons on synthetic and real images,
obtained by the models described in Section 2. We end the paper with a short conclusion.

1.1 Illustration of the Sobolev H1 gradient

We follow in this section Neuberger13 and Renka.15 Suppose Ω is an open, bounded and connected subset of Rn
with Lipschitz boundary ∂Ω, and F : R× Rn → R is a C1 integrand. For illustration we consider the following
minimization problem:

arg min
u

{
E(u) =

∫
Ω

F (u,∇u)dx
}

where u ∈ H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))n} is a Hilbert Sobolev space with its standard H1 inner
product denoted by 〈·, ·〉H1 , and with the constraint u = g on ∂Ω (in the sense of the trace operator), for a given
g ∈ H1/2(∂Ω).

To minimize the functional E defined on H1(Ω), we consider a gradient descent method. The gradient
descent is based on the observation that if some real-valued function G(x) is well-defined and differentiable in a
neighborhood of a point a, then G(x) decreases fastest if one goes from a in the direction of the negative gradient
of G at a, −∇G(a). It follows that, if b = a−γ∇G(a) for γ > 0 a small enough number, then G(a) ≥ G(b). With
this observation, starting with a guess x0 for a local minimum of G, and considering the sequence x0, x1, x2, ...
such that xn+1 = xn − γn∇G(xn), we have G(x0) ≥ G(x1) ≥ G(x2).... Thus, we consider the following iteration
to obtain a minimizer of E,

uk+1 = uk − αk∇E(uk), k = 0, 1, 2, ... (1)

with u0 ∈ H1(Ω) and some means of choosing step-lengths αk.

In order that the iterates uk remain in H1(Ω), the gradients ∇E(uk) must be elements of H1 i.e. derivatives
must be compatible with the metric (inner product and corresponding norm). More precisely, the directional
derivative of E at u ∈ H1(Ω) in the direction h (defined in the usual way by E′(u)h = limε→0

E(u+εh)−E(u)
ε )

defines the Sobolev (i.e. H1) gradient ∇SE(u) ∈ H1:

E′(u)h = 〈∇SE(u), h〉H1 , ∀h ∈ H1
0 (Ω),

where H1
0 (Ω) = {h ∈ H1(Ω) : h = 0 on ∂Ω}. We show next the existence of the Sobolev gradient ∇SE(u). Let P

be the (self-adjoint) orthogonal projection of L2(Ω) × (L2(Ω))n onto
{
Dv =

(
v
∇v

)
: v ∈ H1

0 (Ω)
}

and define



π

(
f
g

)
= f for f ∈ L2(Ω), g ∈ (L2(Ω))n. Then for u ∈ H1(Ω) and h ∈ H1

0 (Ω), we have

E′(u)h =
∫

Ω

F ′(Du)Dh

= 〈(∇F )(Du), Dh〉(L2(Ω))n+1

= 〈(∇F )(Du), PDh〉(L2(Ω))n+1

= 〈P (∇F )(Du), Dh〉(L2(Ω))n+1

= 〈πP (∇F )(Du), h〉H1 .

Thus, the Sobolev gradient ∇SE(u) exists in H1 and has the form ∇SE(u) = πP (∇F )(Du).

Now, we consider an ordinary L2 gradient associated with the L2 inner product, to show the critical benefit
of the Sobolev gradient. Similarly, for u ∈ H1 and h ∈ H1

0 ,

E′(u)h =
∫

Ω

F ′(Du)Dh

= 〈∇F (Du), Dh〉(L2(Ω))n+1

= 〈DT∇F (Du), h〉L2(Ω).

So, we obtain the L2 gradient,∇L2E(u)=DT∇F (Du), if it exists. However, we cannot guarantee thatDT∇F (Du)
is in L2(Ω). Specifically, for DT∇F (Du) ∈ L2(Ω), we need more smoothness on u i.e. u ∈ H2(Ω), which might
cause an ill-posed problem or numerical instability (non-existence of ∇L2E(u)). Moreover, if we would use the L2

gradient DT∇F (Du) in (1), and assuming that uk, uk+1 ∈ H1(Ω), then we would need to have an even stronger
condition on the minimizer u, that DT∇F (Du) ∈ H1(Ω). In short, standard L2 descent methods are lacking in
integrity for minimizing functionals that involve derivatives.

