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Abstract This paper considers the l1-Compressive Sensing problem and presents an efficient al-
gorithm that computes an exact solution. The idea consists in reformulating the problem such
that it yields a modified Dantzig-Wolfe decomposition that allows to efficiently apply all standard
simplex pivoting rules. Experimental results show the superiority of our approach compared to
standard linear programming methods.
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1 Introduction

This paper describes an efficient algorithm that computes an exact solution of `1-Basis Pur-
suit/Compressive Sensing problems. It relies on a modification of the Dantzig-Wolfe approach
that greatly improves performances compared to the original standard approach.

The `1-Basis Pursuit problem [15] corresponds to minimizing the `1-norm of a signal under
some linear constraints. This problem has originally been used for decomposing a signal using
few atoms of a predefined dictionary [15,40]. More recently this problem has received a lot of
attention because of signal sampling through Compressive Sensing (CS). Following the seminal
works of [23] and [11–13,45], the principle of Compressive Sensing states that a sparse signal
in a chosen basis can be recovered through a `1-Basis Pursuit optimization problem. Formally it
corresponds to solving the following problem:

(CS)

{
minu ‖u‖1
s.t. Au = f

(1)

where f ∈ IRm , are the observed data, u ∈ IRn is the signal of interest to reconstruct and the
matrix A ∈ IRm×n models the linear constraints. We refer the reader to [2,11,13,22,23] for the
design of Compressive Sensing matrices. Let us note that such matrices are dense and yields a
problem where the number of constraints m is typically much lower than the size of the signal n,
i.e., m� n.

There is a vast literature of algorithms that approximately solve the CS problem [17,27,33,34,37,
44,46,45,51] for instance. Most of these approaches rely on iterative based thresholding/shrinkage
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that has been originally presented in [42] and [14] and with further developments and improve-
ments such as [5,10,17,21,25,26]. These approaches lead to fast algorithms that compute approx-
imate solution. Another class of approaches consists in considering greedy based algorithms [16,
47,48]. We refer the reader to [49] for a deep review of approximate computational methods for
solving the CS problem.

Contrary to the above approaches, this paper presents an efficient algorithm that computes an
exact solution to the CS problem. The idea consists in reformulating the problem as a linear one
that allows to apply a standard decomposition method based on the simplex [19,20,39] known
as the Dantzig-Wolfe decomposition. We further refine and improve this approach, so that all
standard simplex pivoting rules can be efficiently applied. Dantzig-Wolfe decomposition relying
on interior points methods has been studied by [41,52]. However, interior point methods are not
well-tailored to problems with dense constraint matrix [1] like those we find in our case. This has
led us to choose the standard Dantzig-Wolfe method as a starting point.

The remainder of this paper is as follows. We describe in section 2 the standard decomposition
method. The latter is refined for the CS problem in section 3. This approach is further improved
in section 4. Some experimental results along with comparisons to the simplex algorithm are
presented in section 5. Eventually we draw some conclusions in section 6.

2 Standard Dantzig-Wolfe decomposition

In this section we introduce the Dantzig-Wolfe decomposition [19,20,39], which relies on de-
layed column generation to solve large scale linear programs. The main idea of Dantzig-Wolfe
decomposition is to reformulate a linear program with a block-angular constraint matrix as an
equivalent linear program. This equivalent program is called the Master Program (MP) and its
formulation expresses the fact that a solution is a convex combination of extreme points of the
polyhedron defined by the initial program constraints. The number of columns of MP is equal
to the number of extreme points of the polyhedron defined by the original constraint matrix. A
two-level iterative process is used to solve efficiently this extremely large linear program. At each
iteration, a restricted MP with only a subset of columns is solved to find optimal dual simplex
multipliers. The latter are then used to generate a negative reduced cost column. If no such col-
umn exists, optimality is reached and therefore an exact solution is found [20]. Dantzig-Wolfe
decomposition has not been widely used for several reasons: it can be slower than standard sim-
plex resolution, it suffers from the well-known tail effect, i.e., slow improvement at the end of
the process, and it can be difficult to implement efficiently. However, some problems clearly ben-
efit from this approach [24,39,43]. For instance, the Dantzig-Wolfe approach has been recently
used with great interest by the Branch-and-Price community to improve performances of integer
programming resolution [3,4,50].

The Dantzig-Wolfe decomposition arises from the reformulation of an initial linear program.
The initial linear program has variables x ∈ Rn

+, objective function coefficients c ∈ Rn, coupling
constraintsAx = bwhereA is am×nmatrix and l independent angular blocksD(i) of constraints
on vector variables xi ∈ Rki

+ where n =
∑l

i=1 ki. Then, x = (x1, . . . , xl)t and c = (c1, . . . , cl)t. This
reformulated program writes as 

minx cx

s.t. Ax = b

D(i)xi = bi

x ≥ 0

(2)

while the overall constraint matrix form is
A(1) . . . A(l)

D(1)

. . .
D(l)
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We denote by x(i) the ith component of the vector x and by A(i) the block of columns of the
matrix A that corresponds to the vector xi. From the initial linear program (2), the Dantzig-Wolfe
reformulation gives an equivalent linear program where variable vector is u with ∀i, u(i) ∈ R+,
called the Master Program of the Dantzig-Wolfe decomposition [20]:

(Master Program)


minu

∑
j θ(j)u(j)

s.t.
∑

j γju(j) = b∑
j u(j) = 1

u(j) ≥ 0

(3)

where γj = Apj and θ(j) = cpj , with pj ∈ Rn the extreme points of the polyhedron defined by
the constraints of the non-coupling linear program (2) (i.e., the constraints D(i)xi = bi). Note that
the constraint

∑
j u(j) = 1 with ∀j, u(j) ≥ 0 in program (3) is a convexity constraint. It means

that a solution of the initial linear program (2) is a convex combination of the extreme points pj .
The reader should note that the linear program (3) has as many variables as the linear pro-

gram (2) has extreme points, and has one additional constraint. The number of variables of the
program (3) is therefore exponential with respect to the number of variables of program (2). In-
stead of using the simplex method on program (3), which would take far more time than a direct
resolution of the original linear program (2), a column generation approach is used.

