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Abstract In the paper a multiple piecewise constant (MPC) active contour model is proposed to 

extract foreground and background of digital images. The region-based model of active contour 

without edges, i.e. the CV model [11] has difficulties to handle images having inhomogeneous 

object and background or multiple objects with different features such as color, texture or shape. 

Based on CV model we propose to model the interior and exterior of the evolutional curve by 

multiple constant intensity values instead of one constant. The constants can be obtained by 

clustering the interior region and the exterior region into multiple sub-regions. For better boundary 

capture capability, the geodesic active contour (GAC) is incorporated into the proposed MPC 

model to constraint the evolution of the curve. We show that the new model can be effectively 

solved by the graph cuts algorithms with less computational costs. Numerical experiments show 

that the new model can effectively segment difficult images with inhomogeneous object and 

background, and has superior performance compared to the original CV model. The introduction 

of GAC into the proposed MPC model is also demonstrated to have better boundary locating 

properties.  

 

Key words: Multiple piecewise constant, active contour without edges, geodesic active contour, 

graph cuts, image segmentation, level set. 

 

I. INTRODUCTION 

Active contours models based on variational methods have been extensively applied to a wide 

range of computer vision problems including image segmentation, edge detection and visual 

tracking [1-4].  Active contour model can provide smooth and closed contours, which are 

necessary and can be readily used for further applications, such as shape analysis and recognition. 

Moreover, it can be easily formulated under an energy minimization framework, and allow the 
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incorporation of various prior knowledge, such as shape and intensity distribution, for robust 

image segmentation [5, 6]. The active contours method based on variational cost functionals can 

be roughly categorized as edge-based models [7-10] and region-based models [11-15,42,43]. 

Edge-based models use local image gradients information to attract the active contour toward the 

object boundaries. The model of Caselles et al. [7] for the geodesic active contour (GAC) is 

defined along a curve C and minimized by evolving the curve in the normal direction. Due to the 

local minimization, this type of edge-based approach has dependences on the initial curve. By 

initializing curves at different image locations, different objects of interest can be captured. This 

type of highly localized image information has also been found to be very sensitive to image 

noise.  

Region-based models aim to identify each region of interest by using a certain region descriptor to 

guide the motion of the active contour. A well known example for the region modeling cost 

function is the Mumford-Shah function [16, 21]. A simplified version of the functional, which 

models the image with piecewise constant functions, has been studies in Chan and Vese [11] in 

connection with the level set idea.  Recently, some variants of this model have been proposed in 

[42,43].These piecewise constant models are based on the assumption that image intensities are 

statistically homogeneous (roughly a constant) in each region. Region-based approaches have 

some advantages compared to edge-based methods. For example, they are robust against initial 

curve placement and insensitive to image noise. However, segmenting heterogeneous objects or 

multiple objects with different intensity distribution occur often in real applications. Techniques 

that attempt to model regions using non-local statistics are usually not ideal.  

Lankton et al. [20] and Daralti et al. [21] propose to overcome object intensity inhomogeneity by 

using a localized energy that is based on the piecewise constant model of Chan and Vese [11]. The 

localization can improve the segmentation provided by globally defined energy in certain 

circumstances, but the loss of global characteristic leads to the increase of the sensitivity to the 

initial curve placement. The scale of localization is also hard to decide adaptively for different 

image objects. The segmentation of multiple objects can’t be effectively solved by such localized 

methods unless multiple initial curves are placed around these objects at the same time.  

The problems can be partially tackled by more sophisticated models than piecewise constant 

models. Vese and Chan [15] propose to cast image segmentation as a problem of finding an 
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optimal approximation of the original image by a piecewise smooth function. Although this model 

has exhibits certain capability of handling intensity inhomogeneity, it is computationally 

expensive and often fails to give satisfactory results for real applications.  

In this paper, we propose an improved region-based active contours model that can effectively 

overcome the problem with intensity inhomogeneity and multiple objects. We change each of the 

two constants that model the regions inside and outside the curve in the model of Chan and Vese 

(CV) [11] so that they are relevant not only to the location of the curve, but also to the intensity of 

the current pixel. We use multiple constant values for the regions inside and outside the curve. 

