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Abstract
We suggest multiscale methods for the integration of systems of second-order

ordinary differential equations (ODEs) whose solutions include components that
oscillate with large frequencies and small amplitudes. The methods do not need to
integrate completely the fast oscillations and may employ step-sizes determined by
the rate of change of the slow motions of the system. The technique may be used
with any standard ODE method with fixed step-size and also in conjunction with
off-the-shelf, variable-step ODE software. Alternatively, the ideas presented here
may be used to integrate constrained mechanical systems by means of conventional
ODE codes.

1 Introduction
This paper is devoted to the use of Heterogeneous Multiscale Methods (HMMs) [9],
[7], [12], [11], [22], [10], [1], [20], [8], [2], [5], [3], [6] (cf. [18]) in the integration
of systems of second-order ordinary differential equations (ODEs) whose solutions in-
clude components that oscillate with large frequencies and small amplitudes. Such sys-
tems arise in Mechanics and other fields of application and are in general costly to inte-
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grate numerically, among other things, because standard, explicit algorithms may only
operate with step-lengths smaller than the smallest fast period present in the problem.
The HMMs suggested here do not need to integrate completely the fast oscillations
(micro-scale) and may employ step-sizes determined by the rate of change of the slow
motions of the system. Our approach is based on identifying a system of algebraic dif-
ferential equations (DAEs) approximately satisfied by the slow motions (macro-scale)
of the solution; associated with these DAEs there is an underlying system of nonstiff
ODEs, which may be integrated by means of any standard explicit ODE solver. Thanks
to the HMM methodology, the user does not have to find analytically the underlying
system to be integrated: all required information is found numerically by the HMM
as the integration proceeds. Alternatively (see Section 5), the methods presented here
may be applied to integrate systems of DAEs by means of standard ODE software; the
(infinitely stiff) DAE problem is relaxed to a stiff system of ODEs amenable to the
HMM approach.

A key difficulty when using HMMs to integrate ODEs stems from the need to relate
macro and micro-states. The ‘natural’ micro-variables (i.e. those in which the micro-
model is originally formulated and readily amenable to numerical integration) may not
coincide with those fit to describe the slow motions of the macro-scale. A very general
HMM technique to cope with this difficulty that may be applied whenever a full set
of so-called slow variables is available has been suggested in [1]; this reference also
describes an algorithm to identify the required set of slow variables in some classes of
ODE systems. The recent contribution [6] focuses on a restricted class of problems;
for this class, physical considerations show that the position variables of the given stiff
ODEs are slow in the sense of [1], a fact that is then used to formulate simple HMMs
that do not provide approximations to the variables that are fast (unsynchronized ap-
proach). The present article expands the ideas in [6].

Section 2 contains a description of the class of problems envisaged here. The
HMMs are described in Section 3 and tested in Section 4. Our experiments show
the way in which off-the-shelf, variable-step numerical ODE software may be used as
a HMM macro-integrator. The final Section 5 discusses the scope of the suggested
technique.

2 Stiff mechanical problems
We are concerned with systems of ODEs of the form

q̈ = −ω2
ν∑

j=1

gj(q)∇gj(q)−∇V (q), 0 ≤ t ≤ tmax, (1)

where q is a d-dimensional (column) vector, ν ≤ d, the real-valued functions g1,
. . . , gν , V are smooth and, in the neighborhood of the solution of interest, bounded,
along with their derivatives, by constants of moderate size, ∇ denotes the operator
[∂/∂q1, . . . , ∂/∂qd]T , and ω > 0 is a large parameter. The initial conditions q(0),
q̇(0) and the length tmax of the integration interval are assumed to be of moderate size.
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A slightly more compact way of writing (1) would be

q̈ = −ω2g′(q)T g(q)−∇V (q),

where g is the vector-valued function whose ν components are the functions gj and
g′ is the corresponding ν × d Jacobian matrix. Note that we are dealing with the
Lagrangian system corresponding to the Lagrangian function

L = T − U, T =
1
2
‖q̇‖2, U =

ω2

2

ν∑

j=1

gj(q)2 + V (q), (2)

and that, typically and due to the large accelerations in the directions of the vectors∇gj ,
the solutions q(t) will exhibit fast oscillatory behavior with periods of size O(ω−1). It
is well known that the numerical integration of (1) may be a difficult task: explicit algo-
rithms suffer from stability restrictions h = O(ω−1) and, moreover, order reductions
due to stiffness are likely to manifest themselves [5].