Let us now describe the column generation process. Let Si be the convex bounded polyhedron
defined by:

Si = {xi|D(i)xi = bi, xi ∈ Rki
+ } .

The set S is the union of all Si and the set of all extreme points of program (2) denoted by pj . It
forms a bounded convex polyhedral set.

Let µ be the simplex multiplier associated with the convexity constraint of program (3) (i.e.,∑
j u(j) = 1) and π the vector of simplex multipliers associated with the remaining constraints.

To choose a variable u(j) to enter the basis (i.e., a new column to generate from an extreme
point pj) the usual Dantzig rule is considered. The latter corresponds to choose the variable with
minimum reduced cost. In our formulation, it means that the variable u(j) corresponds to the
solution pj of

min
pj

(c− πA)pj − µ . (4)

Assuming that program (4) is a bounded optimization problem, its optimal solutions are extreme
points of its feasible set and is therefore equivalent to

minx〈c− πA, x〉
s.t. D(i)xi = bi,∀i
xi ≥ 0,∀i

(5)

The solution of problem (5) is the extreme point corresponding to the variable that will enter
the basis. The usual simplex pivot is performed to find the variable that leaves the basis. The
objective function of program (5) is additively separable and its constraints are independent.
Therefore, problem (5) can be transformed into l independent subproblems. It yields

∀i ∈ {1, . . . , l},


minxi

〈ci − πA(i), xi〉
s.t. D(i)xi = bi

xi ≥ 0
(6)

The fact that the l subproblems are independent is of utmost importance since it enables to solve
them in parallel without any communication. At each iteration, the subproblems (6) can be gen-
erally computed in polynomial time. Therefore it yields an element of an exponential-sized set in
polynomial time.
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The following algorithm performs the Dantzig-Wolfe decomposition and solves the original
problem (2) through the reformulated problem (3):

Dantzig-Wolfe Algorithm [20]
Assume that an initial basic feasible solution of MP is known. We denote the associated basic

matrix by B, the basic inverse matrix by B−1 and the simplex multipliers by (π, µ). We denote by
Ai is the ith column of the matrix A.

1. Solve the l subproblems (6) using the simplex multipliers π. This yields the optimal solutions
x̂(i) and the optimal objective values of these l problems are w(i).

2. Compute w =
∑n

i=1 w(i)− µ
3. Ifw ≥ 0, optimal solution is found. The optimal solution of problem (2) is then

∑
u(j)>0 u(j)pj .

4. If w < 0, the new column to enter the basis is:(∑
iAix̂(i)

1

)
5. After multiplication by B−1, apply the usual simplex pivot operation to obtain a variable to

leave the basis. A new basic matrix B is then obtained and its associated inverse basic matrix
B−1 can be computed as well as new simplex multipliers (π, µ).

6. Repeat from step 1.

Note that since the new basic matrix differs by only one column from an iteration to another,
B−1 can be computed by multiplying a square matrix η with the previous inverse basic matrix.
Such a matrix η is formed by the sum of a unit matrix of size (m+ 1)× (m+ 1) and a one column
matrix of same size. Because of this particular form, the multiplication can be done in O(m2). We
refer the reader to [19] for further details of this standard process. The overall complexity of an
iteration is O(mn).

If MP is nondegenerate, each iteration strictly decreases the objective function value. There is
a finite number of possible bases and none is repeated. Therefore the method leads to the optimal
solution in a finite number of iterations. The solution is then expressed as a convex combination
of extreme points of the linear program (2).

3 Dantzig-Wolfe decomposition for Compressive Sensing

In this section, we aim to reformulate the Compressive Sensing problem to obtain a linear pro-
gram whose constraint matrix is block-angular and whose subproblems solutions form a bounded
convex polyhedral set. This will allow us to apply the decomposition method described in sec-
tion 2.

The formulation (1) of the Compressive Sensing problem that can be rewritten as the follow-
ing linear program [8]:

(Reformulated CS)



miny〈y,1〉
s.t. Ax = f

x ≤ y
− x ≤ y

x ∈ Rn, y ∈ Rn
+

(7)

As explained in section 2, the usual Dantzig-Wolfe decomposition assumes that the solution
spaces of induced subproblems are bounded convex polyhedral sets. However, in our peculiar
case this assumption does not hold since S is unbounded. This means that the method cannot be
directly used on problem (7). General l1 (and l∞) minimization problems are prone to issues when
using decomposition methods. Indeed, x(i) variables are free (and y(i) non-negative), therefore
the notion of extreme points is senseless. However, Ax = f can be solved to obtain an initial
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solution x0. Thus a bound K on variables y(i) can be set to ||x0||1. In the case of l∞ minimization,
K can be set to ||x0||∞. Let us note that one could define tighter bounds by setting a bound for
each variable y(i). This yields a linear program with bounded variables. Besides, the extreme
points of the constraints are naturally defined.