This multiple piecewise constant (MPC) model can segment objects with intensity inhomogeneity 

and multiple objects. In the CV model [11], the boundary of the curve is constrained by the length, 

which doesn’t consider the gradient information of the boundary. In [40], Bresson et.al. propose to 

unify CV model and GAC model and state the existence of the global minimization of this energy 

function. We also integrate the edge-based model such as geodesic active contour into the 

proposed MPC model for better boundary capture capability. Furthermore, we will show that the 

proposed active contour model can be effectively solved using the graph cut algorithm [17, 18, 

19,39] for much higher computational efficiency than the usually used level set framework [41, 

42].  

The minimal cut problem is to find a cut whose capacity is the minimum over all cuts of the graph 

G. Due to max-flow min-cut theorem by Ford and Fulkerson [28], there are several fast algorithms 

to solve the minimal cut problem of graph G by solving the corresponding maximal flow problem. 

See [18] for a detailed discussion about the implementation and comparison of several algorithms. 

The graph cuts method was first introduced into computer vision as an optimizing tool by Greig et. 

al. [29] in connection with markov random fields. It has later been studied by Boykov and 

Kolmogorov [18, 27, 31]. By optimizing the energy function based on the maximization of the 

posteriori probability (MAP) and markov random fields (MRF), some interactive image 

segmentation methods based on graph cuts [19, 38, 30] have been proposed. Recently, graph cuts 

method has also received a lot of attention due to its connection with continuous variational 

problem and PDEs [26, 32-35, 39, 41, 42].  

The outline of the paper is as follows. In the next section we introduce our model as an energy 

minimization problem and discuss the relationship with the other existing models. We formulate 
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the model in terms of level set functions. In section Ⅲ we show that the proposed energy 

functional can be converted into the graph cuts framework and be effectively minimized by means 

of graph cuts algorithms. An iterative segmentation procedure that alternates between estimation 

and parameter learning is presented. In section Ⅳ we validate our model and algorithm by 

numerical results on synthetic images and real natural images, showing the advantages of our 

proposed model and segmentation algorithm, followed by a brief conclusion section. 

II. REGION-BASED ACTIVE CONTOUR MODEL 

Let 2Ω⊂ℜ  be the image domain, and 0 :u Ω→ℜ  be a given gray image. Let C be a closed 

subset in Ω , made up of a finite set of smooth curves. The connected components of \ CΩ  are 

denoted by iΩ , such that i CΩ = ∪Ω ∪ . We also denote by C  the length of a curves C. Let 

:u Ω→ℜ  be a given bounded image-function. The image segmentation problem can be 

formulated as finding the minimizer of the following cost functional [22]:  

22
0 \

( , ) ( )MS

C
F u C u u dx u dx Cµ ν

Ω Ω
= − + ∇ +∫ ∫ ,                   (1) 

where µ  and ν >0 are fixed parameters, to weight the different terms in the energy. The 

minimization of Mumford-Shah functional results in an optimal contour C that segments the given 

image u0, and u is an optimal piecewise smooth approximation of the given image u0, and is 

smooth within each of the connected components in the image domain Ω  separated by the 

contour C.  

For many applications, it is enough to assume that u is a piecewise constant function, i.e., 

u=constant ci inside each connected component iΩ , and the problem is often called the “minimal 

partition problem”. For such case, the second term disappears from the above minimization 

functionals. One reduced model of (1), active contour without edge, i.e., CV model, is proposed 

by Chan and Vese [11] as follows.  

1 2

2 2
1 2 1 0 1 2 0 2( , , ) ( ( , ) ) ( ( , ) )CVF c c C u x y c u x y c dsλ λ ν

Ω Ω
= − + − +∫∫ ∫∫ ∫ ,       (2) 

where 1Ω corresponds to the interior and 2Ω corresponds to the exterior of the curve C, 

constants c1 and c2 depending on C, approximate the image intensity of 1Ω  and 2Ω , are usually 
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the averages of u0(x, y) in 1Ω  and 2Ω  respectively. Among the ways of representing the 

unknown interfaces, the level set method is the most elegant due to its ability in dealing with 

unknown topology. In [11], the curve is represented by a level set formulation, and the energy 

minimization problem is converted to solving a level set evolution equation [11]. The main 

drawback of level set method is expensive computation.  

Let 0 ( , )u x y denote the input image defined on the domainΩ , and let C be a closed contour 

represented as the zero level set of a signed distance function φ , i.e., { | ( ) 0}C x xφ= = , c.f.  

