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Abstract

Given discrete event data, we wish to produce a probability density that can model the rela-
tive probability of events occurring in a spatial region. Common methods of density estimation,
such as Kernel Density Estimation, do not incorporate geographical information. Using these
methods could result in non-negligible portions of the support of the density in unrealistic ge-
ographic locations. For example, crime density estimation models that do not take geographic
information into account may predict events in unlikely places such as oceans, mountains, etc.
We propose a set of Maximum Penalized Likelihood Estimation methods based on Total Varia-
tion and H1 Sobolev norm regularizers in conjunction with a priori high resolution spatial data
to obtain more geographically accurate density estimates. We apply this method to a residential
burglary data set of the San Fernando Valley using geographic features obtained from satellite
images of the region and housing density information.

1 Introduction

High resolution and hyperspectral satellite images, city and county boundary maps, census data,
and other types of geographical data provide much information about a given region. It is desirable
to integrate this knowledge into models defining geographically dependent data. Given spatial event
data, we will be constructing a probability density that estimates the probability that an event will
occur in a region. Often, it is unreasonable for events to occur in certain regions, and we would
like our model to reflect this restriction. For example, residential burglaries and other types of
crimes are unlikely to occur in oceans, mountains, and other regions. Such areas can be determined
using aerial images or other external spatial data, and we denote these improbable locations as the
invalid region. Ideally, the support of our density should be contained in the valid region.
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Geographic profiling, a related topic, is a technique used to create a probability density from a
set of crimes by a single individual to predict where the individual is likely to live or work [15]. Some
law enforcement agencies currently use software that makes predictions in unrealistic geographic
locations. Methods that incorporate geographic information have recently been proposed and is an
active area of research [11, 13].

A common method for creating a probability density is to use Kernel Density Estimation
[18, 19], which approximates the true density by a sum of kernel functions. A popular choice for
the kernel is the Gaussian distribution which is smooth, spatially-symmetric, and has non-compact
support. Other probability density estimation methods include the taut string, logspline, and
the Total Variation Maximum Penalized Likelihood Estimation models [3, 8, 17, 7, 10]. However,
none of these methods utilize information from external spatial data. Consequently, the density
estimate typically has some nonzero probability of events occurring in the invalid region. Figure 1
demonstrates these problems with the current methods and how the methods we will propose in
this paper resolve them. Located in the middle of the image are two disks where events cannot
occur, depicted in figure 1(a). We selected randomly from the region outside the disks using a
predefined probabilistic density that is provided in figure 1(b). The 4,000 events chosen are shown
in figure 1(c). With a variance of σ = 2.5, we see in figure 1(d) that the Kernel Density Estimation
predicts that events may occur in our invalid region.

Figure 1: Simple Example with Comparison of Methods
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In this article we propose a novel set of models that restrict the support of the density estimate
to the valid region and ensure realistic behavior. The models use Maximum Penalized Likelihood
Estimation [4, 6], which is a variational approach. The density estimate is calculated as the min-
imizer of some predefined energy functional. The novelty of our approach is in the way we define
the energy functional with explicit dependence on the valid region such that the density estimate
obeys our assumptions of its support. The results from our methods for this simple example are
illustrated in figures 1(f), 1(g), and 1(h).

The article is structured in the following way. In section 2 Maximum Penalized Likelihood
Methods are introduced. In sections 3 and 4 we present our set of models which we name the
Modified Total Variation MPLE model and the Weighted H1 Sobolev MPLE model, respectively.
In section 5 we discuss the implementation and numerical schemes that we use to solve for the
solutions of the models. We provide examples for validation of the models and an example with
actual residential burglary data in section 6. In this section, we also compare our results to the
Kernel Density Estimation model and other Total Variation MPLE methods. Finally, we discuss
our conclusions and future work in section 7.

2 Maximum Penalized Likelihood Estimation

Assuming that u(x) is the desired probability density for x ∈ R2, and the known location of events
occur at x1, x2, , . . . , xn, then Maximum Penalized Likelihood Estimation (MPLE) models are
given by

û(x) = argmax∫
Ω udx=1, 0≤u

{
n∑
i=1

log(u(xi))− µ0 P (u)

}
.