Finally, we derive the computationally amenable expression for ∇SE(u) using the L2 gradient ∇L2E(u)
(applying a practical derivation method R.J. Renka15). By the definition of the directional derivative of E at u
with respect to h, we have the equality

E′(u)h = 〈∇L2E(u), h〉L2(Ω)

= 〈∇SE(u), h〉H1

and the Sobolev gradient ∇SE(u) can be written as

〈∇SE(u), h〉H1 = 〈D∇SE(u), Dh〉L2(Ω)×(L2(Ω))n

= 〈DTD∇SE(u), h〉L2(Ω).

By combining the above two equations, we obtain the Sobolev (i.e. H1) gradient ∇SE(u) of the form

∇SE(u) = (DTD)−1∇L2E(u),

where DTDu = (I−∆)u, thus using the Sobolev operator (I−∆)−1 with the corresponding boundary conditions.

2. APPLICATIONS TO IMAGE PROCESSING

We consider in this section L2 gradient descents of the region-based segmentation models for object detection
and piecewise-constant denoising-deblurring. Following the previous section, we also (formally) formulate their
corresponding H1 gradient descents and we give details of the numerical algorithm. We restrict our presentation
to two-dimensional image data f : Ω→ R, where Ω is an open, bounded and connected subset in the plane.

We recall here that we use the operator (I −4)−1 in the following sense: let G ∈ L2(Ω), and let w ∈ H1(Ω)
be the unique solution of the weak variational formulation of the problem

w −4w = G in Ω,
∂w

∂~n
|∂Ω = 0,



in other words, w is the unique H1(Ω) function that satisfies∫
Ω

(
wv +∇w · ∇v

)
dx =

∫
Ω

Gvdx, ∀v ∈ H1(Ω).

The existence and uniqueness of w is guaranteed by the Lax-Milgram Lemma. Thus, we can define (I −4)−1

from L2(Ω) to H1(Ω), which is considered as a smoothing or low-pass operator.

2.1 Binary 2-phase segmentation & denoising model

As a first example, we consider the binary, region-based active contour model without edges for image segmen-
tation introduced in,3.4 This model is solved using implicit representation of curves,14,18 and can be seen as a
particular case of the Mumford and Shah segmentation model12 . It can be applied to the detection of objects
whose boundaries are not necessarily defined by gradient and to the automatic detection of interior contours.
Let f ∈ L∞(Ω) ⊂ L2(Ω) be the given data to be segmented, and φ : Ω → R be a level set function (usually a
Lipschitz continuous function) whose zero level set represents the evolving curve C = {x ∈ Ω : φ(x) = 0}. The
functional minimization for two phase segmentation is given by4

inf
c1,c2,φ

E(c1, c2, φ) =
λ1

2

∫
Ω

|f(x)− c1|2H(φ)dx+
λ2

2

∫
|f(x)− c2|2(1−H(φ))dx+ µ

∫
Ω

|∇H(φ)|dx,

where λ1 > 0, λ2 > 0, µ ≥ 0 are tuning parameters and H is the one-dimensional Heaviside function. The goal is
to minimize E with respect to φ, c1, and c2, to obtain the desired contour (objects boundary), given by the zero
level set of φ that optimally partitions the domain Ω into two regions, such that f(x) ≈ c1 where φ(x) > 0 and
f(x) ≈ c2 where φ(x) < 0. In the gradient descent approach, we start with an initial curve defined implicitly,
that evolves to steady state. The geometric constraint on the curve is imposed by the last term of the functional
(total variation of the characteristic function H(φ)), which corresponds to the length of C in two dimensions.

First, keeping φ fixed and minimizing the energy E(c1, c2, φ) with respect to the unknowns c1 and c2, we
obtain the explicit expressions for these constants of φ as the averages of f on each side of the curve,

c1 = c1(φ) =

∫
Ω
f(x)H(φ(x))dx∫
Ω
H(φ(x))dx

, c2 = c2(φ) =

∫
Ω
f(x)(1−H(φ(x)))dx∫
Ω

(1−H(φ(x)))dx
.