[23, 24]. We specify the interior of C by the following approximation of the smoothed Heaviside 

function ( ( , ))H x yφ  and the exterior of C is defined as 1 ( ( , ))H x yφ− . To specify the area 

just around the curve, we will use the derivative of ( ( , ))H x yφ , a smoothed version of the Dirac 

delta [25]. A level set formulation that represents the approximated piecewise constant function is 

as follows. 

1 2( , ) ( ( , )) (1 ( ( , ))), ( , )u x y c H x y c H x y x yφ φ= + − ∈Ω ,                   (3) 

where the discontinuity sets (the active contours) lie on the interface { ( , ) | ( , ) 0}C x y x yφ = , 

and the length of the interface is represented as ( )H φ
Ω
∇∫ . Then the energy function of active 

contours without edges model is formulated as follows. 

2
1 2 1 0 1

2
2 0 2

( , , ) ( ( , ) ) ( )

( ( , ) ) (1 ( )) ( )

CVF c c u x y c H dxdy

u x y c H dxdy H dxdy

φ λ φ

λ φ ν φ
Ω

Ω Ω

= −

+ − − + ∇

∫
∫ ∫

 .   (4) 

Keeping φ  fixed and minimizing the energy 1 2( , , )CVF c c φ  with respect to the constants 1c  

and 2c , it is easy to express these constants as a function of φ  by  

0
1

( , ) ( ( , ))
( )

( ( , ))

u x y H x y dxdy
c

H x y dxdy

φ
φ

φ
Ω

Ω

= ∫
∫

,                                    (5) 

0
2

( , )(1 ( ( , )))
( )

(1 ( ( , )))

u x y H x y dxdy
c

H x y dxdy

φ
φ

φ
Ω

Ω

−
=

−
∫
∫

.                                (6) 

Keeping 1c  and 2c  fixed, and minimizing the energy 1 2( , , )CVF c c φ  with respect to φ , we 
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deduce the associate Euler-Lagrange equation for φ . Parameterizing the descent direction by an 

artificial time 0t ≥ , the equation in ( , , )t x yφ (with 0(0, , ) ( , )x y x yφ φ= defining the initial 

contour) is as follows. 

2 2
1 0 1 2 0 2( )[ ( ( ) ( ( , ) ) ( ( , ) ) ]div u x y c u x y c

t
φ φδ φ ν λ λ

φ
∂ ∇

= − − + −
∂ ∇

.           (7) 

For numerical simulations, the functions ( )H φ and ( )δ φ are replaced by some smoothed 

regularizations. ( )δ φ is usually replaced with φ∇ . The gradient decent equation is solved 

using an explicit finite difference scheme. Note that this algorithm only evolves the interface in a 

local sense. Chan et al. [11] also proposed a heuristic method to define the Heaviside function as 

well as its derivative. It takes account of global information. However, such compromise may lead 

the result to deviate from the right solution, since the numerical approximation of Heaviside 

function is very loose.  

III. DESCRIPTION OF PROPOSED MODEL AND LEVEL SET FORMULATION 

We now introduce an improved version of region-based modeling by Chan et al, i.e., multiple 

piecewise constant (MPC) active contours model. The basic form of the cost functional is as 

following: 

1

2

2
1 2 1 0 1

2
2 0 2

( , , ) ( ( , ) ( , ))

( ( , ) ( , ))

MPCF c c C u x y c x y

u x y c x y ds

λ

λ ν

Ω

Ω

= −

+ − +

∫∫
∫∫ ∫

,                  (8) 

where 1( , )c x y  and 2 ( , )c x y  are piecewise constant function that models the image regions 

inside C and outside C. We next show how to decide the piecewise constant functional 1( , )c x y  

and 2 ( , )c x y . 

We first cluster the region 1Ω  into n1 sub-regions 1 1{ , 1, , }k k nΩ =  by k-means method and 

give the sub-region 1kΩ  the label 1, ( 1, , )k k n= . Then we can get the label functional of 

region 1Ω  as follows: 

1 1( , ) , ( , ) kx y k if x yπ = ∈Ω ,                                         (9) 
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where 11, ,k n=  and n1 is the clustering number of region 1Ω . 

Similarly, we can get the label functional of region 2Ω  as 

2 2( , ) , ( , ) kx y k if x yπ = ∈Ω ,                                        (10) 

where 21, ,k n=  and n2 is the clustering number of region 2Ω . 

