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Abstract. We wish to recover an image corrupted by blur and Gaus-
sian or impulse noise in a variational framework. We use two data-fidelity
terms depending on the type of noise, and several local and nonlocal reg-
ularizers. Inspired by Buades, Coll, Morel and Gilboa-Osher, we propose
nonlocal versions of the Ambrosio-Tortorelli and Shah approximations to
the Mumford-Shah regularizing functionals, with applications to image
deblurring in the presence of noise. In the case of impulse noise model, we
propose a necessary preprocessing step for the computation of the weight
function. Experimental results show that these nonlocal MS regularizers
yield better results than the corresponding local ones (proposed for de-
blurring by Bar et al.) for both noise models; moreover, these perform
better than the nonlocal total variation in the presence of impulse noise.
Characterization of minimizers is also given.
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1 Introduction

We consider the problem of the restoring an image blurred and then contam-
inated by Gaussian or impulse noise. Let f, u : Ω → IR be image intensity
functions, where Ω ⊂ IR2 is open and bounded. The standard linear degrada-
tion model that links the blurry-noisy image with the original image is given
by f = k ∗ u + n, where f is the observed degraded image, k is (known) space-
invariant blurring kernel, u is the ideal image we want to recover, and n is
the random additive noise independent of u. We approach the image restoration
problem within the variational framework. Specifically, we consider the following
minimization problem in the unknown u,

inf
u
{Φ(f − k ∗ u) + Ψ(∇u)}

where Φ(·) is a functional representing the data-fidelity term, and Ψ is the reg-
ularization functional which enforces a smoothness constraint on u, depending
on its gradient ∇u.



First, two different fidelity terms can be considered based on the type of noise;
in the case of Gaussian noise model, the L2-fidelity term led by the maximum
likelihood estimation is commonly used:

Φ(f −K ∗ u) =
∫

Ω

|f − k ∗ u|2dx.

However, the quadratic data fidelity term considers the impulse noise, which
might be caused by bit errors in transmissions or wrong pixels, as an outlier. So,
for the impulse noise model, the L1-fidelity term is more appropriate, due to its
robustness of removing outlier effects [7], [13]:

Φ(f −K ∗ u) =
∫

Ω

|f − k ∗ u|dx.

Image deblurring-denoising is an inverse problem, which is known to be ill-
posed due to either the non-uniqueness of the solution or the numerical instability
of the inversion of the blurring operator. The regularization term alleviates this
problem by reflecting some a-priori properties. Several regularization terms were
suggested in the literature, including [31], [27], [28], [25]. Here, we consider the
total variation regularization [27], [28] and two approximations of the Mumford-
Shah regularization [25], denoted MSH1 and MSTV, proposed by Ambrosio-
Tortorelli [2] and Shah [29] respectively and recently used for image deblurring
in the presence of Gaussian and impulse noise by Bar et al [4], [5], [6], [7].
These traditional regularization terms are based on local image operators, which
denoise and preserve edges very well, but may induce loss of fine structures like
textures during the restoration process.

Recently, Buades et al [10] introduced the nonlocal means filter, which pro-
duces excellent denoising results. Kindermann et al [22] and Gilboa and Osher
[19, 20] formulated the variational framework of NL-means by proposing nonlocal
regularizing functionals and the nonlocal operators such as the nonlocal gradi-
ent and divergence. Lou et al [23] used the nonlocal total variation (NL/TV)
of Gilboa-Osher in image deblurring in the presence of Gaussian noise with a
preprocessing step for the computation of the weight function.

We propose here nonlocal versions of the approximated Mumford-Shah and
Ambrosio-Tortorelli regularizing functionals, called NL/MSH1 and NL/MSTV,
by applying the nonlocal operators proposed by Gilboa-Osher to MSH1 and
MSTV respectively, for image restoration in the presence of blur and Gaussian
or impulse noise. In addition, for the impulse noise model, we propose to use
a preprocessed image to compute the weights w (the weights w defined in the
NL-means filter are more appropriate for the additive Gaussian noise case). We
note that the interesting parallel work [11] also proposed NL/MSH1 regularizer
for segmentation and denoising in the presence of Gaussian noise, but not for
deblurring, nor for the impulse noise case.

Local regularizers In this section, we recall several regularization terms. The
first one is the Mumford-Shah regularizing functional [25] which gives preference



to piecewise smooth images. The MS regularizer depends on the image u as well
as on the set of edges K ⊂ Ω, and is given by

ΨMS(u,K) = β

∫

Ω\K
|∇u|2dx + α

∫

K

dH1

where H1 is the one-dimensional Hausdorff measure. The first term enforces
smoothness of u everywhere except on the edge set K, and the second one
minimizes the total length of edges. It is difficult to minimize in practice the
non-convex MS functional.

Ambrosio and Tortorelli [2] approximated this functional by a sequence of
regular functionals Ψε using the Γ -convergence. The edge set K is represented
by a smooth auxiliary function v. Thus we have an approximation to ΨMS as [2]

ΨMSH1

ε (u, v) = β

∫

Ω

v2|∇u|2dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx,

where 0 ≤ v(x) ≤ 1 represents the edges: v(x) ≈ 0 if x ∈ K and v(x) ≈ 1
otherwise, ε is a small positive constant, α, β are positive weights. A minimizer
u = uε of ΨMSH1

ε approaches a minimizer u of ΨMS as ε → 0.
An alternative approach is the total variation [27] proposed by Rudin, Osher,

and Fatemi, called TV regularizer:

ΨTV (u) =
∫

Ω

|Du| ≈
∫

Ω

|∇u|dx.