Throughout the paper, our attention is restricted to solutions of (1) for which the
total energy E = T + U , which is of course a constant of motion, has a bound of
moderate size independent of ω (cf. the discussion in Section 5). Then, from (2), as
ω →∞, we have the bounds

gj(q) = O(ω−1), j = 1, . . . , ν, (3)

which imply that any rapidly oscillatory components present in the solution must pos-
sess small, O(ω−1), amplitudes (this will be made clearer in the examples below, see
also [13], [19]; the functions q(t) are then slow in the sense of [1] or slow to order
1 in the sense of Kreiss and Lorenz [16]). The numerical methods considered in this
article aim at finding the slowly varying components of q(t) while suppressing the
small-amplitude, highly oscillatory components.

Assume that, for each ω ( 1, qω(t) is a solution of (1) and that, as ω →∞, qω(t)
approaches a limit q∞(t), in such a way that q̇ω(t) → q̇∞(t), and q̈ω(t) → q̈∞(t).1
Under these hypotheses, by taking formally limits in (1), we conclude that gj(q) =
O(ω−2), j = 1, . . . , ν, and that the limit q∞ is a solution of the system of DAEs ([15],
[4], [17])

q̈ =
ν∑

j=1

λj(q)∇gj(q)−∇V (q) (4)

subject to the constraints

gj(q) = 0, j = 1, . . . , ν; (5)

here λj = − limω→∞ ω2gj is the Lagrange multiplier associated with gj . The initial
conditions q(0), q̇(0) for this DAE problem have to lie on the constraint manifold of
the phase space (q̇,q) defined by

gj(q) = 0, ∇gj(q)T q̇ = 0, j = 1, . . . , ν. (6)
1Under this assumption, q̇ω(t) and q̈ω(t) are bounded independently of ω. Thus qω(t) is a slow func-

tion to order 2 in the sense of [16].
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In the language of classical mechanics, the system (4) provides the Lagrange equa-
tions of the first kind (i.e. with redundant, nonindependent coordinates) for the holo-
nomic system defined by the Lagrangian (2) and the constraints (5). In this way we
have found an ω-independent, index 3, DAE problem whose solutions may be used to
approximate the macro-scale of the solutions of the original system of ODEs (1).

In turn, the numerical integration of (4)–(5) may be performed via the so-called
underlying system of ODEs

q̈ = g′T (g′g′T )−1g′∇V − g′T (g′g′T )−1g′′[q̇, q̇]−∇V, (7)

obtained by eliminating the Lagrange multipliers; here g′′[q̇, q̇] denotes the second dif-
ferential of g acting on q̇ and we have suppressed the argument q in g′, g′′, ∇V . The
ν × ν inverse matrix (g′g′T )−1 exists whenever the vectors ∇gj are linearly indepen-
dent, i.e. whenever the Jacobian matrix g′ has full rank. Solutions q(t) of the DAE
problem (4)–(5) are also solutions of (7) and, conversely, any solution of (7) with initial
values on the manifold (6) satisfies (4) and the constraints (5). However (7) also pos-
sesses solutions for initial conditions that violate (6); obviously such solutions cannot
satisfy (6).

Note that, if the constraints are not linear, then g′′ )= 0 and the velocities q̇ appear
in the right hand-side of the underlying system. A consequence of this fact is that (7)
is not, in general, a Lagrangian system (see below). On the other hand, (7) is time-
reversible, because the force is an even function of the velocities.

We now present two simple examples to illustrate the preceding considerations.
Example 1: Linear systems. Let S be a d × d symmetric, positive semi-definite

matrix, with normalized eigenvectors vj , ‖vj‖ = 1, vT
j vk = 0, j )= k, and corre-

sponding eigenvalues µ2
j , j = 1, . . . , d (multiple eigenvalues are not excluded). It is

assumed that ν among the µj are O(ω); more precisely we suppose that there exist
constants of moderate size κj ≥ 0, j = 1, . . . , d, such that µj = κjω, j = 1, . . . , ν
and µj = κj , j = ν + 1, . . . , d. For simplicity, the eigenvectors vj are supposed to be
independent of ω.

Since

Sq = ω2
ν∑

j=1

[
[(κjvj)T q

]
(κjvj) +

d∑

j=ν+1

[
(κjvj)T q

]
(κjvj),

the system
q̈ = −Sq

is a particular instance of (1) with

gj(q) = κjvT
j q, j = 1, . . . , ν, V (q) =

1
2

d∑

j=ν+1

κ2
j (v

T
j q)2.