Similar as in [42, 43], we define the following function 

1, 0
( )

0,
x

x
otherwise

ψ
=⎧

= ⎨
⎩

.                                            (11) 

Then we can compute 1( )c k  and 2 ( )c k  according to the following equations: 

1

1

0 1

1
1

( , ) ( ( , ) )
( )

( ( , ) )

u x y x y k dxdy
c k

x y k dxdy

ψ π

ψ π
Ω

Ω

−
=

−

∫
∫

,                               (12) 

2

2

0 2

2
2

( , ) ( ( , ) )
( )

( ( , ) )

u x y x y k dxdy
c k

x y k dxdy

ψ π

ψ π
Ω

Ω

−
=

−

∫
∫

.                              (13) 

Once the values of  1( )c k  and 2 ( )c k  have been determined, the MPC model can be 

represented as: 

1 1

2 2

2
1 2 1 0 11

2
2 0 21

( , , ) ( ( , ) ( ))

( ( , ) ( ))

MPC

k n

k n

F c c C Min u x y c k

Min u x y c k ds

λ

λ γ

Ω =

Ω =

= −

+ − +

∫∫
∫∫ ∫

.                 (14) 

Notice that the third term of multiple piecewise constant (MPC) active contours model is the 

length of the curve C, which can be replaced by the geodesic active contour (GAC) proposed by 

Caselles et al. [7] for better boundary capture capability. Then we get the combination of 

region-based and edge-based models:  

1 1

2 2

2
1 2 1 0 11

2
2 0 21

( , , ) ( ( , ) ( ))

( ( , ) ( )) ( )

MPC

k n

k n

F c c C Min u x y c k

Min u x y c k g C ds

λ

λ ν

Ω =

Ω =

= −

+ − +

∫∫
∫∫ ∫

,              (15) 

where 01/ (1 )g uβ= + ∇ . 

The above mode integrates the advantages of the region-based modes, i.e., robustness to 

initialization and insensitivity to image noise, and the advantages of the edge-based models, i.e., 
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good local characteristic and boundary capture capability. We can use level set method to solve 

this problem and the corresponding level set energy functional is: 

1

2

2
1 2 1 0 11

2
2 0 21

( , , ) ( ( , ) ( )) ( )

( ( , ) ( )) (1 ( ))

( ) ( , )

MPC

k n

k n

F c c Min u x y c k H dxdy

Min u x y c k H dxdy

H g x y dxdy

φ λ φ

λ φ

ν φ

Ω =

Ω =

Ω

= −

+ − −

+ ∇

∫
∫
∫

.              (16) 

The gradient descent equation is 

1 2

2 2
1 0 1 2 0 21 1

( )[ ( ( ( , ) )

( ( , ) ( )) ( ( , ) ( )) ]
k n k n

div g x y
t

Min u x y c k Min u x y c k

φ φδ φ ν
φ

λ λ
= =

∂ ∇
=

∂ ∇

− − + −
.               (17) 

Since we model region inside C and outside C by using two multiple piecewise constant functions 

1( )c k and 2 ( )c k , not two constants c1 and c2, the parameters can’t be updated using formula (5) 

and (6). The parameters 1 1{ ( ), 1, , }c k k n= and 2 2{ ( ), 1, , }c k k n= can be updated 

iteratively with the interface evolution, i.e.   

0 1
1 1

1

( , ) ( ( , )) ( ( , ) )
( , ) , 1, ,

( ( , )) ( ( , ) )

u x y H x y x y k dxdy
c k k n

H x y x y k dxdy

φ ψ π
φ

φ ψ π
Ω

Ω

−
= =

−
∫
∫

,           (18) 

0 2
2 2

2

( , )(1 ( ( , ))) ( ( , ) )
( , ) , 1, ,

(1 ( ( , ))) ( ( , ) )

u x y H x y x y k dxdy
c k k n

H x y x y k dxdy

φ ψ π
φ

φ ψ π
Ω

Ω

− −
= =

− −
∫
∫

.       (19) 

It is time consuming to solve the gradient decent problems using numerical methods. In the next 

section, we shall develop some efficient methods by transforming the problem into a graph cut 

problem.  

IV. GRAPH CUTS OPTIMIZATION FOR MPC MODEL 

In section Ⅲ, we have described the proposed MPC active contour model integrated with GAC 

and the level set formulation. In this section, we will show that our proposed model can be 

effectively optimized by graph cut algorithms. Thanks to the fast global minimization of graph 

cuts algorithm, the speed and the accuracy of the implementation are greatly improved, and make 

the result much less sensitive to initialization since the optimization is more global. 