Let us reorder variables x(i) and y(i) as (x(0), y(0), x(1), y(1), . . . , x(n), y(n)). This yields a
constraint matrix of the following form:

A1,1 0 . . . A1,n 0
...

...
...

...
Am,1 0 . . . Am,n 0

1 −1
−1 −1 0

0 1
. . .

1 −1
0 −1 −1

0 1


This constraint matrix has a block-angular structure, which is mandatory to use the Dantzig-
Wolfe decomposition (see section 2). This matrix is formed by the coupling constraint A

′
and n

identical angular blocks of constraints. The matrixA
′

is the matrixA in the space of the reordered
variables. Each block of constraints incorporates a bound constraint on its variables.

Following the reformulation (3) (see section 2), we have γj ∈ R2n and θ ∈ R2n such that
γj = A

′
pj and θ(j) = cpj =

∑
i pj(i) (simplified thanks to the l1-norm, which implies ∀i ∈

{1, . . . , n}, c(2i−1) = 0 and c(2i) = 1). It yields the following program with variables u(j) ∈ R2n:
minu

∑
j θ(j)u(j)

s.t.
∑

j γju(j) = f∑
j u(j) = 1

uj ≥ 0

(8)

Let us now describe the column generation process for the Compressive Sensing problem. Let
Si be the convex bounded polyhedron set that corresponds to the ith angular block of constraints,
i.e.,

Si = {x(i), y(i)|x(i)− y(i) ≤ 0, x(i) + y(i) ≥ 0, y(i) ≤ K,x(i) ∈ R, y(i) ∈ R+} .

The set L is the union of all Si and forms a bounded convex polyhedral set.
In our case of bounded l1-minimization, the n independent linear programs (6) that corre-

sponds to the subproblems of the decomposition simplify to the following formula:

∀i ∈ {1, . . . , n},

{
(0, 0) if |x̄(i))| ≤ 1,
(−sg(x̄(i))×K,K) otherwise

(9)

where x̄(i) is the reduced cost of the variable x(i) and sg(x) = 1 if sg(x) ≥ 0, −1 otherwise.
Formula (9) can output 3 different values per subproblem: (0, 0), (−K,K), (K,K). Since there are
n subproblems to solve at each iteration, the solution spaceL has 3n elements. The vectors ofL are
denoted by pj . Note that the solution given by formula (9) is computed at each iteration in linear
time (n independent constant time subproblems). This improvement is specific to Compressive
Sensing and let us recall that it takes in general polynomial time to compute such a solution (see
section 2). The formulation (7) has a (m+2n)× (2n) sparse constraint matrix and the formulation
(8) has a dense (m+ 1)× (3n) constraint matrix.
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Since y(i) variables are only used to express the l1-norm of the objective function as a linear
expression, only variables x(i) are interesting at the constraint level. Thus, the convex bounded
polyhedron set that corresponds to the n block of constraints can be rewritten as follows:

Si = {x(i)| −K ≤ x(i) ≤ K,x(i) ∈ R} .

Formula (9) now defines the set L as L = {−K, 0,K}n. It yields that pj and γj lives in Rn instead
of R2n. For this, γj is now defined as γj = Apj . Since pj ∈ Rn, the expression of θ(j) must be
adapted as well. The components of c, i.e., the coefficients of the objective function, are equal
to 0 for variables x(i) and 1 for variables y(i), and y(i) = |x(i)|. With pj ∈ Rn, it yields θ(j) =∑

i |pj(i)|. From now on, we assume that ∀j, pj ∈ Rn, θ(j) =
∑

i |pj(i)| and γj = Apj .

Like many linear programs, our linear program (2) is degenerate. It simply comes from the
fact that the optimal solution is degenerate because it has less than m nonzeros, with m the num-
ber of constraints. It implies that the algorithm may cycle, i.e., might not converge. Situations
where cycling occurs have been studied in [31]. In practice, given a nondegenerate initial solu-
tion for problem (3), degeneracy seems to only appear when optimality is reached. The energy
strictly decreases until the optimal solution is found. However convergence is not detected and
the process does not stop by itself (i.e., the condition w ≥ 0, in step 3 of the Dantzig-Wolfe Al-
gorithm of section 2, never happens because of cycling) although the objective function value
does not change anymore. We overcome this limitation by adding a test on the strict decrease of
the energy. If this test is satisfied, Karush-Kuhn-Tucker (KKT) conditions [36,38] can therefore be
checked to know if the energy will still decrease. In practice the first test seems to always find
optimal solutions without needing more costly techniques such as checking KKT conditions.

Let us now briefly describe how to compute an initial basic feasible solution for problem (8).
An initial basic feasible solution of problem (8) can be computed from a basic feasible solution of
Ax = f . Indeed, each solution of Ax = f can be represented as a solution u of

∑
i(Api)u(i) = f

with
∑
u(i) = 1 and ∀i = 1, . . . , 3n, u(i) ≥ 0, i.e., a solution of the Dantzig-Wolfe decomposition.

Solving Ax = f is usually done by introducing m slack variables z(i) (one per constraint) and
minimizing

∑
i zi. A simplex can therefore be used to solve this problem whose initial basic solu-

tion is z = f and x = (0, . . . , 0)t. As we know that Ax = f has at least one solution, we can solve
Ax = f by introducing a unique slack variable for all constraints. Using a unique slack variable to
solveAx = f instead ofm is usually faster and gives a better bound. However, it generally yields
a solution with more zeros (i.e., more degeneracy) and there is no trivial initial solution. Note
that since the method is based on the simplex, the quality of the initial solution has an important
influence on the global method performance. We refer the reader to [9,19,39] for more details on
finding an initial guess when using the simplex algorithm.
From a solution x0 of Ax = f , one can compute an initial basis, a basic feasible solution and
simplex multipliers (π, µ), which allows us to use the Dantzig-Wolfe algorithm (see section 2). If
x0 is nondegenerate, each of its m components corresponds to an element of L with exactly one
nonzero component. These elements form the initial basis and a basic feasible solution is trivially
obtained from it.