Because of its benefit of preserving edges (which have high gradient levels) and
convexity, TV has been widely used in image restoration.

Shah [29] suggested a modified version of the approximation (1) to the MS
functional by replacing the norm square of |∇u| by the norm in the first term:

ΨMSTV
ε (u, v) = β

∫

Ω

v2|∇u|dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx.

This functional Γ−converges to the other ΨMSTV functional [1]:

ΨMSTV (u) = β

∫

Ω\K
|∇u|dx + α

∫

K

|u+ − u−|
1 + |u+ − u−|dH

1 + |Dcu|(Ω)

where u+ and u− denote the image values on two sides of the jump set K = Ju

of u, and Dcu is the Cantor part of the measure-valued derivative Du. Note
that the non-convex term |u+−u−|

1+|u+−u−| is similar with the prior regularization by
Geman-Reynolds [18]. We observe that this regularizing functional is similar to
the total variation of u ∈ BV (Ω) that can be written as

∫

Ω

|Du| =
∫

Ω\K
|∇u|dx +

∫

K

|u+ − u−|dH1 + |Dcu|(Ω).

By comparing the second terms, we see that the MSTV regularizer does not
penalize the jump part as much as the TV regularizer. In this paper, we con-
sider the TV regularizer ΨTV , the MSH1 regularizer ΨMSH1

ε , and the MSTV
regularizer ΨMSTV

ε .



Nonlocal methods Nonlocal methods in image processing have been explored
in many papers because they are well adapted to texture denoising while the
standard denoising models working with local image information seem to con-
sider texture as noise, which results in losing textures. Nonlocal methods are
generalized from the neighborhood filters (e.g. Yaroslavsky filter, [32]) and patch
based methods. The idea of neighborhood filter is to restore a pixel by averaging
the values of neighboring pixels with a similar grey level value.

Buades et al. [10] generalized this idea by applying the patch-based methods
proposed for texture synthesis [17], which is a famous neighborhood filter called
nonlocal-means (or NL-means):

NLu(x) =
1

C(x)

∫

Ω

e−
da(u(x),u(y))

h2 u(y)dy

da(u(x), u(y)) =
∫

R

Ga(t)|u(x + t)− u(y + t)|2dt

where da is the patch distance, Ga is the Gaussian kernel with standard deviation
a determining the patch size, C(x) =

∫
Ω

e−
da(u(x),u(y))

h2 dy is the normalization
factor, and h is the filtering parameter which corresponds to the noise level;
usually we set it to be the standard deviation of the noise. The NL-means not
only compares the grey level at a single point but the geometrical configuration
in a whole neighborhood (patch). Thus, to denoise a pixel, it is better to average
the nearby pixels with similar structures rather than just with similar intensities.

In practice, we use the search window Ωw = {y ∈ Ω : |y − x| ≤ r} instead
of Ω (semi-local) and the weight function at (x, y) ∈ Ω × Ω depending on a
function u : Ω → IR

w(x, y) = exp
(
−da(u(x), u(y))

h2

)
.

The weight function w(x, y) gives the similarity of image features between two
pixels x and y, which is normally computed based on the blurry noisy image
f . Recently, for image deblurring with Gaussian noise, Lou et al [23] used a
preprocessed image obtained by applying the Wiener filter, instead of f , to
construct w. In our work, only for the impulse noise model, we propose a different
preprocessing step and evaluate w using the preprocessed image.

Nonlocal regularizers In the variational framework, Kindermann et al [22]
formulated the neighborhood filters and NL-means filters as nonlocal regularizing
functionals which have the general form:

Ψ(u) =
∫

Ω×Ω

φ

( |u(x)− u(y)|2
h2

)
w(|x− y|)dxdy

where w(|x − y|) is a positive weight function. But, these functionals generally
are not convex. Thus, Gilboa and Osher [19] formalized the convex nonlocal



functional inspired from graph theory:

Ψ(u) =
1
2

∫

Ω×Ω

φ(|u(x)− u(y)|)w(x, y)dxdy

where φ is convex, positive, φ(0) = 0 and further assume that lims→∞φ(s)/s = 1
for the L1 type, and the weight function w(x, y) is nonnegative and symmetric.
Note that φ(s) = s2 is analogous to the standard H1 semi-norm while φ(s) = s
is analogous to the TV semi-norm.

Moreover, based on the gradient and divergence definitions on graphs in
the context of machine learning, Gilboa and Osher [20] derived the nonlocal
operators. Let u : Ω → IR be a function, and w : Ω × Ω → IR is a weight
function assumed to be nonnegative and symmetric. The nonlocal gradient∇wu :
Ω×Ω → IR is defined as the vector (∇wu)(x, y) := (u(y)−u(x))

√
w(x, y). Hence,

the norm of the nonlocal gradient of u at x ∈ Ω is defined as

|∇wu|(x) =

√∫

Ω

(u(y)− u(x))2w(x, y)dy.