Given a graph G=(V, E, W), where V is the set of vertices, E is the set of edges, and W is the set 

of nonnegative weights on the edges. There are two specially designated terminal nodes s(source) 
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and t(sink) in the graph. For every node v in G, there is a path from source s to sink t via v. This 

kind of graphs are called flow network. For this kind of graph, the edges that are out of source s 

and the edges that are into sink t are called t-link. The edges that connect the other nodes except 

for s and t are called n-link. A cut on G is a partition of the vertices V into two disjoint sets S and 

T such that s S∈ and t T∈ . For a given cut(S, T), the cost of the cut is defined as 

,
pqG

p S q T
C ω

∈ ∈

= ∑ ,                                             (20) 

where pqω  is the weight of edge connecting node p and q.  

 

 

 

 

 

 

 

In [26], Boykov and Kolmogrov introduced a notation of cut metric on graphs. Consider a cut on a 

grid-graph G as a closed contours (in R2). Length can be defined for a cut. By Cauchy-Crofton 

formula, the connection between Euclidean length 
E

C  of a curve C in R2 and a measure of a set 

of lines intersecting it can be established. Then by some reasonably partitioning, the following 

discrete formula can be used to approximate the length of the contours. 

2

1
( ( ) )

2

Gn

cE
d d

C n d
e

δ θ
=

⋅∆
= ⋅

⋅∑ ,                                       (21) 

where ( )cn d  is the total number of intersections of C with the edge lines in the dth direction 

vector, i.e., de , see Fig. 1 for de ,δ and θ∆ . If we choose constant edge weights within each 

family of edge lines as  

2

2d
de

δ θω ⋅∆
=

⋅
,                                                 (22) 

then we have  

e2

θ∆

δ

δ

e1 e1
θ∆

e2e3e4

e1

e2e3

e4
e5

e6
e7e8

θ∆

Fig. 1 Left: N4 neighbor system; middle: N8 neighbor system; right: N16 neighbor system 
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1
( )

Gn

c dE G
d

C n d Cω
=

= ⋅ ≈∑ .                                       (23) 

A. Discrete Representation of Energy Functional 

The equations (15) or (16) are continuous energy functional in 2Ω⊂ℜ . We must discretize them 

to take values on a grid so that they can be applied in image domain. Let 

{( , ) | {1, , }, {1, , }}P i j i n j m= ∈ ∈  be the set of image grid points, the mesh size is one, 

and N mn=  is the number of the grid points in P. Consider all the pixels ( , )u i j of the image 

domain P , we define a binary grid function { | {0,1}, ( , ) }ij ijx x i j P∈ ∈ to represent a partition 

as in [43]. For simpler expression, let ( , )p i j P= ∈ . We define px  as 

1, 0

0
p

p

if
x

otherwise

φ ≥⎧
= ⎨
⎩

.                                            (24) 

Therefore, the first two terms in the energy functional (15) can be discretized as  

1 2

2 2
1 2 1 0 1 2 0 21 1

( ( ) ( )) ( ( ) ( )) (1 )p pk n k np P p P

E E Min u p c k x Min u p c k xλ λ
= =

∈ ∈

+ = − + − −∑ ∑ . (25) 

From (22), the discrete form of the length of the curve ds∫  can be expressed as follows  

( )
((1 ) (1 ))

r

pq p q p qE G
p P q N p

C C x x x xω
∈ ∈

= = − + −∑ ∑ ,                      (26) 

where pq dω ω=  if ( , ) dp q e∈ , 1, , Gd n=  and Nr(p) is the neighbor system of p defined 

in Fig. 1 and r=4, 8 or 16. 

The third term of (15) is the geodesic active contour ( )g C dsν ∫  where 01/ (1 )g uβ= + ∇ , 

i.e., the integral of 0 01/ (1 ( ) ( ) ), ( )rdg u p u q q N pβ= + − ∈  along the curve C . Using 

similar argument as getting (26), the discrete form of the third term of (15), ( )g C dsν ∫ , can be 

expressed as follows 

3
( ) 0 0

((1 ) (1 ))
1 ( ) ( )

r

pq p q p q

p P q N p

x x x x
E

u p u q
ω

ν
β∈ ∈

− + −
=

+ −∑ ∑ .                           (27) 

Therefore, the discrete formation of equation (15) is as follows 
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1

2

2
1 2 1 0 11

2
2 0 21

( ) 0 0

( , , ) ( ( ) ( ))

( ( ) ( )) (1 )

((1 ) (1 ))
1 ( ) ( )

r

MPC
pk np P

pk np P

pq p q p q

p P q N p

E c c x Min u p c k x

Min u p c k x

x x x x
u p u q

λ

λ

ω
ν

β

=
∈

=
∈

∈ ∈

= −

+ − −

− + −
+

+ −

∑

∑

∑ ∑

 .                 (28) 

B. Energy Minimization using Graph Cuts Framework 

Equation (28) is a typical energy functional that can be optimized by graph cuts method [27]. 

