
SEGMENTATION ON SURFACES WITH THE CLOSEST POINT METHOD

Li (Luke) Tian∗ Colin B. Macdonald† Steven J. Ruuth∗

Simon Fraser University
Department of Mathematics

Burnaby, Canada
lta12@sfu.ca

University of California, Los Angeles
Department of Mathematics

Los Angeles, USA
cbm@math.ucla.edu

Simon Fraser University
Department of Mathematics

Burnaby, Canada
sruuth@sfu.ca

ABSTRACT

We propose a method to detect objects and patterns in textures on
general surfaces. Our approach applies the Chan–Vese variational
model for active contours without edges to the problem of segmen-
tation of scalar surface data. This leads to gradient descent equa-
tions which are level set equations on surfaces. These equations are
evolved using the Closest Point Method, which is a recent technique
for solving partial differential equations (PDEs) on surfaces. The fi-
nal algorithm has a particularly simple form: it merely alternates a
time step of the usual Chan–Vese model in a small 3D neighborhood
of the surface with an interpolation step. We remark that the method
can treat very general surfaces since it uses a closest point function
to represent the underlying surface. Various experimental results are
presented, including segmentation on smooth surfaces, non-smooth
surfaces, open surfaces, and general triangulated surfaces.

Index Terms— Image segmentation, Surfaces, Variational
methods, Partial differential equations, Numerical analysis.

1. INTRODUCTION

Segmentation of objects and patterns in textures on curved surfaces
(e.g., Figure 1) is a subject of recent and increasing interest. For
example, Spira and Kimmel [1] segment out images painted on
parametrically-defined manifolds using the geodesic active contour
model for segmentation. Hara et al. [2] segment images on polar
coordinate meshes using the Chan–Vese model. Applications of
their methods arise in the analysis of earth data such as topography
and remote sensing imagery. Bogdanova et al. [3] carry out seg-
mentation via active contours for omnidirectional images defined
on spherical, hyperbolical and parabolical shapes (such imagery
arises using catadioptric cameras). Segmentation on surfaces via
geometric active contours was also considered by Krueger et al. in
[4]. Their work considers segmentation by both texture and surface
geometry and leads to methods of interest in 3D human face feature
segmentation.

A common theme to all these works is that they solve some PDE-
based segmentation model on a surface of interest. The representa-
tion of the (static) surface is a central feature of each approach. For
example, a parameterization might be used (e.g., [1, 2, 3]) but this
has the deficiency of introducing distortions and singularities into the
method through the parameterization. Indeed, designing a good pa-
rameterization can be a considerable challenge for many surfaces.
Alternatively, a level set representation of the underlying surface

∗The work of these authors was partially supported by a grant from
NSERC Canada.
†The work of this author was partially supported by a grant from NSERC

Canada and NSF grant number CCF-0321917.

Fig. 1. The objective of this paper is to automatically segment tex-
ture on a surface into two regions: in this case, to separate the red
patches from the rest of the pig.

may be considered (e.g., [4]). Algorithms based on level set repre-
sentations have their own limitations [5]. Such methods solve a PDE
in a 3D neighborhood of the surface and require the introduction of
artificial boundary conditions at the boundary of the computational
band. They also use non-standard PDEs in the embedding space (i.e.,
degenerate PDEs involving projection operators). Finally, level set
representations do not give an obvious way to treat open surfaces, or
any surface which lacks a clearly defined inside and outside.

For these reasons we are motivated to use the Closest Point
Method [5, 6, 7] for solving the problem of segmentation on sur-
faces. The Closest Point Method uses a closest point representation
of the surface, and therefore does not require the design of a parame-
terization nor does it require the surface to be closed or even have an
orientation. The method uses entirely standard methods in a small
3D neighborhood of the surface in combination with an interpola-
tion step. This is particularly attractive in practice since it enables us
to use existing software for 3D region segmentation to segment out
shapes on 2D surfaces.

All our segmentations are carried out using the Chan–Vese ac-
tive contours without edges model [8], which we review in Section 2.
Section 3 applies the Closest Point Method to the Chan–Vese model.
This is followed by numerical experiments in Section 4.

2. THE CHAN–VESE ALGORITHM

We begin by outlining the derivation of the Chan–Vese model for
segmentation on surfaces, The full details appear in [9] and follow
closely that of the original Chan–Vese model [8].