Here, P (u) is a penalty functional, which is generally designed to produce a smooth density map.
This maximization problem can be written equivalently as

û(x) = argmin∫
Ω udx=1, 0≤u

{
P (u)− µ

n∑
i=1

log(u(xi))

}
.

Here, the parameter µ determines how strongly weighted the maximum likelihood term is compared
to the penalty functional.

A range of penalty functionals have been proposed, including P (u) =
∫

Ω |∇
√
u|2 dx [6, 4] and

P (u) =
∫

Ω |∇
3(log(u))|2 dx [18, 4]. More recently, variants of the Total Variation (TV) functional

[16], P (u) =
∫

Ω |∇u| dx, have been proposed for MPLE [7, 17, 10]. These methods do not explicitly
incorporate the information that can be obtained from the external spatial data, although some
note the need to allow for various domains. Even though the TV functional will maintain sharp
gradients, the boundaries of the constant regions do not necessarily agree with the boundaries
within the image. This method also performs poorly when the data is too sparse, as the density is
smoothed to have equal probability almost everywhere. Figure 1(e) demonstrates this, in addition
to how this method predicts events in the invalid region with non-negligible estimates.
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The methods we propose use a penalty functional that depends on the valid region determined
from the geographical images or other external spatial data. Figure 1 demonstrates how these
models will improve on the current methods.

3 The Modified Total Variation MPLE Model

The first model we propose is an extension of the Maximum Penalized Likelihood Estimation
method given by Mohler, et al. [10],

û(x) = argmin∫
Ω udx=1, 0≤u

{∫
Ω
|∇u| dx− µ

n∑
i=1

log(u(xi))

}
.

Once we have determined a valid region, we wish to align the level curves of the density function
u with the boundary of the valid region. The Total Variation functional is well known to allow
discontinuities in its minimizing solution [16]. By aligning the level curves of the density function
with the boundary, we encourage a discontinuity to occur there to keep the density from smoothing
into the invalid region.

Since ∇u
|∇u| gives the unit normal vectors to the level curves of u, we would like

∇(1D)
|∇(1D)|

=
∇u
|∇u|

,

where (1D) is the characteristic function of the valid region D. The region D is obtained from
external spatial data, such as aerial images. To avoid division by zero, we use θ := ∇(1D)

|∇(1D)|ε ,

where |∇v|ε =
√
v2
x + v2

y + ε2. To align the density function and the boundary one would want to
minimize |∇u| − θ · ∇u. Integrating this and applying integration by parts, we obtain the term∫

Ω |∇u|+ u∇ · θ dx. We propose the following Modified Total Variation penalty functional, where
we adopt the more general form of the above functional

û(x) = argmin∫
Ω udx=1, 0≤u

{∫
Ω
|∇u| dx + λ

∫
Ω
u∇ · θ dx− µ

n∑
i=1

log(u(xi))

}
.

The parameter λ allows us to vary the strength of the alignment term. Two pan-sharpening
methods, P+XS and Variational Wavelet Pan-sharpening [9, 2] , both include a similar term in
their energy functional to align the level curves of the optimal image with the level curves of the
high resolution pan-chromatic image.

4 The Weighted H1 Sobolev MPLE Model

A Maximum Penalized Likelihood Estimation method with penalty functional
∫

Ω
1
2 |∇u|

2 dx, the
H1 Sobolev norm, gives results equivalent to those obtained using Kernel Density Estimation [4].
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We enforce the H1 regularizer term away from the boundary of the invalid region. This results in
the model

û(x) = argmin∫
Ω udx=1, 0≤u

{
1
2

∫
Ω\∂D

|∇u|2 dx− µ
n∑
i=1

log(u(xi))

}
.

This new term is essentially the smoothness term from the Mumford-Shah model [12]. We approx-
imate the H1 term by introducing the Ambrosio-Tortorelli approximating function zε(x) [1], where
zε → (1− δ(∂D)) in the sense of distributions. More precisely, we use a continuous function which
has the property

zε(x) =

{
1 if d(x, ∂D) > ε,

0 if x ∈ ∂D.