At each iteration, the Dantzig-Wolfe decomposition on the Compressive Sensing problem
yields the exploration of 3n elements, where n is the size of the signal. Even if this exploration is
done implicitly in linear time thanks to equations (6) and (9) at each iteration, the whole resolu-
tion by Dantzig-Wolfe decomposition can be very slow.

Recall that in this section, we need to have a bounded solution space for the subproblems.
Such a property has been derived with a consideration on the initial solution. In the next section,
we use the specific way we define the bounded solution space for the subproblems to improve
the performance of the method.
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4 Improving performance through reduced decomposition

This section presents a modification of the method previously applied to the Compressive Sens-
ing problem (see section 3) which yields a significant decrease in the maximum number of bases
to explore and therefore enables the use of standard pivoting rules.

The main idea is to decompose the problem (7) in vectors with exactly one nonzero element
(denoted qi) instead of general extreme points (denoted pi), plus the null vector. This reduced
Dantzig-Wolfe decomposition enables to cope with only 2n + 1 vectors of this form (because of
the sign and the null vector) and significantly decreases the symmetries of the problem.
Indeed, solutions of problem (8) are expressed as a convex combination of elements of L =
{−K, 0,K}n. Among all the vectors of L, we only consider those with at most one nonzero com-
ponent. In other words, these vectors have the form (0, . . . , 0,±K, 0, . . . , 0)t or (0, . . . , 0)t and
form the set M with |M | = 2n+ 1.

Moreover, we reduce the number of considered extreme points from exponential to linear.
This yields that usual simplex rules can be used. Indeed, standard simplex rules on the reduced
decomposition problem can output 2n different columns whereas Dantzig-Wolfe rule on the stan-
dard decomposition can output 3n different columns, i.e., a rough estimate of

(
m
2n

)
bases may be

inspected instead of
(
m+1
3n

)
.

4.1 Equivalence with original problem

Recall that the original Compressive Sensing problem has constraints of the formAx = f . Assum-
ing no degeneracy, any convex combination of m nonzero elements qi corresponds to a solution
of Ax = f with m nonzero components, exactly as for a standard Dantzig-Wolfe decomposition
(see section 2).

Moreover, each solution of Ax = f can be represented as a solution v of
∑2n+1

i=1 (Aqi)v(i) = f

with
∑2n+1

i=1 v(i) = 1 and ∀i = 1, . . . , 2n+ 1, v(i) ≥ 0, i.e., a solution of the reduced Dantzig-Wolfe
decomposition.
Recall that the basis of the program (8) has size (m+1)×(m+1). The initial basic feasible solution
x0 of the original problem, which is a solution of Ax = f , enables to compute K as ||x0||1, which
bounds the problem in the sense of the decomposition.
Let us denote by δi the vector that lives in Rn with all components at zero except the ith compo-
nent which equals 1. Then, the elements of M are written as

q2i−1 = Kδi, ∀i = 1, . . . , n,
q2i = −Kδi, ∀i = 1, . . . , n,
q2n+1 = (0, . . . , 0)t.

(10)

We compute an initial basic solution v0 for (8) from the initial basic feasible solution x0 with the
following formula: 

v0(2i− 1) = max(0,x0(i))
||x0||1 , ∀i = 1, . . . , n,

v0(2i) = max(0,−x0(i))
||x0||1 , ∀i = 1, . . . , n,

v0(2n+ 1) = 0.

(11)

It is worth noting that, at any iteration t and any i ∈ {1, . . . , n}, we cannot have vt(2i − 1) 6= 0
and vt(2i) 6= 0 at the same time. With the previously defined qi and v0(i), x0 =

∑2n+1
i=1 (Aqi)v0(i)

and v0 has exactly m nonzero components.
Since the bound K is computed from the initial feasible solution x0 used by the optimization
process, the reduced decomposition is only valid for the subproblem of the initial one where so-
lutions are strictly better than the initial feasible solution. Assuming no degeneracy, the usual
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pivoting rules of the simplex ensure this property at each iteration and then guarantees optimal-
ity of the solution of the reduced decomposition in the original problem sense.
The null vector is mandatory in this reduced decomposition and must be in base at each itera-
tion. Let us denote by xt, t > 1 the solution computed at the tth iteration. Since pivoting rules
guarantee strictly better solution as it is running, we get:

∀t,
∑

i

|xt+1(i)| <
∑

i

|xt(i)| . (12)

In terms of solutions of the reduced decomposition, since xt =
∑2n+1

i=1 (Aqi)vt(i), it is equivalent
to:

∀t,
m∑

i=1

vt+1(i)|Aqt+1
i | <

m∑
i=1

vt(i)|Aqt
i | (13)

and

∀t,
m+1∑
i=1

vt(i) = 1 . (14)

The sequence of (
∑m

i=1 v
t(i)) is strictly decreasing because for any given i the quantity |Aqi| is

independent of the iterations t. Therefore, vt(m + 1) acts as an accumulation term and enables∑m+1
i=1 vt(i) to not exceed 1 when the solution improves in the l1-norm sense. The convex combi-

nation is ensured during the whole optimization process thanks to the null vector being always
present in base.
This shows that all basic feasible solution (except the initial one) has v(2n+ 1) 6= 0. Thus, the null
vector needs to be in base at each iteration. In other words, we need to force this vector to be in
the basis during all iterations.
As we shall see in the next subsection, the reduced cost of the null vector is 0. Thus, as the pivot-
ing rules only consider variables for which reduced cost is strictly non positive, the null vector is
never selected. If this vector is not forced to remain in base during the whole optimization pro-
cess, we get an optimal solution of our reduced decomposition that is still feasible for the original
Compressive Sensing problem but not necessarily optimal.