Each solution q(t) is a superposition of normal modes:

q(t) =
d∑

j=1

αjvj cos(µjt + θj),
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q̇(t) = −
d∑

j=1

αjµjvj sin(µjt + θj);

for solutions with energy E = O(1) the bounds (3) imply that the amplitudes αj of
the fast modes j = 1, . . . , ν are small, αj = O(ω−1), but note that the velocities
αjµjvj sin(µjt + θj) of the fast modes undergo O(1) excursions and that the corre-
sponding accelerations are of size O(ω). Thus these bounded energy solutions q(t) are
slow to order 1 in the sense of [16]): q(t) and q̇(t) are bounded independently of ω
(the fact that such slow solutions may be characterized by bounds on the energy in the
initial condition is an expression of the bounded derivative principle [16]). In terms of
the initial data, these solutions are characterized by

vT
j q(0) = O(ω−1), j = 1, . . . , ν.

On the other hand, smooth solutions (i.e. those that do not include any fast mode2)
correspond to αj = 0, j = 1, . . . , ν, or

vT
j q(0) = 0, vT

j q̇(0) = 0, j = 1, . . . , ν. (8)

These satisfy a system of DAEs of the form (4) with the holonomic constraints given
by vT

j q = 0, j = 1, . . . , ν. It should perhaps be emphasized that in this example the
system of DAEs is satisfied by each smooth q(t) = qω(t) with (large but) finite ω and
not only by the limiting q∞(t), as it would be the case in more complex situations (for
instance if the eigenvectors vj were allowed to vary with ω). The Lagrange multipliers
λj are easily seen to vanish and therefore the underlying system of ODEs (7) reads

q̈ = −
d∑

j=ν+1

[
(κjvj)T q

]
(κjvj). (9)

This is the (unconstrained) Lagrangian system corresponding to the slow potential en-
ergy V .

When facing the task of integrating q̈ = −Sq with initial conditions with moderate
energy E = O(1), we may aim at finding the function q̃(t) defined by discarding from
q(t) the rapidly oscillatory components: this implies a small, O(ω−1), error in the
solution q but an error of magnitude O(1) in the velocity q̇(t). In turn q̃(t) may be
found by numerically integrating the ω-independent associated system of DAEs or the
underlying system of ODEs (9). For the DAE, the initial data q̃(0), ˙̃q(0) are obtained
by projecting the given initial data q(0), q̇(0) onto the manifold defined by (8). For
the underlying system, which does not require compatibility of the initial conditions,
an approximate projection is sufficient.

Example 2: A strong spring in the plane. A unit point mass with coordinates (x, y)
moves in a plane. It is attached to one of the extremes of a stiff harmonic spring with
unit length and elastic constant ω2; the other end of the spring is linked to a pivot fixed

2In the terminology of [16], such solutions are slow to any order.
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at the origin. If r = (x2 + y2)1/2, the (nonlinear) equations of motion

ẍ = −ω2(r − 1)
x

r
,

ÿ = −ω2(r − 1)
y

r
,

provide a simple instance of (1) with d = 2, q = [x, y]T , ν = 1, g1 = r − 1,
V ≡ 0, U = (1/2)ω2(r − 1)2. The problem is best analyzed after changing to polar
coordinates:

r̈ = −ω2(r − 1) + rφ̇2,
d

dt
(r2φ̇) = 0.

Since the areal velocity M = (1/2)r2φ̇ is a constant of motion, we may write

r̈ = −ω2(r − 1) +
4M2

r3
,

so that r varies as the abscissa of a unit point mass under the effective potential U +
2M2/r2, which possesses a minimum at the root r0 > 0 of the equation

ω2r3(r − 1) = 4M2.

Solutions with E = O(1) correspond to

r(0) = 1 + O(ω−1);

for these solutions, r(t) oscillates with amplitude O(ω−1) and frequency ≈ ω around
the value r0 = 1 + O(ω−2), while φ(t) evolves with an essentially constant velocity
φ̇(t) = φ̇(0) + O(ω−1).

Smooth solutions not including fast oscillations have

r(0) = r0, ṙ(0) = 0;

for them r(t) and φ̇(t) remain constant (the tension in the spring exactly balances the
centrifugal force so as to have a uniform circular motion). As ω →∞ , r0 approaches
1 and we conclude that in our example (4) and (5) take the form

ẍ = λ
x

r
,

ÿ = λ
y

r
,

and
(x2 + y2)1/2 − 1 = 0.

