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Template Matching via l1 Minimization and Its
Application to Hyperspectral Data

Zhaohui Guo and Stanley Osher

Abstract—Detecting and identifying targets or objects that are
present in hyperspectral ground images are of great interest.
Applications include land and environmental monitoring, mining,
military, civil search-and-rescue operations, and so on. We
propose and analyze an extremely simple and efficient idea
for template matching based on l1 minimization. The designed
algorithm can be applied in hyperspectral classification and
target detection. Synthetic image data and real hyperspectral
image (HSI) data are used to assess the performance, with
comparisons to other approaches, e.g. spectral angle mapper
(SAM) and adaptive coherence estimator (ACE). We demonstrate
that this algorithm achieves excellent results with both high speed
and accuracy by using Bregman iteration.

Index Terms—Hyperspectral, template matching, Bregman, l1
minimization.

I. INTRODUCTION

IN recent decades, hyperspectral remote sensing technology
has become highly developed. Remote sensing can be used

to collect the reflective spectrum of the objects in a scene at
specific wavelengths simultaneously, resulting in hundreds of
digital images. The data collected from a hyperspectral sensor
contains not only the visible spectrum, but also ultraviolet and
infrared ranges as well. It is common to list the hyperspectral
data in a three-dimensional array or “cube”, with the first two
dimensions corresponding to spatial dimensions and the third
one corresponding to the spectrum.

Since the distinct materials leave different spectral signals,
each of which is known as the spectral signature, there has
been an increasing demand in using spectral imagery to detect
specific objects or targets of interest. Target detection is one
of the most important hyperspectral image (HSI) applications
based on materials’ spectral signatures, as is classification.

In hyperspectral classification and especially target detec-
tion, the main task is to find the spatial pixels in three-
dimensional hyperspectral cube data for some given spectral
signals of interest. However, this becomes difficult because
of the uncertainty and variability of each material’s spectral
signature. The difficulties include the noise from atmospheric
conditions, sensor influence, location, illumination and so on,
all of which depend on when and where the image was taken.
Another disadvantage is that the same materials will not gen-
erate identical spectral curves for physical reasons, especially
between the laboratory data and actual image data. Occa-
sionally, two different materials might unexpectedly reflect
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similar spectral signals, like two different types of vegetation.
Additionally, the low resolution of the hyperspectral image
make it reasonable to accept the fact that a single pixel may
be composed of several different materials. These are usually
called mixed pixels. The spectral signal of this mixed pixel is
totally different from the spectrum of the pure materials. All
of these facts increase the difficulties in processing HSI data,
making classification and target detection highly challenging
problems.

Previous work dealing with hyperspectral target detection
includes both statistical and geometrical approaches. Statistical
approaches are mostly based on the assumption that HSI
data can be represented by a multivariate normal distribution.
The statistical models employing two hypotheses H0 and
H1 corresponding to given material absent and present are
well known as the likelihood ratio (LR) test (optimum) and
generalized-likelihood ratio test (GLRT) [1], [2] (adaptive)
detectors. Some other related algorithms with details can
be found in [3], [4], [5], [6], [7]. Also, adaptive coherence
estimator (ACE) [8] as an extension of generalized-likelihood
ratio test (GLRT), employs a covariance matrix to identify
the background, and achieves better result. However, in these
models, prior knowledge including background information
has to be obtained from training data, like the covariance
matrix of the background. Where to set the threshold towards
a reasonable compromise between probability of detection and
probability of false alarms is also a question. In practice, there
still exist serious challenges.

The spectral angle map (SAM) [9], and the adaptive sub-
space detector (ASD) [10], [11] are representative geometrical
algorithms. In addition, similar methods based on hypotheses
and GLRT include the matched subspace detector [12], and
matched filter algorithms, which in turn include orthogonal
subspace detector (OSD) [12], [13] and spectral matched filter
(SMF) [14], [15].

Many classical hyperspectral classifiers have been used in
remote sensing, including minimum distance to mean (MD),
spectral angle mapper (SAM), maximum likelihood (ML),
fisher linear likelihood and so on. In order to reduce the error,
classification is usually performed in the Principal Component
Analysis (PCA) and Generalized Eigenvalue (GEV) dimen-
sionality reduced domains.