We have seen that the 2n + 1 elements of M are enough to express a solution of the original
Compressive Sensing problem if the null vector is always forced to be in base. The next subsection
shows the decomposition with vectors of M from a reduced cost point view.

4.2 From a reduced cost point of view

Let us note that all elements of L can be written as a sum of elements M . Let pi,j be a vector of L
with exactly two nonzero components that is the sum of qi ∈ L and qj ∈ L. We have sqi = −1 or
sqi = 1 according to the sign of the nonzero component of the vector qi. The reduced cost v̄(i) of
the variable v(i) that corresponds to the vector qi for the decomposed problem is then

v̄(i) = cqi − πAqi − µ . (15)

It can be rewritten as
v̄(i) = (c(i)− πsqi

Ai)K − µ , (16)

and the reduced cost ū(i, j) of pi,j for the decomposed formulation is then

ūi,j = (c(i) + c(j))− π(sqi
Ai + sqj

Aj)K − µ , (17)

ū(i, j) = v̄(i) + v̄(j) + µ . (18)
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Following subsection 4.1, we have µ = 0 since the null vector is always in base. Generalization to
vectors with more than two nonzero components is straightforward.

Recall that basic variables have reduced cost equals to zero. From property (18), one can see
that each element of L (i.e., each extreme point of the original Dantzig-Wolfe decomposition), for
which reduced cost is negative, implies that it exists at least one element of M (i.e., a one nonzero
extreme point) with negative reduced cost. More precisely, three cases can occur:

(i) (v̄(i) ≥ 0 and v̄(j) ≥ 0)⇔ ū(i, j) ≥ 0, i.e., if no element of M can be chosen, no element of L
can be chosen at all.

(ii) (v̄(i) ≤ 0 and v̄(j) ≤ 0) ⇔ ū(i, j) ≤ 0, i.e., if an element of L can be chosen, the element
v(arg min(v̄(i), v̄(j))) of M can be chosen too.

(iii) (v̄(i) ≤ 0 and v̄(j) ≥ 0), the element v(arg(v̄(i))) of M can be chosen.

These three cases tell us that if an extreme point with more than one nonzero has a strictly
negative reduced cost, then at least one extreme point with exactly one nonzero has such a re-
duced cost too. Thanks to the chosen order, the extreme point with exactly one nonzero will be
chosen. If no such extreme point if found, then no extreme point at all has a strictly negative
reduced cost, and thus we have an optimal solution. It yields that if there is a solution for the
standard Dantzig-Wolfe decomposition, there is a solution for our reduced decomposition.

4.3 Implications on standard simplex rules for our approach

In the standard Dantzig-Wolfe decomposition, at each iteration the pivoting rule is used to find
a new element to enter the basis from a set of 3n elements. Because this set is reduced to 2n +
1 elements in the case of our reduced decomposition, usual pivoting rules developed for the
simplex can be used. Table 1 lists some common pivoting rules, and more particularly the step
consisting in choosing a new variable (column) to enter the basis. To choose a variable to leave
the basis, the usual minimum ratio test is used [19]. If several solutions are output, the one with
the lowest index is chosen.

rule name entering variable
Dantzig arg min

i
{v̄(i)|v̄(i) < 0}

Steepest edge arg min
i

{ v̄(i)q
1+

P
j (B−1×A)ij

|v̄(i) < 0}

Bland min{i|v̄(i) < 0}

Table 1: Pivoting rules

We now present these three rules in a general context and in our case of reduced decomposi-
tion:

– Dantzig rule: the Dantzig rule [18] corresponds to the rule used by the original simplex algo-
rithm, that consists in choosing the most negative reduced cost. It corresponds to a visit of
O(n) variables, i.e., O(nm) operations to compute all reduced costs.
For our reduced decomposition, it can be noted that case (ii) of last subsection leads to choose
an extreme point of the reduced decomposition which can be less interesting from a reduced
cost point of view than the extreme point of the original Dantzig-Wolfe decomposition. It
comes from the fact that a simplex iteration makes a variable to enter and another to leave. Be-
cause a variable of the standard Dantzig-Wolfe decomposition is represented by several vari-
ables in the reduced decomposition, several iterations are required to accomplish an equiv-
alent improvement on the solution. However, since the simplex pivoting rules work locally
iteration by iteration, a given base of the reduced decomposition at a given iteration has more
freedom for improvement than a standard one. Indeed, thanks to the significant decrease of
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both symmetries in the representations of solutions and the number of bases to visit, fewer
iterations are required to find a solution, i.e., on average each iteration much better improves
the solution than for a standard Dantzig-Wolfe decomposition.