By eliminating the multiplier λ (that measures the tension in the spring), we arrive at
the underlying system

ẍ = − ẋ2 + ẏ2

r

x

r
,

ÿ = − ẋ2 + ẏ2

r

y

r
,
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that may be numerically integrated to obtain approximately the solutions of the original
stiff problem. We emphasize that the velocities ẋ and ẏ appear in the right hand-side
of the underlying system and that, furthermore, the system is not Lagrangian.

For future reference, note that the fact that the spring has unit length features in the
original stiff ODEs and is incorporated through the constraint in the DAE formulation;
it is however absent from the underlying ODEs. More precisely, in polar coordinates
the underlying system reads (d2/dt2)r2 = 0, (d/dt)r2φ̇ = 0: all uniform circular mo-
tions, where r and φ̇ remain constant, are possible solutions of this system, regardless
of the values of r(0) and φ̇(0). Moreover, typical solutions spiral with r2 increasing
or decreasing linearly with t; initial conditions for which r(0) − 1, ṙ(0) are small but
non-zero drift slowly away from the constraint manifold r = 1, ṙ = 0 of the DAE.

3 Algorithms
We have just seen how the solutions of the stiff system (1) may be approximated by
a numerical integration of the corresponding underlying system (7). The HMMs con-
sidered in this paper numerically integrate (7) without any need for analytically deter-
mining the actual form of the underlying differential equations to be integrated; the
methods just require the knowledge of the original stiff system (1).

3.1 Time stepping
It is convenient to write (1) in first order format

d

dt

[
p
q

]
=

[
f(q)
p

]
, (10)

where

f(q) = −ω2
ν∑

j=1

gj(q)∇gj(q)−∇V (q),

and to proceed similarly for the underlying system (7) that becomes

d

dt

[
p
q

]
=

[
F(p,q)

p

]
. (11)

This underlying system is integrated (macro-integration) over the time interval 0 ≤ t ≤
tmax by means of any standard procedure (macro-integrator), such a Runge-Kutta or
linear multistep method. Whenever the macro-integrator requires the evaluation of the
right hand-side of (11) at known values p∗, q∗ of the arguments p, q, the upper block
component F is computed by averaging suitable values of the corresponding upper
block f in (10). It is most important to underline that the value p∗ of the lower compo-
nent of the right hand-side of (11) is known and must not be computed via averaging
[6]. More precisely, given the values p∗ and q∗, we integrate (micro-integration) in a
narrow window −η ≤ t ≤ η the initial value problem defined by (10) and the initial
conditions

p(0) = p∗, q(0) = q∗.
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The values of the acceleration f(q(t)) obtained in the micro-integration are then aver-
aged to obtain the required approximate value of F:

F(p∗,q∗) ≈
∫ η/2

−η/2
Kη(t)f(q(t))) dt.

Here, Kη represents a scaled version

Kη(ξ) =
2
η
K(

ξ

η/2
)

of an even, K(ξ) = K(−ξ), weight function or kernel K [11] with unit-mass
∫ 1

−1
K(ξ) dξ = 1.

If η is substantially larger than the periods of the fast oscillations, the rapidly oscillatory
components of f(q(t)) will average to 0 and if η is substantially smaller than the time-
scale of the slow components of f(q(t)), these slow components will not be changed
by the averaging procedure. In this way (see the more precise presentation in [20], [6]),
it is possible to have a consistent approximation to (11) by sampling, with the help of
the micro-integrator, the right hand-side of the given system (10).

3.2 Initial conditions
Given initial conditions p(0) and q(0) for (10) subject to the moderate energy condition
(3), the initial values to be used in the macro-integration —let us denote them by P0

and Q0— are obtained by approximately projecting p(0) and q(0) onto the manifold
(6). This approximate projection is performed by a micro-integration of (10) with initial
data p(0), q(0) followed by averaging of the resulting micro-integration solution:

P0 =
∫ η/2

−η/2
Kη(t)p(t) dt,

Q0 =
∫ η/2

−η/2
Kη(t)q(t) dt.

For the positions q, the solution of the micro-integration oscillates with small O(ω−1)
amplitude and fast frequency in the directions transversal to the manifold gj(q) = 0,
j = 1, . . . , ν in the configuration space; therefore averaging results in a value Q0 that
approximately lies on this manifold. The same argument applies to p and the velocity
constraints ∇gj(q)ṗ = 0, j = 1, . . . , ν.