The nonlocal divergence divw
−→v : Ω → IR of the vector −→v : Ω × Ω → IR is

defined as the adjoint of the nonlocal gradient

(divw
−→v )(x) :=

∫

Ω

(v(x, y)− v(y, x))
√

w(x, y)dy.

Based on these nonlocal operators, they introduced nonlocal regularizing func-
tionals of the general form

Ψ(u) =
∫

Ω

φ(|∇wu|2)dx

where φ(s) is a positive function, convex in
√

s with φ(0) = 0. By taking φ(s) =√
s, they proposed the nonlocal TV regularizer (NL/TV) as

ΨNL/TV (u) =
∫

Ω

|∇wu|dx =
∫

Ω

√∫

Ω

(u(y)− u(x))2w(x, y)dydx

where this functional corresponds in the local two dimensional case to ΨTV (u) =∫
Ω
|∇u|dx. Inspired by these ideas, we propose in the next section nonlocal

versions of Ambrosio-Tortorelli and Shah approximations to the MS regularizer
for image denoising-deblurring. This is also continuation of work by Bar et al.
[4], [5], [6], [7], first to propose the use of Mumford-Shah-like approximations to
image deblurring.

2 Description of proposed models

We propose the following nonlocal approximated Mumford-Shah and Ambrosio-
Tortorelli regularizing functionals (NL/MS) by applying the nonlocal operators



to the approximations of the MS regularizer,

ΨNL/MS(u, v) = β

∫

Ω

v2φ(|∇wu|2)dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx

where φ(s) = s and φ(s) =
√

s correspond to the nonlocal version of MSH1 and
MSTV regularizers, called here NL/MSH1 and NL/MSTV, respectively:

ΨNL/MSH1
(u, v) = β

∫

Ω

v2|∇wu|2dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx

ΨNL/MSTV (u, v) = β

∫

Ω

v2|∇wu|dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx.

In addition, we use these nonlocal regularizers to deblur images in the presence
of Gaussian or impulse noise. Thus, by incorporating the proper fidelity term
depending on the noise model, we design two types of total energies as

Gaussian noise model:

EG(u, v) =
∫

Ω

(f − k ∗ u)2dx + ΨNL/MS(u, v),

Impulse noise model:

EIm(u, v) =
∫

Ω

|f − k ∗ u|dx + ΨNL/MS(u, v).

Minimizing these functionals in u and v, we obtain the Euler-Lagrange equa-
tions:

Gaussian noise model:

∂EG

∂v
= 2βvφ(|∇wu|2)− 2εα∇2v + α

(
v − 1

2ε

)
= 0,

∂EG

∂u
= k∗ ∗ (k ∗ u− f) + LNL/MSu = 0

Impulse noise model:

∂EIm

∂v
= 2βvφ(|∇wu|2)− 2εα∇2v + α

(
v − 1

2ε

)
= 0,

∂EIm

∂u
= k∗ ∗ sign(k ∗ u− f) + LNL/MSu = 0

where k∗(x) = k(−x) and (see Appendix I)

LNL/MSu = −2
∫

Ω

(u(y)− u(x))w(x, y)
[
(v2(y)φ′(|∇w(u)|2(y)) + v2(x)φ′(|∇w(u)|2(x))

]
dy.



More specifically, the NL/MSH1 and NL/MSTV regularizers give

LNL/MSH1
u = −2∇w·

(
v2(x)∇wu(x)

)
= −2

∫

Ω

(u(y)− u(x))w(x, y)
[
v2(y) + v2(x)

]
dy,

LNL/MSTV u = −∇w ·
(

v2(x)
∇wu(x)
|∇wu(x)|

)

= −
∫

Ω

(u(y)− u(x))w(x, y)
[

v2(y)
|∇wu|(y)

+
v2(x)

|∇wu|(x)

]
dy.

The energy functionals EG(u, v) and EIm(u, v) are convex in each variable
and bounded from below. Therefore, to solve two Euler-Lagrange equations si-
multaneously, the alternate minimization (AM) approach is applied: in each step
of the iterative procedure, we minimize with respect to one function while keep-
ing the other one fixed. Due to its simplicity, we use the explicit scheme for u
based on the gradient descent method and the Gauss-Seidel scheme for v. Note
that since both energy functionals are not convex in the joint variable, we may
compute only a local minimizer. However, this is not a drawback in practice,
since the initial guess for u in our algorithm is the data f .

Furthermore, to extend the nonlocal methods to the impulse noise case, we
need a preprocessing step for the weight function w(x, y) since we cannot directly
use the data f to compute w. In other words, in the presence of impulse noise,
the noisy pixels tend to have larger weights than the other neighboring points,
so it is likely to keep the noise value at such pixel. Thus, we propose a simple
algorithm to obtain first a preprocessed image g, which removes the impulse noise
(outliers) as well as preserves the textures as much as possible. Basically, we use
the median filter, well-known for removing impulse noise. However, if we apply
one-step of the median filter, then the output may be too smoothed out. In order
to preserve the fine structures as well as to remove the noise properly, we use
the idea of Bregman iteration [8], [26], and we propose the following algorithm
to obtain a preprocessed image g that will be used only in the computation of
the weight function:

Initialize : r0 = 0, g0 = 0.
do (iterate n = 0, 1, 2, . . .)

gn+1 = median(f + rn, [a a])
rn+1 = rn + f − k ∗ gn+1

while ‖f − k ∗ gn‖1 > ‖f − k ∗ gn+1‖1
[Optional] gm = median(gm, [b b])

where f is the given noisy blurry data, median(u, [a a]) is the median filter of
size a×a with input u; the optional step is needed in the case when the final gm

still has some salt-and-pepper-like noise. This algorithm is simple and requires
a few iterations only, so it takes less than 1 second for a 256 × 256 size image.
As seen in Fig. 9, the energy functional ‖f − k ∗ gn‖1 has a minimizer at mth
iteration, and the preprocessed image gm is a deblurred and denoised version of
f ; it will be used only in the computation of the weights w, while keeping f in
the data fidelity term, thus artifacts are not introduced by the median filter.