– Steepest edge rule: the Steepest edge rule [32,28] is the state-of-the-art pivoting rule. This rule
is much more time consuming per iteration than the Dantzig rule and requires more memory.
Indeed, it needs all coefficients of the matrixB−1×A, whereB is current basic matrix. This rule
leads to a far better new variable to work with and therefore enables to drastically decrease
the required number of iterations to reach optimal solution. It has the same complexity as the
Dantzig rule: O(n) variables are visited with O(nm) operations. Note that the huge amount
of running time required to find the pivot has led to develop faster approximate versions of
this rule, such as Devex [35].
In terms of our reduced decomposition, the same comments as for the Dantzig rule can be
made for the exact same reasons.

– Bland rule: the Bland minimum index rule [7] is a rule that prevents from cycling. It is one of
the anti-cycling rules that can be used to ensure a finite number of iterations even if degen-
eracy occurs. This rule consists in choosing the first variable whose reduced cost is strictly
negative. This implies that an order on the variable must be chosen. It has the same worst
case time complexity as the Dantzig rule. In practice, the Bland minimum index rule requires
much less time to compute (only few reduced costs are effectively computed) but commonly
leads to a poorer new variable to work with.
In the case of decomposition, one can see that the use of the Bland minimum index rule on
standard Dantzig-Wolfe decomposition is equivalent to using the same rule on our reduced
decomposition, provided an adequate order is chosen. Let us choose an arbitrary order that
satisfies the following property on the extreme points of the original Dantzig-Wolfe decompo-
sition: elements are increasingly sorted by the number of their nonzero components. We see
from (i), (ii) and (iii) that if a variable must be chosen among the 3n variables then an element
from the 2n + 1 first variables is chosen, i.e., an element of M . Given this order and Bland
minimum index rule, this shows that these 2n+ 1 vectors are enough to find a solution.

4.4 Computational costs

The most time consuming operations of the standard Dantzig-Wolfe method are the selection of
the variable to enter using the pivoting rule and the computation of the new vector γ associated
with the new variable (performed by a matrix/vector multiplication). These two operations have
a worst case running time complexity of O(mn). In our reduced decomposition, the computation
of γ has a running time complexity of O(m) because the size n vector of the matrix/vector mul-
tiplication is reduced to a single nonzero value. The steepest edge, Dantzig, Bland and Dantzig-
Wolfe rules give the same worst case complexity ofO(n) variables to visit, each of them requiring
O(m) operations at each iteration to compute their reduced cost. This yields an overall number
of O(mn) operations per iteration. In the case of Dantzig and steepest edge rules, the pivoting
operation can be directly expressed as a matrix/vector multiplication. Besides, the steepest edge
rule requires to maintain the simplex tableau, which equalsB−1×A, whereB is the current basic
matrix. Instead of recomputing this matrix from scratch at each iteration, it can be updated in the
same way as for B−1 (see section 2). This enables to compute the needed matrix in O(mn). Since
A is dense, computing the steepest matrix is very costly, and rarely yields better wall clock times
compared to the use of the Dantzig rule.

Another interesting point is that for rules that need to compute all reduced costs, 2n variables
are inspected at each iteration but at a cost of only n reduced cost computations. Indeed, consid-
ering formula (16), we see that the most time consuming operation is the dot product πAi. It is
independent of the sign and then can be computed only once for both signs.

In this paper, A is always described explicitly. In other words, all the coefficients of the matrix
are stored in memory, and computations involving A are done through standard matrix opera-
tions. In the context of Compressive Sensing, the matrix A can be a sub-matrix of a transform such
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as the Discrete Fourier Transform (DFT) or Discrete Cosine Transform (DCT). Therefore these fast
transforms can be used instead of matrix operations. Since the time complexity for computing a
Fast Fourier Transform (FFT) is O(n log n), this allows to decrease the running time complexity
from O(mn) to O(max(m2, n log n)).

The standard Dantzig-Wolfe method allows to compute the n subproblems in parallel with-
out communication thanks to independency (see section 2). All operations in O(mn) involved in
the reduced decomposition can be done in parallel (matrix/vector multiplications and premulti-
plication by matrix η for the steepest edge rule). When FFTs are used, they can also be computed
in parallel .

5 Implementation and experiments

Every general purpose linear programming solver works with sparse representations and fea-
tures fast algorithms adapted to them. This is due to the nature of problems usually solved by
linear programming. Therefore, many research has been done with this hypothesis in mind. For
an overview of the different theoretical and practical advances in linear programming, we refer
the reader to [6].

Since most real world applications in linear programming involve sparse matrices, appropri-
ate implementations of linear algebra must be written to achieve performance. On the contrary,
high density matrices are used in the case of Compressive Sensing. Linearization of the Com-
pressive Sensing problem (formulation (2)) makes a sparse matrix appear, for which standard
implementations of linear programming algorithms are tailored. However, the decomposition
method we used involves only dense matrices of maximum size m × n and computations of at
most O(mn) operations on them. All these operations can be easily and efficiently written due to
the assured density of their operands. Therefore, the decomposition method we used yields very
fast iterations thanks to basic properties of the matrices used in Compressive Sensing.

The computer used for our experiment is a Core 2 Duo 2GHz with 3MB of level 2 cache,
2GB of DDR3 RAM and runs Mac OS X 10.5.6. As reference point we use glpk 4.35, a standard
sparse linear programming solver, compiled with gcc 4.3.2 and the fastest optimization flags
found for it: -O3 -fomit-frame-pointer. Time and memory used are those reported by glpk.
We compare our method to the fastest resolution scheme of glpk on formulation (7): the dual
simplex without scaling nor presolve. Note that [29] has reported this simplex variant also gives
the best behavior for another general purpose linear programming solver on similar problems.
Our implementation has been written in C++ and compiled with the same compiler and flags
as for glpk. We use double precision floating points and no vectorization nor parallelization to
perform a fair comparison with glpk. FFT computations are performed thanks to the FFTW 3.2.2
(Fastest Fourier Transform in the West) compiled with default flags. We refer the reader to [30]
for further details on FFTW.

