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Abstract

We present a point cloud segmentation scheme based on
estimated surface normals and local point connectivity, that
operates on unstructured point cloud data. We can seg-
ment a point cloud into disconnected components as well
as piecewise smooth components as needed. Given that
the performance of the segmentation routine depends on
the quality of the surface normal approximation, we also
propose an improved surface normal approximation method
based on recasting the popular principal component analy-
sis formulation as a constrained least squares problem. The
new approach is robust to singularities in the data, such as
corners and edges, and also incorporates data denoising in
a manner similar to planar moving least squares.

1. Introduction
Two key processing tools for unstructured point cloud

data are surface normal estimation and segmentation. Sur-
face normal approximation is utilized by several applica-
tions such as reconstruction, estimating local feature size,
computer aided design (CAD), and inside-outside queries,
while segmentation is useful for efficient point cloud repre-
sentation.

We present a point cloud segmentation scheme that uti-
lizes estimated surface normals and operates on raw point
cloud data. The procedure is based on constructing an adja-
cency matrix representing the point connectivity of the full
data set from unoriented surface normal estimates. The con-
nected components present in the adjacency matrix consti-
tute the initial segmentation, while the point connectivity
information provides a means for orientating the surface

normal estimates consistently, even for data sets contain-
ing one or multiple closed surfaces. A finer segmentation
can then be derived from the initial connected component
segmentation by classifying the oriented estimated normals
according to their direction or their singularity and the local
geometry information contained in the adjacency matrix.

Naturally, the performance of the segmentation routine
depends on the quality of the surface normal approxima-
tion. As such, we also propose an improved surface normal
approximation method based on recasting the popular prin-
cipal component analysis formulation as a constrained least
squares problem. The new approach is robust to singulari-
ties in the data, such as sudden change in normals or edges,
and also incorporates data denoising in a manner similar to
planar moving least squares.

2. Least Squares Normal Estimation and PCA
Principal component analysis (PCA) is a popular method

for computing surface normal approximations from point
cloud data [3]. Given a point cloud data set D = {xi}ni=1,
the PCA surface normal approximation for a given data
point p ∈ D is typically computed by first determining the
K-nearest neighbors, xk ∈ D, of p. Given the K-neighbors,
the approximate surface normal is then the eigenvector as-
sociated with the smallest eigenvalue of the symmetric pos-
itive semi-definite matrix

P =
K∑
j=1

(xk − p̄)T (xk − p̄), (1)

where p̄ is the local data centroid, p̄ = ( 1
K )

∑K
j=1 xj .

The PCA normal approximation, also referred to as total
least squares [5], is accurate when the underlying surface
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is smooth, but tends to smear across singularities, such as
corners or intersecting planes. Figure 1 illustrates this phe-
nomenon for a cube. The smearing is caused by the con-

Figure 1. PCA normal estimation for a cube. Notice the smeared
normals along the edges of the cube.

tribution of data points from across the singularity to the
PCA covariance matrix P . Simply reducing the weight of
such contributions will therefore improve the PCA estimate.
However, equation (1) alone does not provide much insight
into determining which data point contributions should be
dampened, and which should be considered valid.

Fortunately, the PCA normal approximation can also be
described as the solution to the following constrained least
squares problem:

min
η

1
2‖V η‖

2
2 (2)

s.t. ‖η‖ = 1,

where the rows of the matrix V ∈ IRK×3 are the difference
vectors vk = xk − p̄. The equality constraint is necessary
to ensure a nontrivial solution.

After substituting ηT η = 1 for the original equality con-
straint, the first order KKT conditions for problem 2 de-
scribe a standard eigenvalue problem:

V TV η − µη = 0, (3)

Hence, the stationary points for problem 2 are the eigen-
pairs of P = V TV , where the matrix P is exactly the PCA
covariance matrix in 1. The global minimum is achieved
at the smallest eigenvalue, and thus the solution to prob-
lem 2 is equivalent to the PCA approximation, contrary to
the assertion in [2]. From the perspective of moving least
squares, the PCA approximation is the normal associated
with the plane, passing through the centroid, that best fits
the local data in the least squares sense []. The advantage
of formulation 2 over the standard PCA formulation is that
the optimization problem gives insight into how to improve
normal estimation near singularities, and also in the pres-
ence of noise.