Let u0 : S → R be our given scalar surface image. Segmenta-
tion will be carried out on the surface using a function φ : S → R.
Specifically, the zero contour of φ will divide the surface into two
regions: {x ∈ S : φ(x) > 0} (“inside” the zero contour) and
{x ∈ S : φ(x) < 0} (“outside” the zero contour). Segmentation

will be based on minimization of the energy functional

F (u1, u2, φ) = µ · (length of φ’s zero contour)

+ λ1

Z
{x:φ(x)>0}

|u0(x)− u1|2dS

+ λ2

Z
{x:φ(x)<0}

|u0(x)− u2|2dS,

where u1 and u2 are unknown scalars and µ ≥ 0, λ1, λ2 > 0 are
fixed parameters. The energy can be written as an integral over the
entire surface by introducing the Heaviside function H(z) and the
Dirac measure δ(z). Keeping φ fixed and minimizing the energy
F (u1, u2, φ) with respect to the scalars u1 and u2 [8], gives

u1(φ) =

R
S
u0(x)H(φ(x))dSR
S
H(φ(x))dS

,

u2(φ) =

R
S
u0(x) (1−H(φ(x))) dSR
S

(1−H(φ(x)))dS
.

(1)

That is, u1 and u2 are the average values of u0 over the inside and
outside respectively of the zero contour of φ.

Next, we introduce the regularized Heaviside function Hε(z) =
1
2

`
1 + 2

π
arctan

`
z
ε

´´
[8] and the associated Dirac measure δε(z).

Let Fε(u1, u2, φ) denote the resulting regularized functional. Keep-
ing u1 and u2 fixed, and minimizing Fε with respect to φ gives the
corresponding Euler–Lagrange equations. These will be solved by
evolving the gradient descent equations

∂φ

∂t
= δε(φ)

»
µ∇S ·

„
∇Sφ
|∇Sφ|

«
− λ1(u0(x)− u1)2

+ λ2(u0(x)− u2)2

–
in (0,∞)× S, (2)

φ(0, x) = φ0(x) in S,
∂φ

∂n
= 0 on ∂S,

to steady state, where t ≥ 0 is an artificial time. Finally, we remark
that the regularized Hε is also used in evaluating u1 and u2 in (1).

3. THE CLOSEST POINT METHOD FOR ACTIVE
CONTOURS WITHOUT EDGES

We now give our algorithm for solving (2). A detailed description of
our approach may be found in [9].

3.1. The embedding PDE

The surface PDE (2) is complicated to solve due to the surface
derivative operators. The Closest Point Method is a new general
technique for the numerical solution of PDEs and other processes on
surfaces using standard Cartesian grid methods in R3. The method
is based on a closest point representation of the surface. For a given
surface S, the closest point function takes a point x ∈ R3 and re-
turns a (possibly non-unique) point cp(x) ∈ S which is closest in
Euclidean distance to x. That is, cp(x) = argminq∈S‖x− q‖2.

The main idea behind the Closest Point Method is that many
differential operators on surfaces can be replaced by their corre-
sponding Cartesian differential operators in a higher-dimensional
space, provided the quantities are evaluated at the closest point cp(x)
[5]. For example, for points x on a smooth surface S, ∇Su(x) =
∇u(cp(x)) because the function u(cp(x)) is constant in the normal
direction and therefore only varies along the surface. Relevant to

our segmentation problem is that a similar property holds for non-
linear diffusion terms [5]. Specifically, the in-surface curvature term
appearing in (2) satisfies

∇S ·
„
∇Sφ
|∇Sφ|

«
= ∇ ·

„
∇φ(cp)

|∇φ(cp)|

«
,

for all points x on a smooth surface S. Embedding the problem in
R3, and using the above as a replacement for the in-surface curvature
term, we obtain the embedding PDE

∂φ

∂t
= δε(φ(cp))

»
µ∇ ·

„
∇φ(cp)

|∇φ(cp)|

«
− λ1(u0(cp)− u1)2

+ λ2(u0(cp)− u2)2

–
in (0,∞)× Ω. (3)

This is precisely the PDE for segmenting solid objects in 3D space,
where function evaluations are carried out at the closest point, cp(x),
rather than at x itself. The functions u1 and u2 in (1) are also evalu-
ated over the embedding space with all functions evaluated at cp(x).

Note that the homogeneous Neumann boundary conditions ap-
pearing in the gradient descent equations (2) for an open surface
need not be explicitly imposed with our approach: as is explained
in [5], such boundary conditions arise naturally as part of the exten-
sion procedure. Furthermore, we do not need to introduce artificial
boundary conditions at the edge of the computational domain: the
closest point extension provides the necessary values for such points
[5, 6].

3.2. Discretization

To discretize the PDE, we begin by selecting a computational do-
main Ωc of discrete grid points: it is not necessary to solve on the
whole domain, but just on a certain narrow band enveloping the sur-
face [5, 6].