If the time-interval 0 ≤ t ≤ tmax for the macro-integration is long, the numerically
computed solution of (11) is likely to drift away from the constraint manifold (6) of
the DAEs (recall that the underlying system of ODEs does not carry information on
the DAE constraints). This difficulty may be softened by periodically projecting the
macro-integration solution onto the constraint manifold, a task that may once more
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be achieved by micro-integrating and averaging, in exactly the same way as P0 and
Q0 were obtained from p(0) and q(0). This technique amounts to replacing an initial
value problem over 0 ≤ t ≤ tmax by a sequence of initial value problems over shorter
partial subintervals, in such a way that the final values of p and q at a subinterval are
taken as initial values for the next subinterval.

4 Numerical experiments
The HMMs described in the preceding section are specified by the choices of the
schemes used as macro-integrator and micro-integrator and of the filter function K.
All the experiments reported below use the exponential filter function suggested in
[11] and are based on the Verlet micro-integrator. Two macro-integrators have been
implemented. The first is the ‘classical’ fourth-order Runge-Kutta formula on a uni-
form grid with macro-stepsize H . The second is the variable-step Runge-Kutta code
ode45 from the MATLAB suite. We mention that, due to the dependence of the force
F on the velocities p, the system (11) cannot be integrated by the simple Verlet method
we use as micro-integrator. Other simple explicit methods used in geometric integra-
tion [21], [14], [17] have to be ruled out for the same reason. On the other hand, it
may be of interest to exploit the time-reversibility of (11) and employ a (more expen-
sive) symmetric, implicit macro-integrator. In this connection it is perhaps useful to
point out that, in general, (11) is not a Hamiltonian system and therefore the issue of
its symplectic simulation is meaningless.

As a simple test example we have integrated numerically (cf. [13], [19]):

ẍ1 = −ω2
1(r1 − 1)

x1

r1
− ω2

2(r1,2 − 1)
x1 − x2

r1,2
,

ÿ1 = −ω2
1(r1 − 1)

y1

r1
− ω2

2(r1,2 − 1)
y1 − y2

r1,2
,

ẍ2 = + ω2
2(r1,2 − 1)

x1 − x2

r1,2
,

ÿ2 = + ω2
2(r1,2 − 1)

y1 − y2

r1,2
,

with
r1 = (x2

1 + y2
1)1/2, r1,2 =

(
(x1 − x2)2 + (y1 − y2)2

)1/2
,

a system that governs the planar motion of two unit point masses, the first is joined to
the origin through a spring of elastic constant ω2

1 and the second is joined to the first
through a second spring of elastic constant ω2

2 . The experiments below successively
consider the cases where (i) the first spring is soft and the second hard, (ii) the first
spring is hard and the second soft, (iii) both springs are hard.

Although the original cartesian coordinates x1, y1, x2, y2 were used throughout in
the numerical experiments, the analysis of the different cases becomes clearer in other
coordinate systems, just as our analysis of Example 2 in Section 2 was made easier
by turning to polar coordinates. For instance, in case (i), we may describe the con-
figuration of the masses by specifying the abscissa X = (x1 + x2)/2 and ordinate
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RK4 ode45
ω2 H=1 H=1/2 H=1/4 H=1/8 H=1/16 H=1/32

200 4.3(-1) 6.1(-2) 4.9(-2) 4.8(-2) 4.8(-2) 4.8(-2) 4.9(-2)
500 4.7(-1) 4.6(-2) 9.1(-3) 8.0(-3) 7.9(-3) 7.9(-3) 9.9(-3)

1000 4.7(-1) 4.3(-2) 3.3(-3) 2.1(-3) 2.1(-3) 2.1(-3) 4.1(-3)
2000 4.7(-1) 4.3(-2) 1.7(-3) 6.5(-4) 5.9(-4) 5.9(-4) 2.7(-3)
5000 4.7(-1) 4.1(-2) 1.3(-3) 2.1(-4) 1.5(-4) 1.6(-4) 2.2(-3)

10000 4.6(-1) 3.5(-2) 1.4(-3) 1.3(-4) 6.9(-5) 6.9(-5) 1.9(-3)
20000 3.5(-1) 2.8(-2) 2.1(-3) 1.4(-4) 3.3(-5) 3.1(-5) 1.6(-3)

Table 1: Maximum in the interval 0 ≤ t ≤ 10 of the HMM errors in the coordinates q
when ω1 = 1 and ω2 ( 1.