Thus, the minimization problem becomes

û(x) = argmin∫
Ω udx=1, 0≤u

{
1
2

∫
Ω
z2
ε |∇u|2 dx− µ

n∑
i=1

log(u(xi))

}
.

The weighting away from the edges is used to control the diffusion into the invalid region. This
method of weighting away from the edges can also be used with the Total Variation functional in
our first model, and we will refer to this as our Weighted TV MPLE model.

5 Implementation

5.1 The Constraints

In the implementation for the Modified Total Variation MPLE method and Weighted H1 MPLE
method, we must enforce the constraints 0 ≤ u(x) and

∫
Ω u(x) dx = 1 to ensure that u(x) is a

probability density estimate. We will solve these minimization problems by obtaining their Euler-
Lagrange equations, which are elliptic partial differential equations. These types of equations have
maximum principles, so if our initial approximation has values greater than or equal to zero, then
our final solution will as well. Thus, we can ignore the u ≥ 0 constraint since it will be satisfied
implicitly by the models.

We enforce the second constraint by first adding it to the energy functional as an L2 penalty
term. For the H1 method, this change results in the new minimization problem

ûH(x) = argmin
u

{
1
2

∫
Ω
z2
ε |∇u|2 dx− µ

n∑
i=1

log(u(xi)) +
γ

2

(∫
Ω
u(x) dx− 1

)2
}
,

where we have denoted ûH(x) as the solution of the H1 model. The constraint is then enforced by
applying Bregman iteration [14]. Using this method, we formulate our problem as

(uH , bH) = argmin
u, b

{
1
2

∫
Ω
z2
ε |∇u|2 dx− µ

n∑
i=1

log(u(xi)) +
γ

2

(∫
Ω
u(x) dx + b− 1

)2
}
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where b is introduced as the Bregman variable of the sum to unity constraint. We solve this problem
using alternating minimization, updating the u and the b iterates as

(H1)

{
u(k+1) = argminu

{
1
2

∫
Ω z

2
ε |∇u|2 dx− µ

∑n
i=1 log(u(xi)) + γ

2

(∫
Ω u(x) dx + b(k) − 1

)2}
b(k+1) = b(k) +

∫
Ω u

(k+1) dx− 1,

with b(0) = 0. Similarly for the modified TV method, we solve the alternating minimization problem

(TV )


u(k+1) = argminu

{∫
Ω |∇u| dx + λ

∫
Ω u∇ · θ dx− µ

∑n
i=1 log(u(xi))

+γ
2

(∫
Ω u(x) dx + b(k) − 1

)2 }
b(k+1) = b(k) +

∫
Ω u

(k+1) dx− 1

with b(0) = 0.

5.2 Weighted H1 MPLE Implementation

For the Weighted H1 MPLE model, the Euler-Lagrange equation for the u minimization is given
by

(H1) −∇
(
z2
ε∇u

)
− µ w(x)

u(x)
+ γ

(∫
Ω
u(x) dx + b(k) − 1

)
= 0,

where w(x) is the given number of sampled events that occurred at x. We solve this using a Gauss-
Seidel method with central differences for the ∇z2 and ∇u. Once we have discretized the partial
differential equation, solving this equation simplifies to solving the quadratic(

4z2 + γ
)
u2
i,j − αi,jui,j − µwi,j = 0

for the positive root, where

αi,j = z2
i,j (ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+

(
z2
i+1,j − z2

i−1,j

2

)(
ui+1,j − ui−1,j

2

)

+

(
z2
i,j+1 − z2

i,j−1

2

)(
ui,j+1 − ui,j−1

2

)

+ γ

1− b(k) −
∑

(i′,j′)6=(i,j)

ui′,j′

 .

We chose our parameters µ and γ so that the Gauss-Seidel solver will converge. In particular, we
have µ = O

(
(NM)−2

)
and γ = O (µ (NM)), where the image is N ×M .