For each grid point in Ωc, we need to construct a closest point
function cp(x) for the surface S. This will represent the surface.
For simple surfaces such as a sphere, torus or cube, the closest point
function has an easy analytical form. For triangulated surfaces, the
closest point function can be computed efficiently by the algorithm
outlined in [6].

To solve the embedding PDE (3) we alternate the following two
steps:

1. Extend the solution off the surface to the computational do-
main using the closest point function. That is, replace φ by
φ(cp) for each node on the computational domain. This clos-
est point extension is an interpolation step, and is carried out
using barycentric Lagrange interpolation [10].

2. Compute the solution to the embedding PDE (3) using stan-
dard finite differences on the Cartesian mesh for one time
step. This step is just a step of the usual Chan–Vese algo-
rithm in 3D for region segmentation.

The second step of the algorithm is discretized by a finite difference

scheme which is semi-implicit in time. Following [8], it is

φn+1
ijk − φ

n
ijk

∆t
= δh(φnijk)

"
µ

h2
∆x
−

∆x
+φ

n+1
ijkq

(∆x
+φ

n
ijk

)2

h2 +
(∆

y
cφ

n
ijk

)2

4h2 +
(∆z

cφ
n
ijk

)2

4h2

+
µ

h2
∆y
−

∆y
+φ

n+1
ijkq

(∆
y
+φ

n
ijk

)2

h2 +
(∆x

cφ
n
ijk

)2

4h2 +
(∆z

cφ
n
ijk

)2

4h2

(4)

+
µ

h2
∆z
−

∆z
+φ

n+1
ijkq

(∆z
+φ

n
ijk

)2

h2 +
(∆x

cφ
n
ijk

)2

4h2 +
(∆

y
cφ

n
ijk

)2

4h2

−λ1

`
u0,ijk − u1(φn)

´2
+ λ2 (u0,ijk − u2(φn))2

#
,

where ∆α
+, ∆α

−, ∆α
c indicate forward, backward and centered fi-

nite differences, in the direction indicated by the superscript α, on a
grid spacing of h. The averages u1 and u2 are computed by simple
quadrature over all grid cells in Ωc.

The linear system (4) is solved by the iterative Gauss–Seidel
method [11, 8]. Because we are interested in the steady state solu-
tion to (2), it is not necessary to iterate to convergence at each time
step but merely to descend towards the minimum energy. In our nu-
merical experiments, a fixed number of Gauss–Seidel iterations (15
iterations) is performed for each time step. See [9] for a detailed
description of this procedure.

We remark that reinitialization is sometimes useful to prevent
the level set function φ from becoming too flat or too steep [8]. Our
numerical experiments did not make use of this option.

3.3. Efficiency improvement

Our ultimate goal is to find the steady state of the gradient descent
equations (2). To achieve this objective, it is sometimes helpful to
break the computation into two phases [9]. In the first phase, we
are interested in a fast method which gives a qualitatively improved
segmentation. In this phase, enhanced computational speed can be
obtained by dropping the interpolation step in the algorithm. This
gives a result which can be used as a starting condition for the second
phase. The second phase needs to be consistent with the gradient
descent equations (2) and therefore must include the interpolation
step.

4. NUMERICAL EXPERIMENTS

In the numerical experiments that follow, we take λ1 = λ2 = 1 and
h = 1. The range of the surface data u0 is [0, 255]. In all instances,
the initial contour is given by the intersection of the surface with
that of a cylinder of radius 15 units. The closest point extension
steps are performed using barycentric Lagrange interpolation [10]
with cubic polynomials. Computations are performed in Matlab and
visualizations are done using either Matlab or ParaView [12].

4.1. Segmentation on a hemisphere

The first experiment is to segment patterns on a hemisphere. The
surface data consists of a greyscale bitmap image projected onto the
hemisphere, and contains noise and artifacts.

(a) (b)

(c) (d)

(e)

Fig. 2. Segmentation on the surface of a hemisphere, where (a)–(e)
show the contour (dark curve) evolving in time to the steady state.
The hemisphere is 72 units in diameter and the grid has h = 1. The
calculation uses µ = 0.04 · 2552.

Figure 2 shows the evolution of the contour φ as a dark curve
on the hemisphere at various times. The contour converges to the
desired segmentation of the letters in the image.

This example illustrates that the Closest Point Method naturally
treats segmentation problems on open surfaces. We remark that no
explicit imposition of boundary conditions is used at the boundary of
the hemisphere; this corresponds to the desired homogeneous Neu-
mann conditions [5].

4.2. Segmentation on a cube

The next experiment considers greyscale data on the surface of a
cube. The top of the cube consists of a bitmap image of a galaxy and
the other faces contain geometric shapes.