Construct a flow network graph G=(V, E, W) with one source node s and sink node t. Each pixel 

in image domain is considered as one node of G. Each pixel node p has two t-link {s, p} and {p, t} 

respectively connecting it to the source and sink nodes and the weights are respectively defined as 

spw and ptw . Each pair neighboring pixels {p, q} in neighbor system is connected by an n-link and 

the weight is defined as pqw . The weights of G are set according to the following equations: 

1
1 0 1 11

( ( ) ( )), , 1, ,sp k n
w Min u p c k p P k nλ

=
= − ∈ = ,                         (29) 

2
2 0 2 21

( ( ) ( )), , 1, ,pt k n
w Min u p c k p P k nλ

=
= − ∈ = ,                        (30) 

0 0

, , ( )
1 ( ) ( )

pq
pq rw p P q N p

u p u q
νω

β
= ∈ ∀ ∈

+ −
.                         (31) 

After setting the weights of the edges of G, the minimum cut of G can be computed by the typical 

max-flow min-cut algorithm such as augmenting path style method [18, 36] or push-relabel style 

method [37]. The minimum cut corresponds to the minimum energy value of functional 

1 2( , , )MPCE c c x  of (28). We can also get a group binary label{ | {0,1}, 1, , }p px x p N∈ = . 

Let 1 { | 1, 1, , }pP p x p N= = = and 2 { | 0, 0, , }pP p x p N= = = . We respectively cluster 

1P  and 2P  into n1 and n2 subsets and get the label functional 1( )pπ and 2 ( )pπ  that are 

defined in formula (9) and (10). Then the optimal estimation of the parameters 

1 1{ ( ), 1, , }c k k n= and 2 2{ ( ), 1, , }c k k n=  are obtained using the following two equations: 

0 1

1 1
1

( ) ( ( ) )
( , ) , 1, ,

( ( ) )

p
p P

p
p P

u p x p k
c k x k n

x p k

ψ π

ψ π
∈

∈

−
= =

−

∑
∑

,                      (32) 
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0 2

2 2
2

( )(1 ) ( ( ) )
( , ) , 1, ,

(1 ) ( ( ) )

p
p P

p
p P

u p x p k
c k x k n

x p k

ψ π

ψ π
∈

∈

− −
= =

− −

∑
∑

,                 (33) 

where ( )xψ  is defined in formula (11). 

The multiple piecewise constant approximation of u is 

1

2

1 1
1

2 2
1

( ) ( ) ( ( ) )

( )(1 ) ( ( ) )

n

p
k

n

p
k

u p c k x p k

c k x p k

ψ π

ψ π

=

=

= −

+ − −

∑

∑
, p P∈ .                      (34) 

Then we can construct an iterative algorithm that alternates between estimation and parameter 

learning to get the optimal multiple piecewise constant approximation of u. To summarize, the 

algorithm can be described as follows. 

1. Initialize the curve C and get the interior of C, i.e., 1Ω , and the exterior of C, i.e., 2Ω . Let 

the label xp of 1Ω  is 1 and the label xp of 2Ω  is 0.  

2. Cluster the pixels with label 1 into n1 subsets and get 1( )pπ . Cluster the pixels with label 0 

into n2 subsets and get 2 ( )pπ .  

3. Estimate 1 1{ ( ), 1, , }c k k n= and 2 2{ ( ), 1, , }c k k n= according to (32) and (33). 

4. Construct graph G by (29)-(31), compute the minimum cut of G using graph cuts algorithm 

and get the binary label{ | {0,1}, 1, , }p px x p N∈ = of the image. 