Characterization of minimizers In this section, we characterize the mini-
mizers of the functionals formulated with the nonlocal regularizers using [24,
30, 3]. Assuming that a functional ‖ · ‖ is a semi-norm, we can define its dual
with respect to the L2(Ω) scalar product 〈·, ·〉 as ‖f‖∗ := sup‖ϕ‖6=0

〈f,ϕ〉
‖ϕ‖ ≤ +∞,

so that the usual duality 〈f, ϕ〉 ≤ ‖ϕ‖‖f‖∗ holds for ‖ϕ‖ 6= 0. We define two
functionals (here Ku := k ∗ u),

FK(u) = λ

∫

Ω

(f −Ku)2dx + |u|NL/TV ,

GK(u, v) =
∫

Ω

√
(f −Ku)2 + η2dx + β|u|NL/MS + α

(∫

Ω

ε|∇v|2 +
(v − 1)2

4ε
dx

)

where λ > 0 and |u|NL/MS ∈ {|u|NL/MSTV,v, |u|NL/MSH1,v} with

|u|NLTV =
∫

Ω

|∇wu|(x)dx, |u|NL/MSTV,v =
∫

Ω

v2(x)|∇wu|(x)dx,

|u|NL/MSH1,v =

√∫

Ω

v2(x)|∇wu|2(x)dx

Note that the regularizing functionals |u|NL/TV , |u|NL/MSTV,v and |u|NL/MSH1,v

are semi-norms (Appendix II). In addition, we modified the regularizing func-
tional |u|NL/MSH1,v; the square-root term replaces the original term,

∫

Ω

v2(x)|∇wu|2(x)dx,

of our model. It is introduced here to enable the characterization of the mini-
mizers, but the numerical calculations will still utilize the original formulation.

Proposition 1. Let K : L2(Ω) → L2(Ω) be a linear bounded blurring operator
with adjoint K∗ and let FK be the associated functional. Then

(1) ‖K∗f‖∗ ≤ 1
2λ if and only if u ≡ 0 is a minimizer of FK .

(2) Assume that 1
2λ < ‖K∗f‖∗ < ∞. Then u is a minimizer of FK if and only

if ‖K∗(f −Ku)‖∗ = 1
2λ and 〈u,K∗(f −Ku)〉 = 1

2λ |u|NL/TV

where ‖ · ‖∗ is the corresponding dual norm of | · |NL/TV .

We omit the proof of Proposition 1, because it is the same with the proof of
Corollary 2.5 and 2.7 from [30].

Proposition 2. Let K : L2(Ω) → L2(Ω) be a linear bounded blurring operator
with adjoint K∗ and let GK be the associated functional. If (u, v) is a minimizer
of GK with v ∈ [0, 1], then
∥∥∥∥∥K∗ f −Ku√

(f −Ku)2 + η2

∥∥∥∥∥
∗

= β, and 〈K∗ f −Ku√
(f −Ku)2 + η2

, u〉 = β|u|NL/MS

where ‖ · ‖∗ is the corresponding dual norm of | · |NL/MS.



Proof. Let [u, v] be a minimizing pair. Considering the variation of F only with
respect to u, we find that for any ϕ ∈ NL/MS(Ω) = {u ∈ L2(Ω) : |u|NL/MS <
∞}, we have
∫

Ω

√
(f −Ku)2 + η2dx+β|u|NL/MS ≤

∫

Ω

√
(f −K(u + εϕ))2 + η2dx+β|u+εϕ|NL/MS .

Let
g(ε) :=

√
(f −K(u + εϕ))2 + η2.

Taylor’s expansion gives g(ε) =
√

(f −Ku)2 + η2 − ε (f−Ku)(Kϕ)√
(f−Ku)2+η2

+ ε2

2 g′′(εξ)

and hence
∫

Ω

√
(f −K(u + εϕ))2 + η2dx

≤
∫

Ω

√
(f −Ku)2 + η2dx− ε

〈
f −Ku√

(f −Ku)2 + η2
, Kϕ

〉
+

ε2

2
max

x
|g′′(x)|.

Then, the first inequality implies that

ε

〈
f −Ku√

(f −Ku)2 + η2
,Kϕ

〉
≤ εβ|ϕ|NL/MS +

ε2

2
max

x
|g′′(x)|.

Dividing by ε > 0 and letting ε ↓ 0+ (while noticing that limε→0
ε2

2 maxx |g′′(x)| =
0) yield that for any ϕ ∈ NL/MS(Ω),

〈
K∗ f −Ku√

(f −Ku)2 + η2
, ϕ

〉
≤ β|ϕ|NL/MS ,

thus, ∥∥∥∥∥K∗ f −Ku√
(f −Ku)2 + η2

∥∥∥∥∥
∗
≤ β.