Figure 3 shows the evolution of the zero contour of φ at various
times. With this choice of µ, the evolution segments out the core of
the galaxy, as well as each of the shapes on the surface. It is notewor-
thy that the underlying surface is non-smooth. The analysis of the
Closest Point Method on non-smooth surfaces is ongoing, but our re-
sults here suggest that the method is stable and achieves qualitatively
correct results in the context of image segmentation.

4.3. Segmentation on a triangulated surface

The algorithm can also be applied to complicated triangulated
shapes, such as Annie Hui’s pig [13] (here smoothed via Loop’s
algorithm within ParaView [12]). The surface data u0 consists of
various shapes that were manually generated.

Figure 4 shows the evolution of the zero level set of φ (shown
as a white contour) on the pig at various times. The segmentation
automatically finds the boundary between the two colored regions.
It is worth emphasizing that the code for segmenting the triangu-
lated pig is identical to our other examples: segmentation on a pig,

(a) (b)

(c) (d)

(e)

Fig. 3. Segmentation on the surface of a cube, where (a)–(e) show
the contour evolving in time to the steady state. Here µ = 0.15 ·
2552. The cube is 80 units on each side.

cube, hemisphere or any other surface merely requires the input of
the closest point function corresponding to the surface.

5. CONCLUSIONS AND SUMMARY

In this paper, the combination of the Chan–Vese segmentation algo-
rithm and the Closest Point Method is proposed as a way to segment
images defined on general surfaces, including open surfaces. The
method is simple, and merely alternates a time step of the standard
Chan–Vese algorithm in a small 3D neighborhood of the surface with
an interpolation step.

While our experiments have only considered the Chan–Vese
model, the Closest Point Method may be used to evolve other PDE-
based segmentation models on surfaces as well. Another direction
for future work is to design segmentation-on-surface algorithms
using both surface texture and local surface geometry. See [4] for
further discussion on this possibility.

We conclude by noting that our approach is not limited to seg-
mentation models. De-noising, de-blurring, in-painting and other
PDE-based image processing models may also be approximated us-
ing the Closest Point Method to give new methods for processing
images defined on surfaces. We are investigating these applications
as part of ongoing research.

6. REFERENCES

[1] A. Spira and R. Kimmel, “Geometric curve flows on paramet-
ric manifolds,” J. Comput. Phys., vol. 223, 2007.

(a) (b)

(c) (d)

Fig. 4. Segmentation on the surface of a triangulated pig, where (a)–
(d) show the contour evolving in time to the steady state. We take
µ = 0.05 · 2552 and the pig is roughly 75 units long.

[2] K. Hara, R. Kurazume, K. Inoue, and K. Urahama, “Segmen-
tation of images on polar coordinate meshes,” in Proc. ICIP07,
International Conference on Image Processing, 2007.

[3] I. Bogdanova, X. Bresson, J.-P. Thiran, and P. Vandergheynst,
“Scale-space analysis and active contours for omnidirectional
images,” IEEE Trans. Image Process., vol. 16, no. 7, 2007.

[4] M. Krueger, P. Delmas, and G. Gimel’farb, “Active contour
based segmentation of 3D surfaces,” in Proc. European Con-
ference on Computer Vision (ECCV), 2008.

[5] S.J. Ruuth and B. Merriman, “A simple embedding method for
solving partial differential equations on surfaces,” J. Comput.
Phys., vol. 227, no. 3, 2008.

[6] C.B. Macdonald and S.J. Ruuth, “Level set equations on sur-
faces via the Closest Point Method,” J. Sci. Comput., vol. 35,
no. 2–3, 2008.

[7] C.B. Macdonald and S.J. Ruuth, “The implicit Closest Point
Method for the numerical solution of partial differential equa-
tions on surfaces,” 2008, Submitted.

[8] T.F. Chan and L.A. Vese, “Active contours without edges,”
IEEE Trans. Image Process., vol. 10, no. 2, 2001.

[9] L. Tian, “Segmentation on surfaces with the Closest Point
Method,” M.S. thesis, Department of Mathematics, Simon
Fraser University, 2009.

[10] J.-P. Berrut and L.N. Trefethen, “Barycentric Lagrange inter-
polation,” SIAM Rev., vol. 46, no. 3, 2004.

[11] G. Aubert and L. Vese, “A variational method in image recov-
ery,” SIAM J. Numer. Anal., vol. 34, 1997.

[12] A. Henderson, ParaView Guide, A Parallel Visualization Ap-
plication, Kitware, Inc., third edition, 2008.

[13] A. Hui, “Annie Hui’s pig in the AIM@SHAPE shape reposi-
tory,” http://shapes.aimatshape.net, 2008.