5.3 Modified TV MPLE Implementation

There are many approaches for handling the minimization of the Total Variation penalty functional.
A fast and simple method for doing this is to use the Split Bregman technique (see [5],[10] for an
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in depth discussion, see also [20]). In this approach, we substitute the variable d for ∇u in the TV
norm and then enforce the equality d = ∇u using Bregman iteration. To apply Bregman iteration,
we introduce the variable g as the Bregman vector of the d = ∇u constraint. This results in a
minimization problem in which we minimize with respect to both d and u.

Beginning the iteration with g(0) = 0, the minimization is written as(
u(k+1),d(k+1)

)
= argmin

u, d

{
||d||1 + λ

∫
Ω
u∇ · θdx− µ

n∑
i=1

log(u(xi)) +
γ

2

(∫
Ω
u(x)dx + b(k) − 1

)2

+
α

2
||d−∇u− g(k)||22

}
g(k) = g(k−1) +∇u(k) − d(k).

Alternating the minimization of u(k+1) and d(k+1), we obtain our final formulation for the TV
model as

(TV )



u(k+1) = argminu
{
λ
∫

Ω u∇ · θ dx− µ
∑n

i=1 log(u(xi)) + γ
2

(∫
Ω u(x) dx + b(k) − 1

)2
+α

2 ||d
(k) −∇u− g(k)||22

}
d

(k+1)
j = shrink

(
(∇u(k+1))j − d(k)

j , 1
α

)
g(k+1) = g(k) +∇u(k+1) − d(k+1)

b(k+1) = b(k) +
∫

Ω u
(k+1) dx− 1.

The shrink function is given by

shrink (z, η) = max {|z| − η, 0}
(
z

|z|

)
.

Solving for d(k+1) and g(k+1) we use forward difference discretizations, namely

∇u(k+1) = (ui+1,j − ui,j , ui,j+1 − ui,j)T .

The Euler-Lagrange equations for the variable u(k+1) is

−µw(x)
u(x)

+ λdivθ − α
(

∆u+ div gk − div dk
)

+ γ

(∫
Ω
u x + bk1 − 1

)
= 0.

Discretizing this simplifies to solving for the positive root of

(4 + γ) u2
i,j − βi,jui,j − µwi,j = 0

where

βi,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − λ2 div θ

− α
(
dkx,i,j − dkx,i−1,j + dky,i,j − dky,i,j−1

)
+ α

(
gkx,i,j − gkx,i−1,j + gky,i,j − gky,i,j−1

)
+ γ

1− b(k) −
∑

(i′,j′)6=(i,j)

ui′,j′

 .

7



We solved for u(k+1) with a Gauss-Seidel solver. Heuristically, we found that using the relationships
α = 2µN2M2 and γ = 2µNM were sufficient for the solver to converge and provide good results.
We also set λ to have values between 1.0 and 1.2. The parameter µ is the last remaining free
paramter. This parameter can be chosen using V-cross validation or other techniques, such as the
sparsity l1 information criterion [17].

6 Results

In this section, we demonstrate the strengths of our models by providing several examples. We
first show how our methods compare to existing methods for a dense data set. We then show our
methods perform well for sparse data sets. Next, we explore an example with an aerial image and
randomly selected events to show how these methods could be applied to geographic event data.
Finally, we calculate probability density estimates for residential burglaries using our models.

6.1 Model Validation Example

To validate the use of our methods, we took a predefined probability map with sharp gradients
that is shown in figure 2(a). The chosen valid region and the 8,000 selected events are displayed
in figures 2(b) and 2(c), respectively. We performed density estimates with the Gaussian Kernel
Density Estimate and the Total Variation MPLE method. The variance used for the Kernel Density
Estimation is σ = 2. The results are provided in figures 2(d) and 2(e). The density estimates
obtained from our Modified TV MPLE method and Weighted H1 MPLE method are shown in
figures 2(f) and 2(g), respectively. We also included our Weighted TV MPLE in figure 2(h).

Our methods maintain the boundary of the invalid region and appear close to the true solution.
In addition, they keep the sharp gradient in the density estimate. The L2 errors for these methods
are located in Table 1.