Now let ϕ = u. Then, dividing by ε < 0, and letting ε ↑ 0−, we obtain
〈

K∗ f −Ku√
(f −Ku)2 + η2

, u

〉
≥ β|u|NL/MS .

Combining the last two inequalities concludes the proof.

3 Experimental results and comparisons

The nonlocal MS regularizers proposed here, NL/MSTV and NL/MSH1, are
tested on several images with different blur kernels and noise types. We compare
them with their traditional (local) versions, such as MSTV and MSH1 and with



Fig. 1. Image recovery and cross sections: Gaussian blur kernel with σb = 1 and Gaus-
sian noise with σn = 5. Top row: original image and its cross section, noisy blurry
image and its cross section. Middle, bottom rows: recovered images (middle) and re-
covered cross sections (bottom) using TV, MSTV, NL/TV, NL/MSTV. SNR for re-
covered results: TV=32.9485, MSTV=33.5629, NL/TV=45.1943, NL/MSTV=50.6618.
β = 0.0045 (MSTV), 0.001 (NL/MSTV), α = 0.00000015, ε = 0.000001.

Fig. 2. Original and noisy blurry images: (second image) noisy blurry image using
Gaussian kernel with σb = 1 and Gaussian noise with σn = 5; (forth image) noisy
blurry image using the pill-box kernel of radius 2 and Gaussian noise with σn = 5.

the nonlocal total variation (NL/TV) proposed by Osher and Gilboa [20]. In
addition, we experiment the nonlocal regularizers in the impulse noise model
with a preconditioning step for the weight function. We use the signal-to-noise



Fig. 3. Recovery of noisy blurry image from Fig. 2 using TV (SNR=14.4240), MSTV
(SNR=14.4693), NL/TV (SNR=17.4165), NL/MSTV (SNR=16.5776). β = 0.007, α =
0.00000015 (MSTV), β = 0.0025, α = 0.00000025 (NL/MSTV), ε = 0.0000005

ratio (SNR) as a measure of performance

SNR(g, u) = 40 log10

{‖u− u‖L2

‖u− g‖L2

}

where g is the original true image, u is the recovered image and u is its mean.
First, we test the Gaussian noise model in Figures 1-4. As expected, NL/MSTV

and NL/MSH1 perform better than MSTV and MSH1 respectively in the sense
that not only they recover the fine scales such as textures better, but also in the
case of NL/MSTV, it does not produce any staircase effects appeared in MSTV.
Furthermore, comparing the nonlocal MS regularizers with NL/TV, NL/MSTV
and NL/TV seem to lead to similar results visually and according to SNR, while
NL/MSH1 gives a smoother image and lower SNR. Specifically, in Fig. 1, we use
a simple image and its one-dimensional cross section. In this example, we use
11× 11 size search window for NL/MSTV which is sufficient to obtain the best
result, while NL/TV needs a 31×31 size. Moreover, NL/MSTV recovers the sig-
nals much better than NL/TV, which might be caused by the fact that MSTV
regularizer does not suppress the jump part as much as TV. On the other hand,
in Fig. 3, NL/TV produces clearer edges leading to higher SNR, while NL/MSTV
has some artifacts near the edges of especially small black boxes. However, in
the other real boat image, there is no significant difference between them visu-
ally and according to SNR (see Fig. 4). Fig. 4 also justifies the result that the
nonlocal regularizers preserve edges and details better than the traditional local
ones because we see less textures in the residuals f − k ∗ u. Before ending the
discussion about the Gaussian noise model, we note that we can also improve
the results of the nonlocal MS regularizers by using a preprocessed image for the
weight function, as Lou et al [23] did for the NL/TV.

Next, we recover a blurred image contaminated by impulse noise (salt-and-
pepper noise or random-valued impulse noise). First, we test all the nonlocal
regularizers and the corresponding local ones on two images, Barbara (Fig. 5)
and Lenna (Fig. 6), contaminated by salt-and-pepper noise with the noise density
d = 0.2 and d = 0.3 respectively, and then we test MSH1 and NL/MSH1 on the
Einstein image (Fig. 7 and Fig. 8) with different blur kernels and both impulse



Fig. 4. Recovery of noisy blurry image from Fig. 2. Top row: recovered image u using
TV (SNR=25.0230), MSTV (SNR=25.1968), MSH1 (SNR=23.1324). Third row: recov-
ered image u using NL/TV (SNR=26.4554), NL/MSTV (SNR=26.4696), NL/MSH1

(SNR=24.7164). Second, bottom rows: corresponding residuals f − k ∗ u. β = 0.0045
(MSTV), 0.001 (NL/MSTV), 0.06 (MSH1), 0.006 (NL/MSH1), α = 0.00000001,
ε = 0.00002.

noise models, salt-and-pepper noise (Fig. 7) and random-valued impulse noise
(Fig. 8), with the same noise density d = 0.4. By using a preconditioned image