Our method resembles SAM, but has an l1 sparsity term
which seems to improve the performance. We will discuss this
further. The paper is organized as follows. A brief introduction
of Bregman methods for l1 minimization and the algorithm
for template matching are presented in Section II. In Section
III, we apply the proposed algorithm to a simulated data
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set and the real HSI image data sets. Comparisons with
classical algorithms, spectral angle map (SAM) and adaptive
coherence estimator (ACE), are presented based on receiver
operating characteristic (ROC) curves to show the obtained
improvements. Finally, conclusions are given in Section IV.

II. TEMPLATE MATCHING APPROACH AND ALGORITHMS

In this section, we first briefly introduce the concept of Breg-
man iteration [16], and two different algorithms: linearized
Bregman[17], [18], [19], [20] and split Bregman [21], [22],
then present our algorithm for template matching. This is done
to give simple and effective methods for potential users to do
the l1 minimization.

A. Bregman Iteration and Algorithms

Bregman methods [23] applied to image processing [16]
and compressive sensing (CS) [24], [19], [21], [20], [25] are an
emerging field for solving sparse reconstruction and improving
signal and image enhancement. Bregman iteration is based on
the definition of Bregman distance. The Bregman distance for
a convex function J(u) defined in Rn → R∪ {+∞} is given
as:

DJ
p (u, v) = J(u)− J(v)− < p, u− v >,

where p ∈ ∂J is a subgradient of J at the point v, and
< ·, · > is used as the inner product. In general Bregman
distance shows the closeness between two points u and v, even
though it doesn’t satisfy the symmetry and triangle inequality
properties of usual distance.

Consider a general constrained minimization problem:

minuJ(u) s.t. H(u) = 0, or H(u) < σ, (1)

where H(u) is convex and differentiable energy function with
zero as its minimum value. σ is the noise measure coming
from the original problem.

We transform it to an unconstrained minimization problem
using:

minu{ µJ(u) + H(u) }. (2)

µ > 0 works as penalty weight. Bregman iteration solves a
related problem iteratively by replacing J(u) by DJ

pk(u, uk):
{

uk+1 = argminu(µDJ
pk(u, uk) + H(u)),

pk+1 = pk − ∂H(uk+1),
(3)

where ∂H(uk+1) is a subgradient of H at uk+1. The problems
under consideration here use H(u) = 1

2 ||Au − f ||22 for some
linear operator A and vector f . These can be easily solved by
two related algorithms: linearized Bregman and split Bregman.

Linearized Bregman [17], [18], [19], [20] was proposed to
solve the basis pursuit problem

minu|u|1 s.t. Au = f, (4)

where A ∈ Rm×n, f ∈ Rn be given, and m < n. The related
unconstrained minimization problem is

minu{ µ|u|1 +
1
2
||Au− f ||22 }. (5)

The algorithm can be written iteratively by introducing an
auxiliary variable vk:

{
vk+1 = vk −AT (Auk − f),
uk+1 = δ · shrink(vk+1, µ), (6)

where u0 = v0 = 0, δ > 0 works as the step size, and we
define

shrink(vk+1, µ) =





vk+1 − µ : vk+1 > µ
0 : −µ ≤ vk+1 ≤ µ

vk+1 + µ : vk+1 < −µ
,

(7)

shrink+(vk+1, µ) =
{

vk+1 − µ : vk+1 > µ
0 : vk+1 ≤ µ

, (8)

where the shrink+ is designed for computing nonnegative
solutions.

The algorithm is solved iteratively and can be terminated
when the noise level σ is reached. It is shown in practice to
be a simple and fast algorithm when an appropriate positive
value of δ is chosen. This method converges to a solution[17]
of

u = argmin{ µ|u|1 +
1
2δ
||u||22 } s.t. Au = f. (9)

If δµ is large enough, the solution is an exact solution of the
basis pursuit problem, see [26].