8,000 Events
Kernel Density Estimate 8.1079e-6

TV MPLE 6.6155e-6
Modified TV MPLE 4.1213e-6
Weighted H1 MPLE 3.8775e-6
Weighted TV MPLE 4.3195e-6

Table 1: L2 Error Comparison of Models for Dense Set of Events
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Figure 2: Model Validating Example with Dense Data Set

6.2 Sparse Data Example

Crimes and other types of events may be quite sparse in a given geographical region. Conse-
quently, it becomes difficult to determine the probability that an event will occur in the area. It is
challenging for density estimation methods that do not incorporate the spatial information to dis-
tinguish between invalid regions and areas that have not had any crimes but are still likely to have
events. Using the same predefined probability density from the introduction section in figure 1(b),
we demonstrate how our methods maintain these invalid regions for sparse data. The 40 events
selected are shown in figure 3(b). The density estimates for current methods and our methods are
given in figure 3. We used a variance σ = 15 for the Gaussian Kernel Density Estimate.

For this sparse problem, our WeightedH1 MPLE and Modified TV MPLE methods maintain the
boundary of the invalid region and appear close to the true solution. Table 2 contains the L2 errors
for both this example of 40 events and the example of 4,000 events from the introduction. Notice
that our Modified TV and Weighted H1 MPLE methods performed the best for both examples.
The Weighted H1 MPLE was exceptionally better for the sparse data set. The Weighted TV MPLE
method does not perform as well for sparse data sets and fails to keep the boundary of the valid
region. Since the rest of the examples contain sparse data sets, we will omit the Weighted TV
MPLE method from the remaining sections.
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Figure 3: Sparse Example

40 Events 4,000 Events
Kernel Density Estimate 2.3060e-5 7.3937e-6

TV MPLE 2.5347e-5 7.7628e-6
Modified TV MPLE 1.4345e-5 5.7996e-7
Weighted H1 MPLE 3.8449e-6 2.1823e-6
Weighted TV MPLE 1.5982e-5 3.6179e-6

Table 2: L2 Error Comparison of Models for Sparse Data Example and Introduction Example

6.3 Orange County Coastline Example

To test the models with external spatial data, we obtained from Google Earth TM a region of
the Orange County coastline with clear invalid regions (see figure 4(a)). For the purposes of this
example, it was determined to be impossible for events to occur in the ocean, rivers, or large parks
located in the middle of the region. One may use various segmentation methods for selecting the
valid region. For this example, we only have data from the true color aerial image, not multispectral
data. To obtain the valid and invalid regions, we removed the “texture” (i.e. fine detailed features)
using a Total Variation based denoising algorithm [16]. The resulting image, shown in figure
4(b), still contains detailed regions obtained from large features, such as large buildings. We wish
to remove these and maintain prominent regional boundaries. Therefore, we smooth away from
regions of large discontinuities. This is shown in figure 4(c). Since oceans, rivers, parks, and
other such areas have generally lower intensity values than other regions, we threshold to find the
boundary between the valid and invalid regions. The final valid region is displayed in figure 5(a).
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Figure 4: Smoothing Regions of Orange County Coastline

Figure 5: Orange County Coastline Valid Region and Constructed Density Map

Figure 6: 200, 2,000, and 20,000 Sampled Events

From the valid region, we constructed a toy density map to represent the probability density
for the example and to generate data. It is depicted in figure 5(b). Regions with colors farther to
the right on the color scale are more likely to have events.

Sampling from this constructed density, we took distinct data sets of 200, 2,000 and 20,000
selected events given in figure 6. For each set of events, we included three probability density
estimations for comparison. We first give the Gaussian Kernel Density Estimate followed by our
Modified Total Variation MPLE model and our Weighted H1 MPLE model. We provide all images
together to allow for visual comparisons of the methods.