5. Repeat from step 2, until converge. 

V. EXPERIMENTS 

In this section, we validate our proposed MPC model and its graph cuts optimization 

implementation by numerical experiments on synthetic images and real natural images. The 

results are compared with the original CV model [11]. We also demonstrate that our MPC model 

will lead to better segmentations when combined with GAC model. In MPC model, there are 

several parameters, 1λ , 2λ ,ν  and n1 and n2 that need to be decided. We set 1 2 1λ λ= = . The 

varying parameters are ν , n1 and n2,. They will be set according to the different experimental 
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aims so that the performance of the proposed method and the effect of the parameters can be 

effectively analyzed. Notice that CV model [11] is the special case of our MPC model with 

Fig. 3 Row 1 is the original flower image and the initial contour. Rows 2 are the results by 
MPC model without GAC, rows 3 are the results by MPC model with GAC. Columns (from 
left to right) are respectively the results with n1=n2=1, n1=n2=5. Parameter ν =6000 for 
MPC without GAC and ν =12000 for MPC with GAC. 

Fig. 2 The comparison of MPC model and CV model using synthetic image. Left: the 
image and the initial curve; middle: the result by CV model; right: the result by MPC 
model with n1=n2=2. Both models aren’t integrated with GAC. 
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n1=n2=1 without GAC. We give the CPU time in seconds performed on a laptop which is equipped 

with a 2.0-GHz Pentium CPU and 2GB memory. In our numerical algorithm, we first initialize the 

curve, then cluster the regions inside the curve and outside the curve into n1 and n2 subsets and 

compute 1 1( ), 1, ,c k k n=  and 2 2( ), 1, ,c k k n= , and we construct the graph and solve the 

min-cut problem. Then we iterate these last two steps.  

Fig. 4 Row 1: the original image and the initial contour; Row 2: the result by MPC model 
with GAC, foreground (left) and background (right); Row 3: the result by MPC model 
without GAC, foreground (left) and background (right). Parameter ν =6000 for MPC 
without GAC and ν =12000 for MPC with GAC, n1=n2=5. 
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We first compare our MPC model with CV model using a synthetic image. The superiority of CV 

model combined with GAC model has been demonstrated in Fig. 8 of [40] and we will further 

testify that using real images in the following experiments. The original image in Fig. 2 has a 

rectangle object including a half black part and a half white part. Exploiting the CV model and just 

modeling the rectangle object and the background with only one constant will lead to the wrong 

segmentation result (see the middle of Fig. 2). But if we model the rectangle object and the 

background with two constants (n1= n2=2), the heterogeneous rectangle object can be segmented 

(see the right of Fig. 2). Both models in this experiment aren’t integrated with GAC. 

In Fig. 3 the experimental results of a real flower image are shown. The comparison between the 

proposed MPC model and CV model is conducted. Results with or without GAC are also given. In 

Fig. 5: The test results of the horse image by MPC model with and without GAC. Row 1 and 
2 are the results by MPC model without GAC. Row 3 and 4 are the results by MPC model 
with GAC. Row 1 and 3 (from left to right): the original image and the initial contour, the 
result with n1=n2=1, and n1=n2=2. Row 2 and 4 (from left to right): the results with n1=n2=3, 
n1=n2=4, n1=n2=5. 
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the MPC model, the clustering number are taken as n1=n2=5. The test image includes blue and 

yellow flowers. By use of the traditional CV model it is hard to distinguish both the blue and 

yellow flowers from the background. A little better result can be obtained when GAC is merged to 

CV model, but the intact object still can’t be extracted. MPC model with n1=n2=5 can get better 

results than CV model, but when without GAC still some background information is labeled as the 

object. MPC model integrated with GAC leads to best performance and the blue and yellow 

flowers can be exactly distinguished from the background.  

Fig. 4 shows the results of a brushwood image. We further demonstrate the superiority of MPC 

model when integrated with GAC. We can see that the curve is smoother for the model without 

GAC, but much detail information is lost and some small objects are undetected. Comparatively, 

the model with GAC can obtain more accurate segmentation and detection of the boundary of the 

objects.  