Split Bregman was first introduced by Goldstein and Osher
[21] for solving l1, TV, and related regularized problems and
applied to various imaging problems[22], [25], [27]. To solve
our unconstrained sparse reconstruction problem, the iteration
is generated by using an auxiliary variable d, and given by

(u, d) = argmin{ µ|d|1+
λ

2
||Au−f ||22+

1
2
||d−u||22 }. (10)

µ, λ > 0 work as penalties balancing the energy functions.
Optimization is performed in an alternating fashion:
{

uk+1 = argmin{ λ
2 ||Au− f ||22 + 1

2 ||dk − u− bk||22 },
dk+1 = argmin{ µ||d||1 + 1

2 ||d− uk+1 − bk+1||22 }.
(11)

In this fashion, we“split” the l1 and l2 components of the
minimization function. bk comes from “adding back the error”.
Thus we can perform this minimization scheme as follows:
initially set u0 = b0 = d0 = 0; f0 = f , then update the
variables by inner and outer iterations. The inner iteration is
given as





vk+1 = (λAT A + I)−1(λAT fn − bk + dk),
bk+1 = bk + vk+1 − dk,
dk+1 = shrink(vk+1 + bk+1, µ),

(12)

in which shrink is defined in (3) (or (4) for the nonnegative
case).

we know that ||vk − un+1|| converges monotonically as k
increases to infinity, as does ||vk − dk||. The outer iteration is
given as fn+1 = fn + f −Aun+1. In practice, we use a fixed
number of inner iterations, usually 5-10 steps. It is proved
in [25] that the iteration converges even with only one inner
step. This is called Bregmanized operator splitting (BOS). λ is
required to be smaller than 1

||AT A||2 to ensure the convergence
of iteration. To speed up the convergence, we choose λ larger,
around 100

||AT A||2 . µ is a parameter that balances the l1 and l2
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components. It is determined by the actual data. This turns out
to be a very efficient method for l1 minimization, and we will
use it below.

If A is fixed and saved as a prior knowledge, (λAT A+I)−1

in (12) could be precomputed, resulting in run-time savings.
However, the size of square matrix (λAT A + I) is dependent
on the number of columns of A. Note that if Au = f is
underdetermined and the number of column is very large, it
is impractical to compute the inverse. An alternative method
could be used here. Instead of solving

vk+1 = (λAT A + I)−1(λAT fn − bk + dk) (13)

in (12), we insert two new variables y and g,



g = λAT fn − bk + dk,
y = (λAAT + I)−1Ag,

vk+1 = g − λAT y,
(14)

Using (14), the computation of inverse matrix is only done
for a much smaller size matrix of (λAAT + I). Equivalence
between (13) and (14) can be proved easily through a few
steps of simple linear transformation.

B. Template Matching Approach

The template matching approach basically employs the l1
sparsity idea arising in compressed sensing [24], [28]. Suppose
the hyperspectral image is given as N by N pixels, each
containing an M channel spectrum (a spectral band), as a
three-dimensional cube. We aim to locate the pixels of interest
in the image corresponding to a given spectral signal f , which
is a specific object containing the same M channel spectrum.

We arrange A as an M by N2 matrix, with generally
M < N2. The signals ai,1≤i≤N2 is the column of the spectrum
matrix A, and corresponds to each pixel in the hyperspectral
image. f is a given material’s spectral signal. The aim is to
find the nonzero component ui in the solution u ∈ RN2

of
the constrained minimization problem:

minu|u|1 s.t. ||Au− f ||2 < σ and u ≥ 0. (15)

The ui,1≤i≤N2 corresponds to the same pixel as ai. By
searching for the nonzero component ui, we can locate the
pixels of interest. With the introduction of l1 minimization,
the algorithm becomes much more robust.

Furthermore, Au = f is an underdetermined linear sys-
tem and has at least one solution. There are many methods
proposed to do this numerical computation. In this paper, we
apply split Bregman to the following unconstrained minimiza-
tion problem.

minu{ µ|u|1 +
1
2
||Au− f ||22 } s.t. u ≥ 0. (16)

To get a nonnegative solution, shrink+ should be employed
in the algorithm. In practice, the solution for hyperspectral
data turns out to be nonnegative even without the nonnegative
constraint employed here because of the nonnegativity of the
data.