Fig. 5. Recovery of image blurred with a pill-box kernel of radius 2 and contami-
nated by salt-and-pepper noise with d = 0.2. Top row: original image, a blurry image,
noisy-blurry image. Middle row: recovered images using TV (SNR=18.2909), MSTV
(SNR=18.8140), MSH1 (SNR=17.9379). Bottom row: recovered images using NL/TV
(SNR=18.5693), NL/MSTV (SNR=18.8551), NL/MSH1 (SNR=18.9862). β = 0.18
(MSTV), 0.09 (NL/MSTV), 2.2 (MSH1), 0.35 (NL/MSH1), α = 0.001, ε = 0.0002.

for the weight function, all the nonlocal regularizers outperform the traditional
local ones by reducing the staircase effect and recovering the details better.
And, comparing the nonlocal regularizers, NL/TV and NL/MSTV sometimes
seem to give better results than NL/MSH1 in the sense of SNR, but visually
NL/MSH1 looks much natural by preserving textures or details better especially
in the case of high noise density (see Fig. 6). Moreover, in the presence of high
noise density, MSH1 suffers from restoring images well especially blurred with
Gaussian kernel, while it works satisfactorily with the other blur kernels such as
motion blur. But, NL/MSH1 performs very well with Gaussian blur as well as it



Fig. 6. Recovery of noisy blurry image with Gaussian kernel with σ = 1 and salt-and-
pepper noise with d = 0.3. Top row: original image, blurry image, noisy-blurry im-
age. Middle row: recovered images using TV (SNR=26.9251), MSTV (SNR=27.8336),
MSH1 (SNR=23.2052). Bottom row: recovered images using NL/TV (SNR=29.2403),
NL/MSTV (SNR=29.3503), NL/MSH1 (SNR=27.1477). Second column: β = 0.25
(MSTV), 0.1 (NL/MSTV), α = 0.01, ε = 0.002. Third column: β = 2 (MSH1), 0.55
(NL/MSH1), α = 0.001, ε = 0.0001.

produces better results with the other blur kernels. This can be seen in Figures
6, 7, and 8. More specifically, in Fig. 5 with the noise density d = 0.2, NL/MSH1

not only gives better result than MSH1 visually and in the sense of SNR, but
recovers the texture parts well while NL/TV and NL/MSTV still smooth out
part of the texture. In Fig. 6 with Gaussian blur and high noise density d = 0.3,
MSH1 suffers from some artifacts induced by noise, while MSTV and TV give
cleaner results. On the other hand, NL/MSH1 provides better result than the



Fig. 7. Comparison between MSH1 and NL/MSH1 with the image blurred and con-
taminated by high density (d = 0.4) of salt-and-pepper noise. Top row: original, image
blurred with motion blur kernel of length=10, oriented at angle θ = 25◦ w.r.t. the hori-
zon, image blurred with Gaussian kernel with σb = 1. Middle row: noisy blurry image
blurred with the above motion blur, recovered images using MSH1 (left, SNR=17.1106)
and NL/MSH1 (right, SNR=21.2464). Bottom row: noisy blurry image blurred with the
above Gaussian blur, recovered images using MSH1 (left, SNR=15.2017) and NL/MSH1

(right, SNR=23.1998). Middle row: β = 2 (MSH1), 0.4 (NL/MSH1), bottom row: β = 2
(MSH1), 1 (NL/MSH1), α = 0.001, ε = 0.0002.

other nonlocal methods visually by preserving fine structures, and the result
looks more natural. Even though NL/MSTV gives the highest SNR, it still looks
more like cartoon by suppressing the texture parts especially in the hat part. So
we choose NL/MSH1 as the best result. Based on the above results, in Fig. 7 and
Fig. 8, we only compare MSH1 and NL/MSH1 with the different blur kernels for



Fig. 8. Comparison between MSH1 and NL/MSH1 with the image blurred and con-
taminated by high density (d = 0.4) of random-valued impulse noise. Top: noisy
blurry image blurred with the motion blur in the Fig.7, recovered images using MSH1

(left, SNR=17.9608) and NL/MSH1 (right, SNR=20.7563). Bottom: noisy blurry im-
age blurred with the Gaussian blur in the Fig.7, recovered images using MSH1 (left,
SNR=16.6960) and NL/MSH1 (right, SNR=24.2500). Top: β = 1.5 (MSH1), 0.5
(NL/MSH1), α = 0.0001, ε = 0.002. Bottom: β = 2.5 (MSH1), 0.65 (NL/MSH1),
α = 0.000001, ε = 0.002.

both impulsive noise models, salt-and-pepper noise and random-valued impulse
noise, with higher noise density d = 0.4. As expected, NL/MSH1 produces better
results than MSH1 for both blur cases, and especially in the Gaussian blur case,
the results do not have any artifacts (by contrast with MSH1). Additionally,
Fig. 10 shows the approximated edge sets v obtained in the restoration process.
We observe that the model with the nonlocal regularizers provide smoother and
more continuous edges.