Y = (y1 + y2)/2 of the center of mass, along with the length r1,2 and the attitude
angle θ = arctan((y2 − y1)/(x2 − x1)) of the second spring. With this choice, it is
easily proved that a full set of slow variables in the sense of [1] is given by the four
coordinates X , Y , r1,2 and θ (in our framework, position variables are always slow,
i.e. their time-derivatives are O(1) as ω →∞) along with the three velocities Ẋ , Ẏ , θ̇.
The velocity ṙ1,2 is not slow, as its time derivative behaves like O(ω). In terms of the
cartesian coordinates, all four velocities ẋ1, ẏ1, ẋ2, ẏ2 inherit the fast character of ṙ1,2.
Similar analysis may be carried out for cases (ii) and (iii).

(i) The case ω1 = 1, ω2 ( 1. The numerical integrations were carried out in the
interval 0 ≤ t ≤ 10 and correspond to the initial condition ẋ1(0) = 1/2, ẏ1(0) =
−1/2, ẋ2(0) = −1/2, ẏ2(0) = 1/2, x1(0) = 1, y1(0) = 0, x2(0) = 2 + 1/ω2,
y2(0) = 0. Thus initially the kinetic and potential energy equal 1/2; the true solution
presents fast modes due to the initial stretching of the hard spring and to the horizontal
components of the initial velocities. The micro-integration used h = (2π/ω2)/6 (so
as to place approximately 6 micro-steps in each period of the fast oscillation of the
hard spring) and the filtering window width was 2η = 20 × 2π/ω2 (so as to cover
approximately 20 fast periods).

Table 1 presents the maximum as t varies of the ∞-norm errors in the position
vector q = [x1, y1, x2, y2]T with respect to an accurate reference solution of the stiff
system computed by means of the ode45 code with relative error tolerance 10−6 and ab-
solute error tolerance 10−9. The parameter ω2 ranges from 200 to 20000; a variation in
the spring constant ω2

2 of four orders of magnitude. For ω2 below this range, the HMM
errors are large: the problem does not possess the separation between time-scales on
which the multiscale methodology is based. For ω2 above this range, the HMM per-
forms well but the computation of the reference solution becomes prohibitively expen-
sive. Results are reported for the classical RK4 formula with H = 1, 1/2, . . . , 1/32
and for the code ode45 with the default tolerances (relative 10−3, absolute 10−6). For
each fixed value of ω2, the RK4 errors initially decrease with H and eventually sat-
urate. In fact, while for H large the discrepancy between the HMM solution and the
reference solution is due to the global error in the integration of the underlying system
with the RK4 formula and to other numerical errors [11], [20], for H small that dis-
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Direct HMM
ω2 Succ. Failed Time Succ. Failed Time

200 3563 802 1.6 22 0 1.1
500 8880 2040 4.0 22 0 1.1

1000 17796 4012 8.0 22 0 1.1
2000 35589 7914 15.9 22 0 1.1
5000 88898 19125 39.5 22 0 1.1

10000 178496 38840 76.7 22 1 1.2
20000 350740 80250 157.8 23 1 1.2

Table 2: Statistics of the variable step-size ode45 integration with default tolerances,
ω1 = 1, ω2 ( 1, 0 ≤ t ≤ 10; direct integration of the stiff system vs. HMM approach.
Columns correspond to numbers of successful and rejected steps and computing time
in seconds.

crepancy is due to the difference between the true stiff solution and the solution of the
underlying system. Note in this connection that the errors for H = 1/32 decrease with
increasing ω2 and that for the larger values of ω2 they roughly behave as O(1/ω2), in
line with our earlier discussion in Section 2 of the size of the fast components ignored
by the HMMs. We emphasize that, with our definition of h and η, the RK4 runs that
correspond to varying ω2 with a fixed value of H share the same computational effort
and that this computational effort is proportional to 1/H . Thus, the HMM approach
becomes more and more appealing as ω2 increases. Turning now to the ode45 results
reported in Table 1, we see that they are similar to those of RK4 with H = 1/4; of
course, the use of larger or smaller tolerances has the result of varying accordingly the
sizes of the errors.

We next study the cost of the HMM technique in relation with that of a direct inte-
gration of the given stiff system. Compiled in Table 2 are some statistics that compare
the HMM ode45 runs in Table 1 with those of a direct integration of the stiff system
with ode45 with the same values of the error tolerances, i.e. relative 10−3, absolute
10−6 (this ode45 integration is not to be confused with the one performed to obtain
the reference solution). The table clearly shows that, as expected, the computational
effort of the direct integration is proportional to ω2 and that of its HMM counterpart
is independent of this stiffness parameter. However, note that, for given values of the
tolerances, the results (not reported here) of the direct ode45 integration do not contain
the error implied by suppressing the fast oscillations and are accordingly more accurate
than those of the HMM ode45 code.