Summing up Gaussian distributions gives a smooth density estimate. Figure 7 contains the
density estimates obtained using the Kernel Density Estimation model. The standard deviation σ
of the Gaussians are given with each image. In all of these images, a nonzero density is estimated
in the invalid region.
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Figure 7: Kernel Density Estimates for 200, 2,000, and 20,000 Sampled Events

Figure 8: Modified TV MPLE for 200, 2,000, and 20,000 Sampled Events

Figure 9: Weighted H1 MPLE for 200, 2,000, and 20,000 Sampled Events

Taking the same set of events as the Kernel Density Estimation, the images in figure 8 were
obtained using our first model, the Modified Total Variation MPLE method with the boundary
edge aligning term. The parameter for λ must be sufficiently large in the TV method in order to
prevent the diffusion of the density into the invalid region. In doing so, the boundary of the valid
region may attain density values too large in comparison to the rest of the image when the size of
the image is very large. To remedy this, we may take the resulting image from the algorithm and
set the boundary of the valid region to zero and rescale the image to have a sum of one. The invalid
region in this case sometimes has a very small non-zero estimate. For visualization purposes we
have set this to zero. However, we note that the method has the strength that density does not
diffuse through small sections of the invalid region back into the valid region on the opposite side.
Events on one side of an object, such as a lake or river, should not necessarily predict events on
the other side.
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The next set of images in figure 9 estimate the density using the same sets of event data but
with our Weighted H1 MPLE model. Notice the difference for the invalid regions with our models
and the Kernel Density Estimation model. This method does very well for the sparse data sets of
200 and 2,000 events.

6.3.1 Model Comparisons

The density estimates obtained from using our methods have a clear improvement in maintaining
the boundary of the valid region. To determine how our models did in comparison to one another
and to the Kernel Density Estimate, we calculated the L2 errors located in Table 3. Our models
consistently outperform the Kernel Density Estimation model. The Weighted H1 MPLE method
performs the best for the 2,000 and 20,000 events and visually appears closer to the true solution
for the 200 events than the other methods. When the data is very sparse, the Modified TV MPLE
method smooths everything to be approximately the same density, whereas the Weighted H1 MPLE
method keeps the density more localized.

200 Events 2,000 Events 20,000 Events
Kernel Density Estimate 7.0338e-7 2.8847e-7 1.5825e-7

Modified TV MPLE 3.0796e-7 2.6594e-7 8.9353e-8
Weighted H1 MPLE 5.4658e-7 1.5988e-7 5.8038e-8

Table 3: L2 Error Comparison of Models for OC Coastline Example

6.4 Residential Burglary Example

The following example uses actual residential burglary information from the San Fernando Valley in
Los Angeles. In figure 10 is the area of interest and the locations of 4,487 burglaries that occurred in
the region during 2004 and 2005. The aerial image was obtained using Google EarthTM . We assume
that residential burglaries cannot occur in large parks, lakes, mountainous areas without houses,
at airports, and industrial areas. Using census or other types of data, housing density information
for a given region can be calculated. Figure 10(c) is the housing density for our region of interest.
The housing density provides us with the exact locations of where residential burglaries may occur.
However, our methods prohibit the density estimates from spreading through the boundaries of the
valid region. If we were to use this image directly as the valid region, then crimes on one side of a
street will not have an effect on the opposite side of the road. Therefore, we fill in small holes and
streets in the housing density image and use the image located in figure 10(d) as our valid region.

Using our Weighted H1 MPLE and Modified TV MPLE models, the Gaussian Kernel Density
Estimate with variance σ = 21, and the TV MPLE method, we obtained the density estimations
shown in figure 11.
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Figure 10: San Fernando Valley Aerial Image, its Residential Burglaries and Housing Density, and
the Valid Region

7 Conclusions and Future Work

In this paper we have studied the problem of determining a more geographically accurate probability
density estimate. We demonstrate the importance of this problem by showing how common density
estimation techniques, such as Kernel Density Estimation, fail to restrict the support of the density
in a set of realistic examples.

To handle this problem, we proposed a set of methods, based on Total Variation and H1-
regularized MPLE models, that demonstrates great improvements in accurately enforcing the sup-
port of the density estimate when the valid region has been provided a priori. Unlike the TV-
regularized methods, our H1 model has the advantage that it performs well for very sparse data
sets.