Surprisingly this simple idea works well because the l1
norm term forces the energy to find a sparse solution u for
µ large enough, which will enable the solution to pick up

the matching pixels compared with the desired spectral signal
f , and ignore nonmatching pixels. In detection applications,
it is highly possible that the matching pixels are sparsely
distributed, or the number of matching pixels is limited, which
makes the problem difficult and interesting. The sparseness of
the matching pixels means the sparseness of u. We say that
given a proper value of µ, the solution results in u with a
limited number of positive components, which just correspond
to the matching pixels in the image with a given spectral signal
f .

However, even in the nonsparse (numerous) case, this also
works well. We can easily illustrate this by a simple clean case
of classification. We randomly choose n pixels in the image
and assign them to be the material of interest. We assume the
spectrum of these pixels identically equal to f , or proportional
to f , which means kf , 0 < k < 1 works as a simulated
shadow effect. After solving the l1 minimization problem,
we get a sparse solution u with each nonzero component ui

corresponding to exact the same n pixel we chosen. The values
of these ui are, close to 1

n after normalization. Of course, it
does make sense since the algorithm aims to find the proper
solution u to make ||Au − f ||2 as small as possible, while
ignoring the spectral signatures distinct from f .

In the actual computation, the only significant parameter that
should be considered is the quantity µ to control the sparsity
of the solution, while λ could be chosen fixed. There exists
a suitable range of µ for each set of HSI data. In detection
applications, the number of matching pixels is much smaller
than the total number of image pixels, µ could vary in a much
large range. The result wouldn’t be affected so much. But
in the classification case, sometimes the number of matching
pixels is numerous, the result depends on µ largely. If µ is
chosen to be too large, the algorithm will only identify a few
correct matches. To deal with this problem, we can remove the
detected matches and do the algorithm again on the remaining
pixels using a new matrix with fewer columns.

Simultaneously, if the background spectral signatures are
quite distinct from f , we get no false alarms despite the change
of µ. Otherwise, it will depend on µ. However, in practice the
number of incorrect matches turns out to be much fewer than
the number of correct matches, and the coefficients ui of most
incorrect matches are much smaller than those of the correct
matches, usually by 1 or 2 orders of magnitude. Thus we can
set up a simple threshold to identify the correct result.

In contrast to the other methods, the algorithm involves
neither any requirement of background information nor the
assumption of multivariate normal distribution of the back-
ground and designed material during the whole computation
process. Only the spectrum of material of interest is needed
in the algorithm. The method can deal with the case when the
matches are sparse or numerous and when background models
are unavailable and unreliable.

Moreover, the algorithm only matches the spectrum of im-
age pixels with the spectrum of material interested, and doesn’t
involve spatial information. So the method is parallelizable
and can work locally under the condition of inhomogeneous
background. Thus the l1 minimization based algorithm is
realistically applicable.
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Fig. 1. Simulated data image. Left: RGB view of patch chosen in the Urban.
Right: Spectrum of materials in the patch. Red: target-metal rooftop. Yellow:
dirt road. Blue: trees. Green: grass.

III. NUMERICAL EXPERIMENTS AND RESULTS

In the following section, the split Bregman algorithm indi-
cated in Section II is implemented in Matlab to assess this
applicability of l1 minimization for hyperspectral template
matching. Simulated data and real hyperspectral images data
will be tested.

A. Simulated Data Set

The simulated data set we tested here is based on the
a HYDICE hyperspectral image called Urban [29] which is
publicly available. Firstly we performed a data correction by
deleting the water absorption noise bands from the original
210 bands, leaving a 163-band image for actual computation.
We chose a 50 by 50 pixels patch image in Urban to perform
the background, basically including dirt road, tree and grass
materials, as shown in the left of Fig 1. So the size of matrix A
to be computed was 163 by 2500, and the solution u ∈ R2500.

We manually chose another material to perform the target
or material of interest, and here we used a material of metal
rooftop appeared in another part of Urban to be distinct from
the background, as shown in Fig 1. Ten pixels in the patch
were randomly selected as the locations of matching pixels,
and were assigned to be metal rooftop. After that, we finished
the test data simulation.