Figure 1 depicts the motion of the two masses in the configuration (x, y) plane
when ω2 = 500; solid lines correspond to the HMM ode45 solution and dots to the
reference solution (for both solutions the output of the code was obtained at intervals
of length ∆t = 0.25). Figure 2 corresponds to the same run as Figure 1 and shows,
as functions of t, the horizontal velocities of the center of mass of the system (i.e.
(ẋ1 + ẋ2)/2) and of the first and second mass (i.e. ẋ1 and ẋ2). The discrepancy be-
tween the values of ẋ1 and ẋ2 in the HMM simulation and those in the direct integration
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Figure 1: Motion of the point masses in the configuration plane, ω1 = 1, ω2 = 500,
0 ≤ t ≤ 10, as computed with the ode45 code with the default tolerances. Dots
correspond to the direct integration of the stiff system and the solid line to the HMM
simulation.
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Figure 2: Horizontal velocities of the center of mass (top) and of the individual masses
(bottom) for the run in Figure 1.
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of the stiff problem is very marked, holds for all values of ω2 and would not decrease
if the error tolerances were made more stringent. As pointed out before, the fast oscil-
lations discarded by the HMM approach have O(ω−1

2 ) amplitude and O(ω−1
2 ) period

and, as a result, their velocities are of size O(1) (the corresponding accelerations are
O(ω2)). However for the combination (ẋ1 + ẋ2)/2, that, as we discussed above, is
slow, the HMM solution virtually coincides with that of the direct integration. For
a slow variable, the time-derivative is, by definition, of size O(1) and therefore the
fast oscillations in (ẋ1 + ẋ2)/2 have small O(ω−1

2 ) amplitude, rather than the O(1)
amplitude of the individual velocities ẋ1 and ẋ2.

(ii) The case ω1 ( 1, ω2 = 1. Experiments analogous to those presented in Table
1 were performed for this case and led to findings similar to those reported above for
case (i). Here we show the results of a single run, corresponding to the ode45 macro-
integrator with default tolerances, 0 ≤ t ≤ 10 and ω1 = 500. The micro-integration
has h = (2π/ω1)/6, 2η = 20× 2π/ω1, i.e. essentially the same choices we employed
before. The initial condition for the velocities is also the same as in (i) above, but
this time x1(0) = 1 + 20/ω1, y1(0) = 0, x2(0) = 2, y2(0) = 0, so as to have
initially a significant amount of potential energy in the hard spring. The maxima in
t of the ∞-norm of the errors in the positions and velocities are 0.041 and 19.341
respectively. Figures 3 and 4 show the motion of the masses in the configuration plane
and the evolution of the lengths of the springs. Both bear out the suppression of the
fast oscillations by the HMM methodology. A warning: there is a stroboscopic effect
at work in the figures where the solution is sampled at intervals of length ∆t = 0.25;
the fast oscillations are much faster than they appear to be!

(iii) The case ω1 ( 1, ω2 ( 1. Although other combinations of spring constants
were tried successfully, we just quote results with ω1 = ω2. Figure 5 corresponds to
ω1 = 500, 0 ≤ t ≤ 10; the initial condition, and the choices of h and η are those used in
case (i) above. The macro-integration was, once more, performed with the variable-step
code with the default tolerances. Although the HMM is initially capable of following
the slow motion of the masses, it becomes completely wrong at t ≈ 2, when the
true motion of the first mass changes from clockwise to anti-clockwise, y2 attains a
minimum and y1 a maximum. This is an example of the HMM solution drifting away
from the constraint manifold; at t ≈ 2 both springs have become ‘numerically’ too
long, the first stores a potential energy of approximately 3 units (initially the total
energy in the system is 1). Figure 6 only differs from Figure 5 in that now the solution
has been re-projected, at t = 1, 2, . . . , 9, onto the constraint manifold through the
technique described as the end of the preceding Section. This amounts to successively
solving ten initial value problems in time-intervals of unit length. The maximum error
in the positions x, y is now 0.0359.

The fact that this case appears to be more difficult to integrate than cases (i)–(ii),
where re-projections were not needed, is probably attributable to the presence here of
two holonomic constraints r1 = 1 and r1,2 = 1 in the limit of infinite stiffness, as
distinct from the single constraint r1 = 1 or r1,2 = 1.