Keeping now c1 and c2 fixed and formally minimizing the energy with respect to φ, we can compute the L2

gradient of E with respect to φ, denoted by ∇L2E(c1, c2, φ) associated with Neumann boundary condition
∂φ
∂~n = 0 where ~n is the normal to the boundary ∂Ω.

Thus we obtain the L2 gradient with respect to φ, which amounts to the following evolution equation for
φ(t, x), t > 0, x ∈ Ω with a given φ(0, x) = φ0(x) :

∂φ

∂t
(t, x) = −∇L2E(c1, c2, φ) = δ(φ)

[
−λ1|f − c1|2 + λ2|f − c2|2 + µdiv

( ∇φ
|∇φ|

)]
, (2)

where δ denotes the one-dimensional Dirac distribution (in practice, we substitute H and δ by smooth approxi-
mations, as in4).

By applying the Sobolev operator (I −∆)−1 to ∇L2E(c1, c2, φ), we derive the other evolution equation for
φ(t, x), t > 0, x ∈ Ω with a given φ(0, x) = φ0(x), that we call the H1 gradient descent :

∂φ

∂t
(t, x) = −∇H1E(c1, c2, φ) = (I −∆)−1

{
δ(φ)

[
−λ1|f − c1|2 + λ2|f − c2|2 + µdiv

( ∇φ
|∇φ|

)]}
. (3)

The time-dependent flows (2) and (3) will be compared in practice in Section 3.



2.2 Joint segmentation, denoising & deblurring in a multilayer level set approach
We propose here a joint formulation for denoising, deblurring and piecewise-constant segmentation. For related
work we refer the reader to.2,10,11,17 We use a minimization approach and we consider the L2 and H1 gradient
descents. To represent the unknown moving boundaries, we use the multilayer segmentation formulation intro-
duced in5–7 which is an extension of the binary case,3.4 Let f = K ∗ u + n be a given blurred noisy image,
where K is a known blurring kernel (such as the Gaussian kernel) and n represents Gaussian additive noise of
zero mean. We assume that the contours or jumps in the image u can be represented by the m distinct levels
{−∞ = l0 < l1 < l2 < · · · < lm < lm+1 = ∞} of the same implicit (Lipschitz continuous) function φ : Ω → R
partitioning Ω into m + 1 disjoint open regions Rj = {x ∈ Ω : lj−1 < φ(x) < lj}, 1 ≤ j ≤ m + 1. Thus, we
recover the image u = c1H(φ− lm) +

∑m−1
j=2 cjH(φ− lm−j+1)H(lm−j+2 − φ) + cm+1H(l1−φ) by minimizing the

following energy functional (µ ≥ 0):

E(c1, c2, . . . , cm, φ) =
∫

Ω

∣∣∣∣∣∣f −K ∗
c1H(φ− lm) +

m−1∑
j=2

cjH(φ− lm−j+1)H(lm−j+2 − φ) + cm+1H(l1 − φ)

∣∣∣∣∣∣
2

dx

+µ
m∑
j=1

∫
Ω

|∇H(φ− lj)|dx

• In the binary case (one level m = 1, l1 = 0) we assume the degradation model f = K ∗
(
c1H(φ) + c2(1−

H(φ))
)

+ n, and we wish to recover u = c1H(φ) + c2(1 −H(φ)) in Ω together with a segmentation of f . The
modified binary segmentation model incorporating the blur becomes:

E(c1, c2, φ) = inf
c1,c2,φ

∫
Ω

∣∣∣f −K ∗ (c1H(φ) + c2(1−H(φ))
)∣∣∣2dx+ µ

∫
Ω

|∇H(φ)|dx.

We compute the Euler-Lagrange equations minimizing this energy with respect to c1, c2, and φ. Using
alternating minimization, keeping first φ fixed and minimizing the energy with respect to the unknown constants
c1 and c2, we obtain the following linear system of equations:

c1

∫
Ω

k2
1dx+ c2

∫
Ω

k1k2dx =
∫
fk1dx, c1

∫
Ω

k1k2dx+ c2

∫
Ω

k2
2dx =

∫
fk2dx

with the notations k1 = K ∗ H(φ) and k2 = K ∗ (1 − H(φ)). Note that the linear system has a unique so-
lution because the determinant of the coefficient matrix is not zero due to the Cauchy-Schwartz inequality( ∫

Ω
k1k2dx

)2

≤
∫

Ω
k2

1dx
∫

Ω
k2

2dx, where the equality holds if and only if k1 = k2 for a.e. x ∈ Ω. But clearly
k1 = K ∗H(φ)) and k2 = K ∗ (1−H(φ)) are distinct, thus we have strict inequality.