Fig. 6: The iterative process with initial contour for horse image (row 1 and 2) and flower 
image (row 3 and 4). Parameter n1=n2=5. 
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The experimental results of the “Horse” image are shown in Fig. 5. This image includes two 

horses which have different color distribution. Therefore modeling the two horses with only one 

constant like CV model will undoubtedly lead to inaccurate segmentation, which is shown in row 

1 of Fig. 5. In the experiments of Fig. 5, different clustering number is chosen to test the 

Fig. 7 Row 1 is the original elephant image and the initial contour. Rows 2 and 3 are the 
results by MPC model without GAC, rows 4 and 5 are the results by MPC model with 
GAC. Columns (from left to right) are respectively the results with n1=n2=1, n1=n2=2, 
n1=n2=5. Row 2 and 4 are the original images and the result contours, row 3 and 5 are the 
extracted foreground. Parameter ν =6000 for MPC without GAC and ν =12000 for 
MPC with GAC. 
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segmentation performance of MPC model with or without GAC. We can see that the result 

becomes better and better as the clustering number increases from 1 to 5. When the values are 

larger than 5, there is no obvious improvement of the quality. Generally, the clustering number can 

be upto 20 according to the degree of the inhomogeneity of the objects or the number of the 

detected objects. From the results we can also see that better performance is obtained when the 

proposed model is integrated with GAC than without GAC. 

In Fig. 6 the evolution of the curve for the flower and horse images are shown. Despite that the 

initial curves are far away, the two kinds of flowers in the flower image and the two horses with 

different color distribution can all be segmented satisfactorily from the background. 

In Fig. 7 and 8 one elephant image is used to test our model. This image scene includes three 

elephant objects, the sky and the grassland background. The segmenting task is to extract three 

elephants from the background. In Fig. 7, we test three cases where the clustering numbers are 

respectively set to n1=n2=1, n1=n2=2, n1=n2=5. In each case we compare the results with or 

without GAC. From the results we see that larger clustering number leads to better results. 

However, if we do not include GAC, two unexpected situations appear: 1) the details of the 

elephant such as the legs and tails are easily lost; or 2) some background information is labeled as 

the foreground by mistake, for example, the background near to the legs of the elephant isn’t 

separated out. MPC model with n1=n2=5 integrated with GAC can segment the elephants with 

perfect details.  

Fig. 8: The results by MPC model without GAC, n1=n2=5. From column 1 to 3: the 
parameter ν  is respectively 3000, 6000, 9000. Top: the original image and the contour. 
Bottom: the extracted foreground. 



 19

In Fig. 8 we test the effect of different parameter ν  without GAC. Three different values of 

parameter, ν =3000, 6000 and 9000 are selected. We find when ν  is set to 3000 more object 

Fig. 10: The multiple piecewise constant approximation of four images after convergence by 
formula (34), n1=n2=5. 

Brushwood image Elephant image 

Flower image Horse image 

Fig. 9: The plot of energy value of the iterative process, the iterative time is 15. The blue 
curve in each plot is for CV model with GAC; the red curve in each plot is for MPC 
model with GAC, n1=n2=5. 
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details can be extracted from the background such as the legs and tails of the elephants. But 

simultaneously more unexpected background information such as some noise is labeled by 

mistake. When larger ν is chosen, the strong constraint of the curve length which desires shorter 

length of the curve avoids the curve to evolve to concave boundaries such as the region between 

the legs of the elephants. Therefore, without GAC, just relying on the adjustment of the parameter 

ν  we may not obtain the same satisfactory segmentation results as MPC model with GAC does.  

The values of the minimization functional versus iteration number for four images are shown in 

Fig. 9. We compare the energy value of CV model and our MPC model with n1=n2=5 when the 

algorithms are convergent. Both models are incorporated with GAC. We can see that the energy 

decreases gradually as the curve evolves and MPC model has lower energy value than CV model. 

Fig. 10 shows the resulted images of the MPC with GAC approximation for four test images by 

formula (34) after convergence. The clustering number n1=n2=5 is chosen.  

The size of the test images used in this paper is all 384×256. The computational time of each 

iterative process using graph cuts is less than 0.15 seconds. Besides the images used in the paper, 

we also test a large number of real images. For most images, the algorithm converges within eight 

iterations. Therefore, the total computational time using graph cuts method to deal with an image 

of size 384×256 is about 1 second, which is much faster than the level set implementation that 

has been analyzed in many papers [11, 15, 20, 39]. 

VI. CONCLUSION 

A multiple piecewise constant active contour model is presented to generalize the region-based 

active contour model by Chan and Vese [11]. We further combine the MPC model with the GAC 

model to get an integrated active contour model that simultaneously exploits both the region 

feature and edge feature to evolve the curve. We give the level set representation of the proposed 

model and further show that our model can be effectively optimized by powerful graph cuts 

algorithms. Experiments show that the proposed model can effectively deal with the images with 

inhomogeneous object and background and multiple objects with different visual features. The 

graph cuts implementation greatly improve the computational efficiency. 
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