Remark: The accuracy of the micro-integrations. In all the experiments above,
the micro-integrations are performed with Verlet’s method, with h = C(2π/ω), η =
D(2π/ω), where C and D remain constant as ω → ∞. In particular h and η are
independent of H in the RK4 runs and of the code tolerances in the ode45 runs. In
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Figure 3: Motion of the point masses in the configuration plane, ω1 = 500, ω2 =
1, 0 ≤ t ≤ T , as computed with the ode45 code with the default tolerances. Dots
correspond to the direct integration of the stiff system and the solid line to the HMM
simulation.
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Figure 4: Lengths of the springs as functions of time for the run in Figure 3.
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Figure 5: Configuration plane, ω1 = 500, ω2 = 500, 0 ≤ t ≤ T , ode45 code with the
default tolerances. Dots: stiff system. Solid line: HMM.
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Figure 6: As Figure 5, but now the solution is projected onto the constraint manifold at
intervals of length ∆t = 1.
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terms of the scaled variable t′ = ωt, the derivatives of q are of order O(ω−1) and
the step-length and integration interval are independent of ω. Therefore, see [20], the
errors in the values of q found in the micro-integration are of size O(ω−1), where the
constant implied in the O notation decreases when C or D decrease. These errors in
q lead to errors of size O(ω−1) in the slowly varying components of the force f(q) to
be averaged and to errors of size O(ω) in the fast force components, due to the O(ω2)
Lipschitz constant. Such large errors have no impact on the performance of the method,
because the fast force components are filtered out.

The preceding comments are specific to the format (1) we are considering. In other
situations [11], [22], [20], the micro-integrations have to be performed with values of
ωh that become smaller as more accuracy is sought, i.e. as the macro-step H (or the
tolerance in the macro-integration variable-step code) is decreased.

5 Discussion
We have considered so far the situation where the starting point is the stiff system (1)
and the system of DAEs (4) is a means to approximate the non-oscillatory components
of the solution we seek. However the roles may be interchanged: it is possible to begin
with the system of DAEs and see the HMM integration of (1) as a way to solve the
given problem by means of an ODE code. For instance, the integrations in Section 4
may be seen as examples of the use of the code ode45 from MATLAB to solve DAE
problems involving a spring and a rod (cases (i) and (ii)) or two rods (case (iii)); for
numerical purposes the rigid rods of the DAE are replaced by stiff springs. Note that
it is a simple matter to write the ODE system (1) that corresponds to any given DAE
problem (4)–(5).

Although, for simplicity, the exposition has been restricted to stiff systems of ODEs
of the form (1), it is clear that many other problems may be catered for with the
techniques outlined here. More general formats may include a mass matrix, non-
conservative slow forces in lieu of ∇V , slow forces depending on q̇, explicit time-
dependence on t, etc. Also the stiff term in (1) could be replaced by

ν∑

j=1

ω2
j gj(q)∇gj(q), ω1 ( 1, . . . , ων ( 1,

or by more general expressions.
Perhaps, the main limitation of the technique studied in this paper lies in the re-

quired structure of the solution q (as distinct from the format of the problem). The
requirement that q may be described as a superposition of a slowly varying function
and rapidly varying oscillatory components of small amplitude is essential. There are
many rapidly oscillatory ODE problems of interest where the solution does not possess
such a structure. For instance consider the simple model involving two weakly coupled
oscillators:

q̈1 = −q1 − ε(q1 − q2), q̈2 = −q2 + ε(q1 − q2), ε- 1.
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With the initial conditions q1(0) = 1, q2(0) = q̇1(0) = q̇2(0) = 0, the solution is

q1 = cos(ψt) cos t, q2 = sin(ψt) cos t, ψ =
√

1 + 2ε− 1
2

≈ ε

2
;

the energy, initially in the first oscillator, moves to the second in a time-scale t =
O(ε−1). After introducing the slow time τ = εt and setting ω = ε−1, the system
becomes

d2

dτ2
q1 = ω2q1 − ω(q1 − q2),

d2

dτ2
q2 = ω2q1 + ω(q1 − q2), (12)

the energy interchange occurs in τ -intervals of length O(1) and the solution

q1 = cos(ψ∗τ) cos(ωτ), q2 = sin(ψ∗τ) cos(ωτ), ψ∗ ≈ 1/2,

oscillates rapidly with period 2π/ω. In spite of the fact that (12) is not far away from
the format (1), the technique suggested in this paper is not applicable, because the
fast oscillations have amplitude O(1). (Note that the solution, after the change of
independent variable, possesses energy O(ω2).)
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