We consider two kinds of explicit matrices for Compressive Sensing: orthogonalized Gaussian
matrices and partial Discrete Cosine matrix (DCT) matrices. Orthogonalized Gaussian matrices
have their elements generated using i.i.d normal distributionsN (0, 1) and their rows are orthog-
onalized. Partial DCT matrices are generated by randomly choosing, with uniform sampling, m
rows from the full DCT. In the case of DCTs, we also implement a version of the method that takes
benefit from fast transforms instead of explicit matrices. In this case, partial DCTs are computed
as complex-to-complex FFTs with additional O(n) pre and postprocessing steps for converting
the results to real numbers. Indeed, direct DCT implementations are currently subject to perfor-
mance issues and cannot be used for our purpose. Using this complex-to-complex FFT means an
overhead of 4 times the memory required by directly applying DCT but allows to keep good time
performances. Signals f have a nonzero ratio of 1

10 , i.e, 1
10 of the m components of f are different

from zero, and nonzeros are −1 and +1.
The following two figures only show results for orthogonalized Gaussian matrices since they

yield almost same behaviors as for partial DCT matrices and since the latter is commonly solved
through fast transforms. Complete results of the experiments (running time, number of iterations
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and memory used) for both kinds of constraint matrices and representations of partial DCT ma-
trices (explicit matrices or fast transforms) are given in appendix A. We use four different ratios
m
n : 1

32 , 1
16 , 1

8 and 1
4 . The reported results are the average of the results of 10 different instances.

Figure 1 shows how the considered decomposition methods behave. A standard Dantzig-
Wolfe decomposition is compared to the reduced decomposition with the pivoting rules de-
scribed in section 4. We can see that both in terms of running time and number of iterations,
the standard Dantzig-Wolfe decomposition is the worst competitor. For the reduced decomposi-
tion, the steepest edge rule requires fewer iterations than the Dantzig rule, which itself requires
fewer iterations than the Bland rule. In terms of running time, the Dantzig rule yields better re-
sults than the Bland rule. However, even if for the biggest instances considered, the steepest edge
rule decreases the number of iterations by a factor of more than 2 with respect to the Dantzig
rule. The steepest edge running time is slightly slower than for the Dantzig rule. Indeed, since
we are solving dense instances, the steepest edge pivoting rule is very time consuming and the
decrease of the number of iterations is not enough to compete with the Dantzig rule in terms of
running time. On the contrary, for small instances of the problem, the steepest edge rule yields
slightly better results than the Dantzig rule.

Figure 2 shows the comparison between the reduced decomposition with the dual simplex
with the the steepest edge and the Dantzig rules. These last two rules gives the results for the
reduced decomposition. In the case of the dual simplex, the steepest edge is up to 5.4 times
faster than the Dantzig rule with 3.8 times fewer iterations. In terms of number of iterations, the
reduced decomposition with a given rule yields fewer iterations than for the dual simplex. The
same behavior occurs for the running time.

The Dantzig rule is the fastest rule (in terms of running time ) for the reduced decomposition
and it gives better running time and smaller number of iterations than the dual simplex, what-
ever the rule used for the latter. Any pivoting rule used for the dual simplex and for the reduced
decomposition among the two considered rules (i.e., Dantzig and steepest edge), the reduced de-
composition is faster.
It is worth to mention than the dual simplex is always better than the standard Dantzig-Wolfe de-
composition. Moreover, for the smallest considered ratio m

n , i.e, 1
32 , and our experiment sizes, the

Bland rule shows better running times than the dual simplex with the steepest edge rule (which
is its better pivoting rule). However, the number of iterations is far worst. For other considered
ratios m

n , the dual simplex is always faster than the reduced decomposition using the Bland rule
in both running time and number of iterations.

Figure 3 compares the running time of our reduced decomposition using its fastest rule in
terms of running time, i.e., the Dantzig rule, for both representations of the partial DCT matrices:
explicit matrices and fast transform-based computations. For small instances, the matrix repre-
sentation is the fastest. For both ratios m

n , the situation changes around m = 64 and the use of
FFTs gives significant performance increases. For small instances the overhead of using FFTs,
which has been previously discussed in this section, is no more hidden by the faster computa-
tions of the parts of the algorithm previously in O(mn). Moreover, if the ratio m

n is not small
enough, the cost of the minimum ratio test to find the variable to leave the basis (O(m2)) can be
significant compared to the FFT computations (O(n log n)). In this case, the overall improvement
can be not as significant as for smaller ratios m

n .

Recall that the Bland rule selects the first variable with non positive reduced cost to enter the
basis. One may expect to perform few reduced cost computations in order to find it. However the
use of fast transforms enables to compute all reduced costs in O(n log n) but does not have the
versatility to compute only few of them in a more efficient way. Thus implementing the Bland
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rule when fast transforms are available has a cost similar to the Dantzig rule (which requires to
compute all reduced cost). Thus, such a rule is not competitive when fast transforms are used.

To sum up, the reduced decomposition using the Dantzig rule is the fastest method consid-
ered in this paper. We have not observed a cycling issue for the considered instances of the CS
problem. Note that one could use the Bland rule to ensure a finite number of iterations.