Keeping now the constants c1 and c2 fixed and minimizing the energy with respect to φ, we obtain the
evolution equation by introducing an artificial time for the L2 gradient descent in φ(t, x), t > 0, x ∈ Ω

∂φ

∂t
(t, x) = −∇L2E(c1, c2, φ)

= δ(φ)
[(
K̃ ∗ f − c1K̃ ∗ (K ∗H(φ))− c2K̃ ∗ (K ∗ (1−H(φ)))

)
(c1 − c2) + µdiv

( ∇φ
|∇φ|

)]
. (4)

where K̃(x) = K(−x).

Similarly, the H1 gradient descent in φ(t, x) for t > 0, x ∈ Ω, is

∂φ

∂t
(t, x) = −∇H1E(c1, c2, φ)

= (I −4)−1
{
δ(φ)

[(
K̃ ∗ f − c1K̃ ∗ (K ∗H(φ))− c2K̃ ∗ (K ∗ (1−H(φ)))

)
(c2 − c1)

− µdiv
( ∇φ
|∇φ|

)]}
. (5)



The time-dependent flows (4) and (5) will be compared in practice in Section 3.

• In the case of two distinct levels l1 < l2 of the level set function φ (m = 2), we wish to recover a piecewise-
constant image of the form u = c1H(φ − l2) + c2H(l2 − φ)H(φ − l1) + c3H(l1 − φ) and a segmentation of f ,
assuming the degradation model f = K ∗

(
c1H(φ− l2) + c2H(l2−φ)H(φ− l1) + c3H(l1−φ)

)
+n, by minimizing

inf
c1,c2,c3,φ

E(c1, c2, c3, φ) =
∫

Ω

∣∣∣f −K ∗ (c1H(φ− l2) + c2H(l2 − φ)H(φ− l1) + c3H(l1 − φ)
)∣∣∣2dx

+µ
2∑
j=1

∫
Ω

|∇H(φ− lj)|dx. (6)

Similar to the previous binary model with blur, for fixed φ, the unknown constants are computed by solving the
linear system of three equations:

c1

∫
k2

1dx+ c2

∫
k1k2dx+ c3

∫
k1k3dx =

∫
fk1dx

c1

∫
k1k2dx+ c2

∫
k2

2dx+ c3

∫
k2k3dx =

∫
fk2dx

c1

∫
k1k3dx+ c2

∫
k2k3dx+ c3

∫
k2

3dx =
∫
fk3dx

where k1 = K ∗H(φ− l2), k2 = K ∗
(
H(l2 − φ)H(φ− l1)

)
, and k3 = K ∗H(l1 − φ).

For fixed c1, c2 and c3, by minimizing the functional E with respect to φ, we obtain the L2 gradient descent
for φ(t, x), t > 0, x ∈ Ω:

∂φ

∂t
(t, x) = −∇L2E(c1, c2, c3, φ)

= K̃ ∗
(
f −K ∗ (c1H(φ− l2) + c2H(l2 − φ)H(φ− l2) + c3H(l1 − φ))(c1δ(φ− l2)

+ c2H(l2 − φ)δ(φ− l1)− c2H(φ− l1)δ(l2 − φ)− c3δ(l1 − φ))
)

+ µdiv
( ∇φ
|∇φ|

)
(δ(φ− l1) + δ(φ− l2)). (7)

Similarly, the corresponding H1 gradient descent for φ(t, x), t > 0, x ∈ Ω, is

∂φ

∂t
(t, x) = −∇H1E(c1, c2, c3, φ) = −(I −4)−1∇L2E(c1, c2, c3, φ)

= (I −4)−1
{
K̃ ∗

(
f −K ∗ (c1H(φ− l2) + c2H(l2 − φ)H(φ− l2) + c3H(l1 − φ))(c1δ(φ− l2)

+ c2H(l2 − φ)δ(φ− l1)− c2H(φ− l1)δ(l2 − φ)− c3δ(l1 − φ))
)

+ µdiv
( ∇φ
|∇φ|

)
(δ(φ− l1) + δ(φ− l2))

}
. (8)

The time-dependent flows (7) and (8) will be compared in practice in Section 3.