The objective function describes variance from orthog-
onality. In essence, problem 2, and consequently the PCA

method, determine the normal approximation as the vector
which is most orthogonal to each difference vector vk, by
minimizing the sum of squares of the inner products. Thus,
in the simplest case where all vk live in the same plane, the
value of the objective function V T η at the solution η∗ is
zero, and η∗ is orthogonal to the plane. From this perspec-
tive, it is not necessary to compute the local centroid, since
utilizing the difference vectors ak = xk − p, as opposed
to the vectors vk = xk − p̄, yields the same result. Fur-
thermore, the magnitude of the inner product between η∗

and each difference vector quantifies the “planar deviation”
of each local neighbor. Monitoring this quantity thus pro-
vides a means for determining which data points, if any, are
contributing from across a singularity.

3. Normal Estimation via Nonlinear Least
Squares

The solution to problem (2) may be suspect near sur-
face edges, due to erroneous contributions from data points
across the singularity. Erroneous data contributions can be
detected by examining the magnitude of the orthogonality
mismatch, |aTk η|, where ak = xk − p. Assuming noise
free data, a large orthogonality mismatches corresponds to
neighbors that deviate from the local least squares fitted
plane.

In order to reduce the contribution of points from across
the singularity, we propose modifying formulation (2) by
incorporating automatic weights, adaptive to orthogonality
mismatch, to deflate such contributions. The result is the
following constrained nonlinear least squares formulation:

min
η

1
2

∑K
k=1

[
e−λ(aT

k η)
2
(aTk η)

]2

(4)

s.t. ‖η‖ = 1.

Traditional weighting terms place emphasis on proximity,
and also serve as a window function which isolates the lo-
cal neighbors. The weighting term e−λ(aT

k η)
2

adaptively de-
flates the contribution of terms with high orthogonality mis-
match at a rate defined by the parameter λ. Naturally, set-
ting λ to zero results in the original PCA linear least squares
problem 2, with the exception that the difference vectors are
taken from the data point p and not the centroid p̄.

At first glance, formulation 4 appears to be significantly
more difficult to solve than the small eigenvalue problem
associated with the PCA approach. However, the equality
constraint is easily absorbed into the objective function by
representing the unknown surface normal η in spherical co-
ordinates with magnitude set to unity:

η(φ, θ) =

 cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)

 .



In addition, the spherical coordinate representation reduces
the number of unknowns in the formulation to two. Thus,
the simplified, unconstrained formulation is now:

min
φ,θ

1
2

K∑
k=1

[
e−λ(aT

k η(φ,θ))
2
(aTk η(φ, θ))

]2

. (5)

Applying formulation 4 to the box data results in significant
improvement in the surface normal estimates, as illustrated
by figure 2.

Figure 2. Nonlinear least squares normal estimation for a cube.
Notice the improvement in the normal estimation along the edges
of the cube compared to standard PCA (figure 1).

4. Incorporating Noise Robustness into Nor-
mal Estimation

Noise in point cloud data is not uncommon and is a sig-
nificant source of error for surface normal approximation.
In addition, point cloud denoising is helpful to other ap-
plications, such as surface reconstruction. For a given noise
polluted point p̃, the task of denoising can be viewed as find-
ing the projection of the point p̃ onto the unknown surface,
a process often referred to as point cloud thinning. Devel-
oping methods for projecting points onto curves and sur-
faces is an active area of research with applications in com-
puter graphics and vision (see [4]). Work has also been done
for the problem of projecting points onto point cloud repre-
sented surfaces [1, 6], based on first determining a “projec-
tion direction.” The goal here is to incorporate point cloud
denoising into the surface normal computation, an approach
which can be thought off as point projection utilizing the es-
timated surface normal as the projection direction.