Solving the constrained minimization problem via split
Bregman algorithm generates a sparse signal u. This enables
us to locate the matched pixels by just checking the nonzero
components ui. In the following, we list the different kinds
of examples we tested, and show the performance of the
algorithm under different cases. The result is also compared
with other two methods. We used fixed value of parameter
λ = 100

||AT A||2 and varying µ in the experiments.
1) Efficiency: The code was written in MATLAB using 3

GHz, Intel Core 2 Duo CPU. The most time-consuming part is
a matrix inverse computation. But the matrix A is dependent
on the HSI data, which could be used as prior knowledge.
Depending on the size of data to be tested, one can choose to
use the alternative method (14) or linearized Bregman, since
(14) only computes a matrix inverse with much smaller size
and linearized Bregman needs no matrix inverse computation.
Furthermore, because the problem is parallelizable, one can
also split the image into smaller patches, and the original A

into smaller size matrices. Besides the time used to compute
the matrix inversion, it took only 1-3 seconds to compute the
sparse u of the simulated data to determine the targets using
split Bregman.

2) Robustness to Noise: To simulate the effect of the
environmental variations, illumination and so on, we added
noise n ∈ N(0, σ) to the spectrum of 10 simulated pixels to
make this simulation more physically meaningful. In order to
characterize the noise level, we use SNR (signal to noise ratio)
defined as

SNR = ũ/σ, (17)

where ũ is the mean of the signal, and σ is the standard
deviation of the noise.

With µ = 0.01, and SNR=20.3, we got the the solu-
tion u with the exact 10 nonzero components ui to be
[0.1029, 0.0832, 0.1107, 0.1119, 0.0906, 0.1143, 0.0759,
0.1294, 0.1065, 0.0849], the other ui = 0, and the l1 norm of
u = 1.0101. And each of the nonzero ui corresponded to one
correct simulated pixel.

Increasing noise to SNR=15, with the same µ, we got 10
nonzero components ui to be [0.0929, 0.0790, 0.1000, 0.0954,
0.1671, 0.1181, 0.0430, 0.1079, 0.0766, 0.1068], and the l1
norm of u = 0.9869. We also located the correct pixels.

As the noise increased, we can still locate the correct
pixels, but a few incorrect positive components ui may arise.
We introduce some measure quantification to evaluate the
performance of algorithm, true positive rate (TPR) and false
positive rate (FPR), which are defined as

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
, (18)

where TP is the pixels detected correctly (true positive), FP
is the false alarm pixels (false positive), TN is background
pixels with zero components (true negative) and FN is the
matching pixels with zero components (false negative).

In the test SNR=10, we obtained the average TPR = 98.6%
and FPR = 0.004% based on 100 computations. Increasing
the noise to SNR=5, we found the algorithm gave the average
TPR = 98.1% and FPR = 0.87%. The number of these
incorrect pixels detected is limited since they just work to
reduce the residual. Moreover, the magnitudes of the incorrect
positive components is relatively small. A simple threshold
can be employed to reduce the number of FP to zero.

In addition, we can also add a small perturbation to f , or
change the magnitude of f . The algorithm still works well for
moderate changes.

3) The Choice of µ: µ is a parameter that balances the
sparsity of the solution and how closely Au describes the
spectrum signal f. A good choice for µ is determined by the
actual data. If the number of matching pixels is very large
or the background materials have similar spectrum with f ,
variation of µ will affect the result. Larger values of µ may
only detect a subset of of these correct pixels. This encourages
us to process the algorithm in the following iterative way:

i Choose µ large, get the solution u and identify the correct
pixels.
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TABLE I
SPARSENESS CONTROL RESULTS USING DIFFERENT VALUE OF µ

µ Correct pixels Incorrect pixels
1e-2 100 0

1e-3 1062 0

1e-4 2000 3

TABLE II
EXPERIMENT RESULTS USING MIXED PIXELS

Metal Dirt road Grass Correct pixels Incorrect pixels

95% 0% 5% 10 0

95% 5% 0% 10 0

90% 0% 10% 10 1

90% 10% 0% 10 2

70% 0% 30% 10 1

70% 30% 0% 10 2

70% 15% 15% 9 1

60% 20% 20% 9 2

50% 30% 20% 9 2

40% 30% 30% 6 2

ii Remove correct pixels identified in I from A, get a matrix
A2 with fewer columns. Repeat i until you get as many
good pixels as possible.