2.3 Algorithm for solving the H1 gradient descent

By applying the spatial Sobolev operator (I −∆)−1 to ∇L2E(φ), we derived the evolution equation for φ(t, x),
t > 0, x ∈ Ω using the H1 gradient, ∇H1E(~c, φ) :

∂φ

∂t
(t, x) = −∇H1E(~c, φ) = −(I −∆)−1∇L2E(~c, φ),



Image L2 4t Iterations Total time (s) H1 4t Iterations Total time (s)
Fig. 1 µ > 0 0.005 700 13.4371 µ = 0 0.1 30 2.4868
Fig. 2 µ > 0 0.02 1000 106.4395 µ > 0 0.25 70 28.0375
Fig. 3 µ > 0 0.005 300 15.9263 µ > 0 0.02 100 11.7915
Fig. 4 µ > 0 0.002 400 11.5187 µ > 0 0.01 100 5.89979
Fig. 5 µ > 0 0.01 2000 203.1195 µ > 0 0.05 500 124.1719
Fig. 6 µ > 0 0.01 500 29.9126 µ > 0 0.02 200 23.4868

Table 1. Summary of the results and time comparison of L2 and H1 gradient descents.

where ~c = (c1, c2) or ~c = (c1, c2, c3). Now we briefly present the details of the numerical algorithm for this
evolution equation (H1 gradient descent). First, we rewrite the above equation as

(I −∆)
∂φ

∂t
(t, x) = −∇L2E(~c, φ).

In the discrete case, let fi,j ≈ f(xi, yj), φni,j ≈ φ(n∆t, xi, yj) with (xi, yj) the discrete points, ∆t the time
step, n ≥ 0, and let 4x and 4y be the space steps. Then for each n > 0 (given φn),

• evaluate the unknown constants ci = ci(φn)

• discretize by finite differences and evaluate Gn := −∇L2E(~c, φn)

• introduce the notation w (will correspond to w = φn+1−φn

∆t )

• solve (I − ∆)w = Gn with ∂w
∂~n |∂Ω = 0 in w using the semi-implicit scheme: start with w0 = 0 (or the

previous w), iterate for l = 1, 2, ... until reaching the steady state solution w:

wl+1
i,j −

{
wli+1,j − 2wl+1

i,j + wli−1,j

4x2
+
wli,j+1 − 2wl+1

i,j + wli,j−1

4y2

}
= Gni,j

• update φn+1 = φn + ∆t · w

We note that other more optimized methods could be used for inverting the operator I −4.

3. EXPERIMENTAL RESULTS

We present in this section several experimental results and comparisons between the use of the L2 and H1

gradient descents, for segmentation, joint with denoising and deblurring. The results are summarized in Table
1, in terms of parameters and time comparison.

In Fig. 1 we compare the binary segmentation models (2) and (3) on a noisy synthetic image. Note that in
the first two rows of Fig. 1, we set µ = 0 (no length term). While the L2 gradient descent without length term
produces a noisy result and a “noisy” curve evolution, the H1 gradient descent without length term produces
a very smooth curve evolution, even smoother than the one with the L2 gradient descent with length term,
with the reduced total computational cost (this effect may be desirable in some applications, such as tracking or
medical imaging).

Fig. 2 also compares (2) and (3), both with length term µ > 0, on a real image. We observe again not only
that the H1 gradient descent gives faster speed and smoother curve evolution than the L2 one, but also that it
provides a better (more desirable) final segmentation.

Fig. 3 tests the joint segmentation and restoration model for the binary case with a noisy blurry image,
and it shows the results using the L2 gradient descent (4) and the H1 gradient descent (5), with length term
µ > 0. In addition, we compare our proposed model with the well-known image recovery model proposed by
Rudin and Osher.17 First, we see that the proposed model gives better result than RO model according to SNR



L2 gradient descent without length term

H1 gradient descent without length term

L2 gradient descent with length term

Figure 1. Segmentation & denoising of a synthetic image using the binary segmentation model without blur: curve
evolution using L2 and H1 gradient descents, and the final segmented denoised image u = c1H(φ) + c2(1 −H(φ)). Top
row: L2 gradient descent (2) without length term, µ = 0; middle row: H1 gradient descent (3) without length term,
µ = 0; bottom row: L2 gradient descent (2) with length term, µ = 20 · 2552.