Finally we note that in the MS regularizers, the parameters α, β and ε were
selected manually to provide the best SNR results. The smoothness parameter β
increases with noise level while the other parameters α, ε are approximately fixed.
For the computational time, it takes about 5 minutes for constructing the weight
function of a 256× 256 image with the 11× 11 search window and 5× 5 patch
in MATLAB on a dual core laptop with 2GHz processor and 2GB memory. The
minimization for the (local or nonlocal) MS regularizers takes about 60 seconds
for the computations of both u using an explicit scheme based on the gradient
descent method and v using a semi-implicit scheme with the total iterations



Fig. 9. The final gm and plot of ‖f −k ∗ gn‖1 in the preprocessing step for the impulse
noise model. Top: gm of (1) Barbara (m=11) in Fig. 5, a = 5, b = 3, (2) Lena (m=8) in
Fig. 6, a = 5, b = 3, (3) Einstein (m=4) with motion blur in Fig. 8, a = 5, b = 5. SNR of
gm: Barbara=16.4790, Lena=24.6619, Einstein=15.1443. Bottom: plot of ‖f − k ∗ gn‖1
of the case (1), (2), (3).

5× (100+5), while the (local or nonlocal) TV regularizer using gradient descent
with an explicit scheme takes less than 55 seconds with 500 iterations.

4 Summary and Conclusions

In this work, we proposed the nonlocal versions of Ambrosio-Tortorelli and Shah
approximations to the MS regularizer, NL/MSH1 and NL/MSTV, with applica-
tions to image deblurring in the presence of Gaussian or impulse noise. In the
case of impulse noise model, we proposed a preprocessing step using the median
filter and Bregman refinement for the computation of the weight function. More-
over, we compare the results of the proposed nonlocal MS regularizers with the
ones obtained by their local versions, MSH1 and MSTV, as well as the nonlocal
total variation (NL/TV). For both noise models, the nonlocal MS regularizers
perform better than the traditional local ones as expected. Comparing them
with NL/TV, for the Gaussian noise model, NL/MSTV produces similar results
with NL/TV in the visual sense and according to SNR, while NL/MSH1 gives
smoother images leading to lower SNRs. On the other hand, for the impulse noise
case, NL/MSH1 produces better results than the other nonlocal regularizers by



Fig. 10. Edge map v using the MS regularizers in the recovery of the Lena image
blurred with Gaussian blur kernel with σb = 1 and contaminated by salt-and-pepper
noise with density d = 0.3. Top: (left) MSTV, (right) NL/MSTV. Bottom: (left) MSH1,
(right) NL/MSH1.

preserving details well, especially in the presence of high density of noise. Fur-
thermore, the nonlocal MS regularizers provide more continuous and smoother
edges, and the edges are detected concurrently with the restoration process.

Appendix I

We derive the Euler-Lagrange equation of the functional J with respect to the
function u : Ω → IR, where gΩ → IR and φ : IR → IR are given, with

J(u) =
∫

Ω

g(x)φ(|∇wu|2(x))dx.

We assume that u is a minimizer of J and define G(ε) = J(u + εh) for ε ∈ IR
and a test function h. Then

G(ε) =
∫

Ω

g(x)φ(|∇w(u + εh)|2(x))dx.

By differenciating G w.r.t ε, we obtain

G′(ε) = J ′(u + εh)h



=
∫

Ω

g(x)φ′(|∇w(u + εh)|2(x))

·
[
2

∫

Ω

((u(y)− u(x)) + ε(h(y)− h(x)))(h(y)− h(x))w(x, y)dy

]
dx

Taking ε = 0, we obtain the variation of J with respect to u i.e.

J ′(u)h = G′(0)

= 2
∫

Ω

g(x)φ′(|∇w(u)|2(x))
[∫

Ω

(u(y)− u(x))(h(y)− h(x))w(x, y)dy

]
dx

= 2
∫

Ω

g(x)φ′(|∇w(u)|2(x))
[∫

Ω

(u(y)− u(x))h(y)w(x, y)dy

]
dx

−2
∫

Ω

g(x)φ′(|∇w(u)|2(x))
[∫

Ω

(u(y)− u(x))h(x)w(x, y)dy

]
dx

= 2
∫

Ω

[∫

Ω

g(x)φ′(|∇w(u)|2(x))(u(y)− u(x))w(x, y)dx

]
h(y)dy

−2
∫

Ω

g(x)φ′(|∇w(u)|2(x))
[∫

Ω

(u(y)− u(x))w(x, y)dy

]
h(x)dx

= 2
∫

Ω

[∫

Ω

g(y)φ′(|∇w(u)|2(y))(u(x)− u(y))w(y, x)dy

]
h(x)dx

−2
∫

Ω

g(x)φ′(|∇w(u)|2(x))
[∫

Ω

(u(y)− u(x))w(x, y)dy

]
h(x)dx

= −2
∫

Ω

[∫

Ω

g(y)φ′(|∇w(u)|2(y))(u(y)− u(x))w(x, y)dy

]
h(x)dx

−2
∫

Ω

g(x)φ′(|∇w(u)|2(x))
[∫

Ω

(u(y)− u(x))w(x, y)dy

]
h(x)dx

where φ′(s) is the derivative of φ with respect to s and w(x, y) = w(y, x).
Hence, we obtain

Lu = −2
∫

Ω

(u(y)− u(x))w(x, y)
[
(g(y)φ′(|∇w(u)|2(y)) + g(x)φ′(|∇w(u)|2(x))

]
dy

where the operator L is the gradient flow corresponding to the functional J .
Specifically, by taking g(x) = v2(x) and φ(s) = s or φ(s) =

√
s, we obtain

two functionals and the corresponding gradient flows:

JNL/MSH1
(u) =

∫
Ω

v2(x)|∇wu|2(x)dx :

LNL/MSH1
u = −2∇w ·

(
v2(x)∇wu(x)

)

where ∇w ·
(
v2(x)∇wu(x)

)
=

∫
Ω

(u(y)− u(x))w(x, y)
[
v2(y) + v2(x)

]
dy,



JNL/MSTV (u) =
∫

Ω
v2(x)|∇wu|(x)dx :

LNL/MSTV u = −∇w ·
(

v2(x)
∇wu(x)
|∇wu(x)|

)

where∇w·
(
v2(x) ∇wu(x)

|∇wu(x)|
)

=
∫

Ω
(u(y)− u(x))w(x, y)

[
v2(y)

|∇wu|(y) + v2(x)
|∇wu|(x)

]
dy.