Given an estimate η for the surface normal at p̃, we wish
to determine the position along η, emanating from p̃, that
minimizes the orthogonality mismatch energy (formulation
5 with λ = 0):

min
t

K∑
k=1

(xk − (p̃+ tη))T η.

Rearranging terms and taking advantage of the fact that
‖η‖ = 1, the problem reduces to a simple least squares
problem for the scalar value t:

min
t
‖Aη − t‖2, (6)

where the rows ofA are the difference vectors ak = xk− p̃,
and the denoised location is given by the solution t∗ as p∗ =
p̃+ (t∗)η.

As is the case for most denoising procedures, naively ap-
plying 6 to clean data will result in over smoothing and the
loss of sharp surface features. However, given a bound T
for the distance between p̃ and the underlying surface, data
fidelity can easily be incorporated into the formulation by
way of linear inequality constraints. Specifically,

min
t
‖Aη − t‖2, (7)

s.t. |t| < T.

Single variable calculus dictates that the solution to problem
7 is achieved at either the unconstrained minimum tunc =
( 1
K )

∑K
i=1 a

T
i η, or at one of the bounds −T, T .

For the typical case where η is not known, the noise
in the data can lead to inaccurate PCA or NLSQ surface
normal approximations. Noise robustness can be achieved
within our least squares framework by coupling the nonlin-
ear least squares formulation 5 with the denoising formula-
tion 7:

min
φ,θ,t

1
2

∑K
k=1

[
e−λ(aT

k η(φ,θ)−t)
2
(aTk η(φ, θ)− t)

]2

(8)

s.t. |t| <= T.

Figure 3. Nonlinear least squares normal estimation with noise ro-
bustness for a noisy cube. three percent random noise was added
to the original cube. The estimated normals are still accurate.

Given the simplicity of the objective function and linear
constraints, problem 8 can be solved via any standard non-
linear least squares solver package, such as MINPACK or
MATLAB’s built in lsqnonlin routine. Our current imple-
mentation includes the two linear constraints into a global



formulation via log barrier functions:

L1(t) = ln(
h− t
h

)

L2(t) = ln(
h+ t

h
)

Thus, the nonlinear least squares problem contains K + 2
equations and three unknowns. Problem 8 coupled with the
log-barrier functions, comprise a standard, unconstrained,
nonlinear least squares problem for which several high per-
formance solver packages exist. Our current implemen-
tation utilizes the MINPACK software package, which is
based on the Levenberg-Marquardt Quasi-Newton trust re-
gion algorithm, using exact values for the gradient of the
objective function. The initial guess used for the optimiza-
tion routine is computed by solving problems 5 and 7 for λ,
h = 0, respectively.

5. Segmentation Based on Point Connectivity
The overall segmentation strategy is two-fold. First, an

initial segmentation is obtained from an adjacency matrix,
constructed from unoriented surface normal estimates, de-
scribing the point connectivity for the entire data set. The
final, finer segmentation is determined from the initial seg-
mentation, the point connectivity information contained in
the adjacency matrix, and the oriented surface normals esti-
mates.

Our strategy for the initial segmentation is built upon
the assumption that one can obtain a reasonable approxi-
mation to the underlying unoriented surface normals (pre-
sumably by applying the methodology described in the pre-
vious section, but this is not necessary) at each point in
the cloud. Based on the approximated normals and the k-
nearest neighbor information, a symmetric adjacency ma-
trix A is built such that Ai,j = 1 if the data points i, j are
”connected”, or in terms of graph theory, there exists an
edge between the two points. Ai,j = 0 otherwise. The
initial segmentation then is given by the connected compo-
nents of the undirected graph represented by A.

Of course, the nature of this “connected component seg-
mentation” is dictated by the criteria governing the place-
ment of edges between points. Specifically, given points xi
and xj , the corresponding adjacency matrix entry Ai,j = 1
if both points are a k-nearest neighbor of each other, and if
the line xj−xi lies within a user defined angle θ (see figure
4) of the tangent plane associated with unoriented surface
normal approximation for xi, and vice versa (see figure 5).
In this way, point proximity, as well as local geometry are
taken into account when determining point connectivity. Or
put another way, neighboring points are connected if the lo-
cal geometry estimate, given by the associated surface nor-
mal approximations, are compatible with location of xi and
xj in IR3.