The effectiveness of the methods is shown in a set of examples in which burglary probability
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Figure 11: San Fernando Valley Density Estimates

densities are approximated from a set of crime events. Regions in which burglaries are impossible,
such as oceans, mountains, and parks, are determined using aerial images or other external spatial
data. These regions are then used to define an invalid region in which the density should be zero.
Therefore, our methods are used to build geographically accurate probability maps.

It is interesting to note that there appears to be a relationship in the ratio between the number
of samples and the size of the grid. In fact, each model has shown very different behavior in
this respect. The TV based methods appear to be very sensitive to large changes in this ratio,
whereas the H1 method seems to be robust to these same changes. We are uncertain about why
this phenomenum exists, and this would make an interesting future research topic.

There are many directions in which we can build on the results of this paper. We would like to
devise better methods for determining the valid region, possibly evolving the edge set of the valid
region using Γ-convergence [1]. Since this technique can be used for many types of event data,
including residential burglaries, we would also like to apply this method to Iraq Body Count Data.
Finally, we would like to handle possible errors in the data, such as incorrect positioning of events
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that place them in the invalid region, by considering a probabilistic model of their position.
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tional Model for P+XS Image Fusion. Int. J. Comput. Vision, 69(1):43–58, 2006.

[3] P. L. Davies and A. Kovac. Densities, Spectral Densities and Modality. The Annals of Statistics,
32:1093–1136, 2004.

[4] P. P. B. Eggermont and V. N. LaRiccia. Maximum Penalized Likelihood Estimation. Springer,
2001.

[5] T. Goldstein and S. Osher. Split Bregman Method for L1 Regularized Problems. SIAM Journal
on Imaging Sciences, 2:323–343, 2009.

[6] I. J. Goodd and R. A. Gaskins. Nonparametric Roughness Penalties for Probability Densities
. Biometrika, 58(2):255–277, 1971.

[7] R. Koenker and I. Mizera. Density Estimation by Total Variation Regularization. Advances in
Statistical Modeling and Inference, Essays in Honor of Kjell A. Doksum, World Scientific:613–
634, 2007.

[8] C. Kooperberg and C. J. Stone. Logspline Density Estimation with Free Knots. Computational
Statistics and Data Analysis, 12:327–347, 2002.

[9] Michael Moeller, Todd Wittman, and Andrea L. Bertozzi. Variational Wavelet Pan-
Sharpening. Submitted to IEEE Transactions on Geoscience and Remote Sensing, December
2008.

[10] George O. Mohler, Andrea L. Bertozzi, Thomas A. Goldstein, and Stanley J. Osher. Fast TV
Regularization for 2D Maximum Penalized Likelihood Estimation. Technical Report 09-20,
UCLA Department of Mathematics, 2009.

16



[11] George O. Mohler and Martin B. Short. Geographic Profiling from Kinetic Models of Criminal
Behavior. Preprint, 2009.

[12] D. Mumford and J. Shah. Optimal Approximations by Piecewise Smooth Functions and Associ-
ated Variational Problems. Communications on Pure and Applied Mathematics, 42(5):577–685,
1989.

[13] Mike O’Leary. The Mathematics of Geographic Profiling. Journal of Investigative Psychology
and Offender Profiling, 6:253–265, 2009.

[14] Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. An Iterative
Regularization Method for Total Variation-Based Image Restoration. Simul, 4:460–489, 2005.

[15] D. Kim Rossmo. Geographic Profiling. CRC Press, 2000.

[16] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear Total Variation Based Noise
Removal Algorithms. Physica D, 60:259–268, 1992.

[17] S. Sardy and P. Tseng. Density Estimation by Total Variation Penalized Likelihood Driven
by the Sparsity l1 Information Criterion. To appear in the Scandinavian Journal of Statistics,
2009.

[18] B. W. Silverman. Kernel Density Estimation Using the Fast Fourier Transform. Statistical
Algorithm, AS176, Appl. Statist., 31:93–97, 1982.

[19] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC,
April 1986.

[20] Yilun Wang, Junfeng Yang, Wotao Yin, and Yin Zhang. A New Alternating Minimization
Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences,
1(3):248–272, 2008.

17