(signal-to-noise ratio) and visually. Moreover, in this case, the restored image using H1 gradient descent is better
than the one using L2 gradient descent in the sense of SNR, and the H1 gradient descent gives smaller total
computational time.

In Figures 4, 5 and 6, we compare the L2 (7) and H1 (8) gradient descents in the joint segmentation and
restoration model for the multilayer case with noisy blurry images, applied to one synthetic image and two
medical images. For all these results, the H1 gradient descent gives faster computations and smoother curve
evolution. Especially, for the cell and brain images, the H1 gradient descent gives more desirable final curves,
which leads to visually better recovered images than the L2 one. In both examples, while the H1 gradient descent
can give finer final curves by decreasing the parameter µ, the L2 one cannot provide smoother final curves like
the ones obtained by H1 gradient, which may be caused by the numerical instability due to the relation of µ and
∆t. Moreover, according to the plots of energy functionals in Fig. 4, we observe that the H1 gradient descent
converges faster than the L2 one.

Before ending this section, we briefly discuss the choice of parameter µ. As the parameter µ increases, a
smoother curve can be obtained while the time step ∆t needs to became smaller for the numerical stability.
However, ∆t cannot be too small because a very small time step might produce other numerical errors, and
moreover the L2 gradient descent needs already a small ∆t for an explicite scheme. In addition, a very small
change in the parameter µ gives very different results using the L2 gradient, while for the H1 gradient descent,
a change of the parameter µ produces very similar results. Thus, the L2 gradient descent is more sensitive to
the choice of parameter µ.
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Figure 2. Segmentation of a real image using the binary model without blur. Top, from left to right, top to bottom: curve
at iterations 0, 50, 100, 200, 300, 500, 1000 using L2 gradient descent (2) with µ = 5 ·2552, and the final segmented image
u. Bottom, from left to right, top to bottom: curve at iterations 0, 5, 10, 20, 30, 40, 70 using H1 gradient descent (3)
with µ = 5 · 2552, and the final segmented image u.
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Figure 3. Joint segmentation, denoising and deblurring using the binary level set model. Top row: (from left to right)
original image, degraded image (blurred with motion blur kernel of length 10, oriented at an angle θ = 25◦ w.r.t. the
horizon and contaminated by Gaussian noise with σn = 10), initial curve, and restored image (SNR=27.3701) of noisy
blurry image using RO model17 (shown for comparison). Second row: L2 gradient descent (4) curve evolution at iterations
50, 100, 300 with µ = 5 · 2552, and the restored image u (SNR=28.1827). Bottom row: H1 gradient descent (5) curve
evolution at iterations 10, 20, 100 with µ = 5 · 2552, and the restored image u (SNR=29.5093). (c1, c2): original image
≈ (62.7525, 259.8939), restored u using L2 = (61.9194, 262.7795) and H1 = (62.6023, 261.7207).

4. CONCLUSION

We have considered several minimization problems for joint segmentation, denoising and deblurring. For the
computation of their minimizers, we have compared the L2 and H1 gradient descents. Although the H1 gradient
descent requires more operations per main iteration, the total computational cost is reduced, since fewer main
iterations are necessary (roughly speaking, the path evolution of the curve from the initial position to the final
one is smaller for the H1 gradient descent). Depending on the objective, other Sobolev gradients Hs can be used
for functional minimization in image processing and computer vision.
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Figure 6. (Similar with Fig. 5) Top row: original image, image blurred with Gaussian kernel with σb = 1 and contaminated
by Gaussian noise σn = 20, initial curve, initial u. From second to bottom rows: curve evolution and restored u using (left
two columns) L2 gradient descent (7), µ = 0.02 · 2552, and (right two columns) H1 gradient descent (8), µ = 0.027 · 2552.
(c1, c2, c3): original image ≈ (12.7501, 125.3610, 255.6453), restored u using L2 = (22.4797, 136.9884, 255.0074) and H1 =
(16.7475, 132.5393, 255.0811).