Appendix II

We show that the following regularizing functionals are semi-norms (necessary
for showing the characterization of minimizers):

|u|NLTV =
∫

Ω

√∫

Ω

(u(y)− u(x))2w(x, y)dydx,

|u|NL/MSTV,v =
∫

Ω

v2(x)

(√∫

Ω

(u(y)− u(x))2w(x, y)dy

)
dx,

|u|NL/MSH1,v =

√∫

Ω

v2(x)
(∫

Ω

(u(y)− u(x))2w(x, y)dy

)
dx

with u, v : Ω → IR and w : Ω ×Ω → IR is nonnegative and symmetric. We only
need to show that the functionals satisfy triangle inequality, i.e. |u+v| ≤ |u|+|v|.

Define |u| = ∫
Ω

g(x)
(√∫

Ω
(u(y)− u(x))2w(x, y)dy

)
dx for any positive func-

tion g defined on Ω and show that |u + v| ≤ |u|+ |v| for u, v. First, we have the
equality

∫

Ω

((u + v)(y)− (u + v)(x))2w(x, y)dy

=
∫

Ω

(u(y)− u(x))2w(x, y)dy +
∫

Ω

(v(y)− v(x))2w(x, y)dy

+2
∫

Ω

(u(y)− u(x))(v(y)− v(x))w(x, y)dy.

Using Cauchy-Schwarz inequality,
∫

Ω

(u(y)− u(x))(v(y)− v(x))w(x, y)dy

≤
(∫

Ω

(
(u(y)− u(x))

√
w(x, y)

)2

dy

)1/2 (∫

Ω

(
(v(y)− v(x))

√
w(x, y)

)2

dy

)1/2

,

we obtain the quadratic formula on the right side,
∫

Ω

((u + v)(y)− (u + v)(x))2w(x, y)dy

≤
{(∫

Ω

(u(y)− u(x))2w(x, y)dy

)1/2

+
(∫

Ω

(v(y)− v(x))2w(x, y)dy

)1/2
}2



which leads to the following inequality
√∫

Ω

((u + v)(y)− (u + v)(x))2w(x, y)dy

≤
√∫

Ω

(u(y)− u(x))2w(x, y)dy +

√∫

Ω

(v(y)− v(x))2w(x, y)dy.

Multiplying by g(x) and integrating both sides w.r.t x, we obtain

∫

Ω

g(x)

√∫

Ω

((u + v)(y)− (u + v)(x))2w(x, y)dydx

≤
∫

Ω

g(x)

√∫

Ω

(u(y)− u(x))2w(x, y)dydx +
∫

Ω

g(x)

√∫

Ω

(v(y)− v(x))2w(x, y)dydx.

Thus, |u| satisfies triangle inequality, so we conclude that |u| is a semi-norm.
Specifically, by taking g(x) = 1 or g(x) = v2(x), |u|NL/TV and |u|NL/MSTV are
semi-norms.

Similarly, we can also show that |u|NL/MSH1 is a semi-norm using Cauchy-
Schwarz inequality:
∫

Ω

∫

Ω

v2(x)((u + ϕ)(y)− (u + ϕ)(x))2w(x, y)dydx

=
∫

Ω

∫

Ω

v2(x)(u(y)− u(x))2w(x, y)dydx +
∫

Ω

∫

Ω

v2(x)(ϕ(y)− ϕ(x))2w(x, y)dydx

+2
∫

Ω

∫

Ω

v2(x)(x)(u(y)− u(x))(ϕ(y)− ϕ(x))w(x, y)dydx.

Using Cauchy-Schwarz inequality,
∫

Ω

∫

Ω

v2(x)(x)(u(y)− u(x))(ϕ(y)− ϕ(x))w(x, y)dydx

≤
(∫

Ω

∫

Ω

(v(x)(x)(u(y)− u(x))
√

w(x, y))2dydx

)1/2

·
(∫

Ω

∫

Ω

(v(x)(ϕ(y)− ϕ(x))
√

w(x, y))2dydx

)1/2

,

the righthand side becomes a quadratic formula, hence we have
√∫

Ω

∫

Ω

v2(x)((u + ϕ)(y)− (u + ϕ)(x))2w(x, y)dydx

≤
√∫

Ω

∫

Ω

v2(x)(u(y)− u(x))2w(x, y)dydx +

√∫

Ω

∫

Ω

v2(x)(ϕ(y)− ϕ(x))2w(x, y)dydx.

Hence, |u|NL/MSH1 satisfies triangle inequality, so |u|NL/MSH1 is a semi-norm.
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