6 Conclusion

We have proposed a modified Dantzig-Wolfe decomposition for the Compressive Sensing prob-
lem. We have shown that our approach allows to efficiently implement any simplex pivoting
rules. Besides, we have exhibited that our decomposition with the Dantzig rule yields the best
results and outperforms any other standard approaches relying on the simplex algorithm. Note
that our decomposition can be easily parallelized (as for the original Dantzig-Wolf decomposi-
tion) and also easily vectorized since the matrices are dense. This work is left as future work.

A Appendix

Complementary results for all approaches with all considered pivoting rules are given in this appendix. Table 2 and ta-
ble 3 give the number of iterations and the running time for the partial DCT matrices and the orthogonalized Gaussian
matrices, respectively. Table 4 and table 5 give the memory consumption for the partial DCT matrices and the orthogo-
nalized Gaussian matrices, respectively. Eventually, table 6 compares the running time results for partial DCT matrices
implemented through explicit matrices versus fast transforms.
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Decomposition Dual Simplex
Steepest Edge Dantzig Bland Dantzig-Wolfe Steepest Edge Dantzig

m n #iter time #iter time #iter time #iter time #iter time #iter time
16 512 26.0 0.01 26.2 0.02 33.7 0.02 25.5 0.02 531.1 0.10 608.8 0.10
32 1024 36.2 0.04 167.7 0.05 1320.8 0.13 13389.6 2.56 1225.0 1.08 2320.7 2.13
64 2048 80.5 0.31 274.3 0.32 10067.3 3.15 275771.2 199.31 2799.5 14.72 7737.0 49.61

128 4096 233.1 4.43 659.7 4.26 99905.2 162.76 6028.5 247.20 24730.0 1499.80
256 8192 963.8 87.11 2131.4 66.87
32 512 20.0 0.02 79.4 0.02 692.1 0.05 7664.7 0.8 635.7 0.21 974.1 0.36
64 1024 67.2 0.12 239.0 0.16 7440.4 1.35 215982.4 80.9 1438.7 2.30 2774.2 6.65

128 2048 205.6 1.84 482.7 1.48 74701.6 54.58 3119.6 34.91 9619.6 157.20
256 4096 646.5 30.80 1430.2 21.87 7622.4 722.70
512 8192 2588.3 655.83 5022.2 420.04
64 512 26.8 0.04 115.9 0.06 3170.8 0.38 95687.7 19.6 687.5 0.44 1186.7 0.97

128 1024 84.8 0.40 248.0 0.41 34079.8 14.26 1452.1 4.87 4076.5 15.95
256 2048 388.5 9.49 822.7 6.80 388105.3 828.93 3463.7 92.23 14188.5 508.47
512 4096 1602.2 213.23 3365.1 141.67
128 512 45.2 0.16 81.0 0.15 11243.7 3.14 732.0 0.94 1794.2 2.21
256 1024 104.2 2.23 249.2 1.57 149173.6 165.58 1757.7 15.07 5195.8 58.90
512 2048 903.3 58.14 1647.8 35.93 4253.3 294.53
1024 4096 3357.9 1000.73 6225.8 820.72

Table 2: Single threaded running time and iteration number for partial DCT matrices. Average from 10 instances. Time in
seconds. Empty cells where too long to compute (i.e., execution takes more than 1500 seconds) and are not reported.

Decomposition Dual Simplex
Steepest Edge Dantzig Bland Dantzig-Wolfe Steepest Edge Dantzig

m n #iter time #iter time #iter time #iter time #iter time #iter time
16 512 27.3 0.01 61.0 0.02 144.9 0.02 561.8 0.04 542.3 0.11 649.3 0.12
32 1024 36.5 0.04 157.6 0.05 464.2 0.11 10394.9 2.01 1203.7 1.09 2181.5 2.23
64 2048 73.8 0.30 310.0 0.35 2807.3 2.13 230864.7 167.41 2778.7 14.78 7615.6 54.31

128 4096 240.8 4.31 608.2 4.37 90572.4 146.83 6226.2 258.10 23673.4 1389.90
256 8192 967.4 86.83 2452.7 76.57
32 512 31.3 0.02 102.3 0.03 405.3 0.05 7030.7 0.72 628.7 0.21 972.2 0.29
64 1024 63.4 0.12 165.3 0.12 1845.1 0.75 180575.0 68.13 1356.5 2.13 2998.6 5.13

128 2048 242.8 1.96 481.9 1.41 20767.1 45.76 3029.5 32.76 9255.5 145.60
256 4096 687.5 34.47 1503.5 20.63 7677.8 749.00
512 8192 2466.2 596.47 5228.1 438.93
64 512 31.9 0.04 70.6 0.06 913.8 0.27 62929.1 13.12 701.8 0.42 1421.4 0.84

128 1024 59.8 0.35 293.3 0.44 14596.0 12.09 1488.8 4.68 3970.6 17.05
256 2048 403.2 9.76 831.5 6.60 156885.0 953.36 3684.1 92.76 15893.2 483.48
512 4096 1633.5 206.53 3067.9 135.60
128 512 28.2 0.16 149.3 0.20 6314.6 3.11 759.1 0.97 1592.1 2.30
256 1024 178.7 2.64 420.9 1.99 101441.2 257.58 1787.3 15.18 6160.8 65.09
512 2048 750.9 50.57 1428.8 37.04 4285.0 301.48
1024 4096 3163.0 944.66 5897.4 782.60

Table 3: Single threaded running time and iteration number for orthogonalized Gaussian matrices. Average from 10
instances. Time in seconds. Empty cells where too long to compute (i.e., execution takes more than 1500 seconds) and are
not reported.
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