* θ

Figure 4. Two dimensional representation of a data point and its
tangent plane.

*
*

Figure 5. The black point and blue point are connected to one an-
other. The red point is not connected to either point.

Based on this criteria, segmenting the point cloud ac-
cording to the connected components of A can be consid-
ered an edge detection based scheme. However, a serendip-
itous characteristic of this methodology is its innate ability
to account for the possibility of multiple closed surfaces,
or bodies, within the data set. For a smoothly varying sur-
face, such as a sphere, the corresponding adjacency matrix
is comprised of one connected component. However, for the
cylinder and city data depicted in figures 6 and 7, this is not
the case. Consequently, many connected components (point
cloud segments) are present, and the resulting segmentation
breaks each data set into piecewise smooth segments.

A finer segmentation can be obtained from the connected
component segmentation by first traversing the connectivity
information contained in A to orient the approximated sur-
face normals in the same manner as the minimum spanning
tree method described in [3]. However, the benefit of em-
ploying the graph associated withA for the orientation is the
ability to orient data sets containing more than one body.
The orientation procedure is carried out on one individual
connected component segment at a time, and is kept consis-



Figure 7. (Right) Point cloud representation of a city.(Left) Connected component segmentation.

Figure 6. (Right) Point cloud representation of a cylinder, with
calculated normals. (Left) Connected component segmentation.

tent within a body by identifying points with nearest neigh-
bors belonging to two connected component segments, and
then propagating the information from one connected com-
ponent segment to another.

Given the oriented surface normal approximations, the
data set is further segmented by classifying points with sim-
ilar surface normals. Specifically, given a set of N classifi-
cation vectors, each data point is categorized into one of N
groups according to the similarity between the surface nor-
mal and the classification vectors. Consider the example of
a sphere, with the classification vectors chosen to be the 6
outward normals for each face of a cube. Since the sphere
is a smooth surface, there is only one connected component
present in A (see 8). Assuming properly orientated surface
normals, each point is categorized according to their close-

Figure 8. Segmentation results for a sphere using the six outward
normals for the faces of a cube as classification vectors.

ness (in terms of angular difference) to one of the 6 clas-
sification vectors and then grouped together based on the
connectivity described by A.

6. Results
The full algorithm is as follows:

Algorithm

1. Find the k-nearest neighbors of each data point.

2. Calculate the surface normal approximations.

3. Construct A by determining the edges between points.

4. Determine the initial segmentation by finding the con-
nected components of A.

5. Orient the surface normal approximations.

6. Refine the segmentation according to N classification
vectors.

The main computational workload is represented by the
calculation of the k-nearest neighbors. For the city exam-
ples shown in figure 7 containing 1.99 million points, the



k-nearest neighbor calculation (tree based sorting method
with O(n log n) complexity) required 66 seconds on a Dell
Precision M6400 laptop, while the normal calculations uti-
lizing our nonlinear least squares required 39 seconds. The
PCA normals required 24 seconds.

7. Conclusions and Future Work
This paper presents a strategy for producing surface nor-

mals estimates for unstructured point cloud data based on
a constrained nonlinear least squares formulation. The for-
mulation is designed to be robust with respect to singular-
ities in the data, such as surface edges, and incorporates
data denoising in a fashion similar to planar moving least
squares. Utilizing the surface normals, we also present a
simple method for segmenting the point cloud data based
on point connectivity.

Refinement of the initial connected component segmen-
tation, according to classification vectors and the oriented
surface normals, allows for each new sub-segment to eas-
ily be approximated by a polynomial, the immediate benefit
being a potentially simple procedure for point cloud com-
pression. Rather than storing each data point, one need only
store the coefficients of the polynomial, and perhaps a list
of the points which lie more than some tolerance away from
the approximating polynomial.Furthermore, given the em-
barrassingly parallel nature of the procedure, such an algo-
rithm could be implemented on a GPU (graphic processing
unit) for high performance on large data sets.
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