Experimentally, in a few iterations (2 or 3), we obtain all the
correct pixels. The last iteration usually contains both correct
and incorrect pixels.

On the other hand, smaller µ can solve the case that
matching pixels are relatively numerous in the image. Under
that situation, we are not supposed to look for a sparse
solution, but a quite non-sparse solution.

In the follow contrast examples, we first chose 10 pixels out
of 2500 to be the assigned matching pixels, with SNR=20.3.
The result of computation found all the 10 correct pixels
with 0 false alarms, even when µ changed from 1e-2 to 1e-6.
Secondly we chose 2000 pixels out of 2500 to be the assigned
matching pixels, with SNR=20.3. The difference was when µ
changed from 1e-2 to 1e-4, the number of nonzero ui changed
from 100 to 2003 (also containing a few incorrect pixels), as
shown in Table I. The different results shows the power of µ
in controlling the sparsity of solution.

4) Mixed Pixels Test: In many situations, the designed ma-
terial only partially occupies the mixed pixels. We generated
synthetic mixed pixels by adding one or two background
materials proportionately to the pure pixels according to a
linear mixing model (LMM). We tested the algorithm under
different proportions.

We have observed that the algorithm can obtain the most
correct matching pixels if the amount of pure material’s
contribution to the mixed pixels is higher than the others,
ranging from 95% to 50%. The result is shown in Table II
(using SNR=20.3 and µ = 1e− 2 ).

5) Comparisons: The spectral angle map (SAM) involves
computing the normalized inner product

T (ai) =
< ai, f >

||ai|| · ||f || ,
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Fig. 2. ROC Curves of SAM (blue line)and ACE (green line) vs Result
of l1 algorithm (red circle) for simulated dataset. From left to right, Upper:
SNR=40.6, SNR=20.3. Lower: SNR=7 with x-axis ranging [0 1] and [0 0.1].

the cosine of the angle between two vectors, the spectrum
of target f and pixels ai, which is always positive because
spectral vectors contain only nonnegative components.

The adaptive coherence estimator (ACE) algorithm uses a
covariance matrix to qualify the background. It computes a
ratio at each pixel

T (ai) =
(fT Σ−1ai)2

(fT Σ−1f)(aT
i Σ−1ai)

,

where f is the target of interest, ai is a pixel in the test image,
Σ is the covariance matrix of background with zero mean.

Thresholding is done after T (ai) is generated for each pixel.
Then SAM and ACE denote those pixels as positive for which
the value of T (ai) exceeds a threshold τ , a training data, and
denote the others as negative. The performances of SAM and
ACE are highly dependent on the training data.

ROC curves in Fig 2 are drawn to show target detection
probability versus false alarms probability by varying a thresh-
old τ . We evaluated the performances of the three algorithms
on the same simulated data sets. Comparisons between the
three algorithms were shown at different noise level. We can
see with small enough noise, all three algorithms can detect
the correct matching pixels, while SAM and ACE need a good
threshold τ to decrease the false alarms. Choosing SNR=40.6,
all three algorithms worked well. ACE intended to obtain low
detection rate when the noise increased. Increasing the noise
to SNR=7, we found that l1 template matching worked better
than SAM and ACE.

B. HSI Data Set

1) Fake Leaves: We performed l1 template matching on
the Fake Leaves indoor image provided by Surface Optics
Company [30] using the SOC-700 hyperspectral imaging
system as shown in Fig 3. The HSI data includes 640x640
pixels and 120 bands in the 400-900 nm range. Under RGB
model, fake leaves look exactly same as true leaves, however,
true leaves have a strong feature in the near infrared.
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Fig. 3. Fake Leaves. Left: Image downloaded from SOC website [30],
indicating two fake leaves. Right: RGB view of Fake Leaves indoor image.
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Fig. 4. Computation result. Left: White boxes show the pixels chosen. Right:
Red pixels are detected to be fake leaves.

To perform the algorithm, we selected 15 portions that
contain most of the objects present in the image for simplicity.
This is shown in Fig 4. Using the template matching algorithm,
we detected almost all the correct pixels. We used a red color
to show the pixels detected to be fake leaf. As shown in the
image, we detected 678 correct and missed around 16 fake
leaf pixels among 6000 pixels, the true positive rate equals
was 97.69%. All of the missed pixels were located between
the fake leaf and true leaves.

2) NGA HSI Data Set: We worked with the hyperspectral
image data provided by NGA, as an experimental data for
classification given the materials’ signatures. It contains 3349
pixels with 106 bands. A total of 9 endmembers are extracted
from the data, including Coniferous, Deciduous, Grass, Lake1,
Lake2, Crop, Road (Asphalt), Concrete, Gravel. To make
matters worse, most of them look quite similar to each other
as seen in Fig 5. We performed l1 minimization and split
Bregman to all 9 endmember targets and achieved satisfactory
results, which were shown in Table III.

To get a better result, we used µ = 1e − 4, λ = 100
||AT A||2 .

Based on the evidence that the coefficients of incorrect pixels
were relatively small, we set a simple barrier to threshold some
result and decreased the number of incorrect pixels as in Table
IV.

3) Smith Island Data Set: The Smith Island data set [31],
[32], [33], [34] has 946x679 pixels and 113 clean spectral
bands after data correction. Fig 6 shows the RGB picture and
the ground truth available based on 22 materials. Fig. 6 shows
the spectrum of total 22 materials. Because of the huge number
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Fig. 5. Spectrum of endmembers.

TABLE III
CLASSIFICATION RESULTS FOR HSI DATA

Endmembers Total Nonzero Correct Incorrect
pixels components pixels pixels

Coniferous 150 188 135 53

Deciduous 163 214 131 83

Grass 1338 1429 1331 98

Lake1 202 199 199 0

Lake2 112 113 112 1

Crop 1026 1087 1026 61

Road (Asphalt) 197 241 161 80

Concrete 74 79 71 8

Gravel 87 116 87 29

TABLE IV
CLASSIFICATION RESULTS FOR HSI DATA AFTER THRESHOLDING

Endmembers Total Nonzero Correct Incorrect
pixels components pixels pixels

Coniferous 150 1e-3 125 26

Deciduous 163 1e-3 124 41

Grass 1338 1e-4 1323 13

Crop 1026 1e-5 1024 9

Road (Asphalt) 197 1e-3 149 35

Gravel 87 1e-3 85 17

of materials, we split them into two groups and show the
spectrum separately as in Fig 7. We employed this ground
truth to test our algorithm. The true positive rate (TPR) and
false positive rate (FPR) were computed for each material.

In order to see the effect of the algorithm, we compared
the result with the spectral angle map (SAM) and adaptive
coherence estimator (ACE) using ROC curves while changing
the threshold τ . Fig 8 shows the comparison between the three
experiment’s result for all 22 materials. As shown in Fig 8,
almost all the red lines stay to the upper left position of green
lines and blue lines, which means the experiments get better
result than SAM and ACE. The reason for this is because our
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Fig. 6. Smith Island: Up: RGB view of Smith Island data. Low: Ground
truth of 22 materials.

algorithm is much more robust when the noise increases.

IV. CONCLUSION

In this paper, we propose an l1 minimization based ap-
proach for template matching and apply it to hyperspectral
classification and target detection. This algorithm is simple to
understand and implement, and only involves a few lines of
code. Numerical results show that the algorithm is efficient in
finding the designed pixels in a hyperspectral image data for a
specific material, without using any background information.
There are many other applications of this algorithm worth
exploring. We will extend the applicability of this algorithm in
the future. The limitation of the algorithm is that it requires the
materials’ spectral signatures to do the computation which is
dependent on the existence of endmember extraction methods.
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