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ABSTRACT 

In this paper, we propose an interactive color natural image segmentation method. The method integrates 

color feature with multi-scale nonlinear structure tensor texture (MSNST) feature and then uses GrabCut method 

[17] to obtain the segmentations. The MSNST feature is used to describe the texture feature of an image and 

integrated into GrabCut framework to overcome the problem of the scale difference of textured images in [28]. In 

addition, we extend the Gaussian Mixture Model (GMM) used in [17] to MSNST feature and GMM based on 

MSNST is constructed to describe the energy function so that the texture feature can be suitably integrated into 

GrabCut framework and fused with the color feature to achieve the more superior image segmentation 

performance than the original GrabCut method [17]. For easier implementation and more efficient computation, 

the symmetric KL divergence [30] is chosen to produce the estimates of the tensor statistics instead of the 

Riemannian structure of the space of tensor as in [28]. The Conjugate norm developed in [31] was employed using 

Locality Preserving Projections (LPP) technique as the distance measure in the color space for more 

discriminating power. An adaptive fusing strategy is presented to effectively adjust the mixing factor so that the 

color and MSNST texture features are efficiently integrated to achieve more robust segmentation performance. 

Lastly, an iteration convergence criterion is proposed to reduce the time of the iteration of GrabCut algorithm 

dramatically with satisfied segmentation accuracy. Experiments using synthesis texture images and real natural 

scene images demonstrate the superior performance of our proposed method. 

 

Key word: Graph Cuts, Multi-scale Nonlinear Structure Tensor (MSNST), Interactive Image Segmentation, 

Adaptive Fusion. 

 

I. INTRODUCTION 

Extracting a foreground object in a complex environment is of great practical importance in computer vision. 

To extract objects from color images is even more challenging. Color images carry much more information than 

gray ones [1], and these information can be used to enhance the image analysis process and improve segmentation 

results. As a result, color image segmentation has been studied for decades, and recently received much attention 
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for special effects in film, television, publication, photography and a number of desktop applications.  

Due to the amount of information contained in images and their unpredictable complexity, manual 

segmentation is tedious and time consuming, lacking in precision and impractical when applied to long image 

sequences. A general purpose image segmentation technique should be able to accurately define the desired object 

boundaries or regions automatically or semi-automatically with minimal user input. Existing image segmentation 

algorithms can be generally classified into three major categories: feature-based, region-based and 

boundary-based [2]. As is typically the case, each strategy has its advantages and disadvantages and is better 

suited to segment certain types of images. Feature-based methods try to classify pixels based on their positions in 

feature space without explicitly considering their connectivity to similarly classified pixels. Common features 

include color intensity, gradient magnitude, texture, depth, motion, etc. Grayscale thresholding [3] and 

distance-based classification [4] all belong to this category. This strategy has some serious drawbacks as pixels 

from disconnected regions of an image may be grouped together if their feature spaces overlap. Region-based 

methods extend feature-based segmentation by specifically trying to maintain connectivity while grouping pixels 

with similar features, examples include blob coloring [3], region growing, region merging, region splitting and 

intelligent paint [5]. However, it may undesirably produce a very large number of small but quasi-homogenous 

regions. Boundary-based methods don’t have this disadvantage by attempting to define contours enclosing objects 

or subprojects and yield a minimum cost curve by optimizing the current edge criteria to approximate the real 

boundary, such as border tracing [6], dynamic programming [7], active contours [8] and intelligent scissors [9] etc. 

Due to the locality of edge information, if we want to obtain the desired global object, numerous interactions are 

necessary. 

Fig. 1 A comparison between GrabCut [17] and our method. Left: the original image with an initial rectangle placed 

by user; Middle: the result by GrabCut [17]; Right: the result by our method. 
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Recently, the graph-based approaches to object extraction have been shown to be efficient and accurate. One 

essential feature of the approach is that the segmentation energy function combines boundary regularization with 

regional properties. The common strategy underlying these approaches is the formation of a weighted graph, 

where each vertex corresponds to an image pixel or a region, and the weight of each edge connecting two vertices 

represents the similarity between them that they belong to the same segment. Additionally, another graph-based 

approach called Graph Cuts Method includes two extra terminals into the weighted graph, and the edge weight 

between vertex and terminals represents the possibility whether the vertex belongs to foreground or background. 

The weights are usually related to extracted features. The graph is then partitioned into multiple components that 

minimize some energy function.  In the last few years, several graph-shaped methods have been developed for 

image unsupervised segmentations [10, 11, 12] or interactive segmentation [8, 13, 14, 15, 16, 17, 18]. 

Taking unsupervised approaches for example, Shi and Malik [12] proposed a general image segmentation 

approach based on normalized cut by solving an eigensystem, and Wang and Siskind [10] developed an 

image-partitioning approach by using a complicated graph reduction. Although they can robustly generate 

balanced clusters without any user interaction, high computation complexity is required and there is no way to 

alternate the final segmentation result in case some parts of the image are wrongly labeled. By contrast, Graph 

Cuts is a general purpose interactive segmentation technique. It uses binary Graph Cuts algorithms for object 

segmentation and is able to alleviate the problems inherent to fully automatic segmentation. The users have to hint 

on what they intend to segment first, and then the image is segmented automatically by computing a global 

optimum among all segmentations satisfying the provided hints. Such an approach enables the user to get some 

desired segmentation results with very intuitive interactions. This concept was first proposed and tested by 

Boykov and Jolly [13]. Since then, it has been widely studied in computer vision and graphics communities for 

image restoration, stereo and object segmentation etc. In the following we try to give a briefly overview on several 

Graph Cuts based methods: interactive Graph Cuts [13], Lazy Snapping [15], and GrabCut [17]. Interactive Graph 

Cuts [13] is a general purpose interactive segmentation method for monochrome N-dimensional images. The user 

needs to mark certain pixels as “object” or “background”. Afterwards, the histograms of grey values are used to 

describe image foreground and background grey-level distributions and Graph Cuts are used to find the globally 

optimal segmentation. However, it is impractical to construct adequate color space histograms for this method. 

Lazy Snapping [15] combines Graph Cuts with pre-computed over-segmentation and produces high quality 

cutouts for color images in near real-time, but for thin and branch structures it works very poor. Many user 

interactions are needed to achieve reasonable results. GrabCut [17] extends Graph Cuts to color images and 

incomplete trimaps. It replaces the monochrome image model based on histograms in [13, 14, 16] by Gaussian 
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Mixture Model and iteratively alternates between estimation and parameter learning to solve the min-cut problem 

until converges. Therefore, the user interaction can be relaxed to simply placing a rectangle or a lasso around the 

object, followed by a small amount of corrective editing. These developments make GrabCut more convenient to 

image editing such as foreground extraction. 

In [13, 15, 16, 17], the process of separating an image into objects and background is mainly guided by 

regional statistics involving image values. However, directly computing the statistics on image values may not be 

enough to discriminate regions. In some cases, texture information is often a more appropriate discriminating 

feature. There are many different texture feature description approaches which have been employed in the 

literature for image segmentation applications, including those Markov Random Fileds [20, 21], multiple 

resolution techniques [22, 23], Gabor wavelet filters [24, 25] and so on. The structure tensor has been introduced 

for texture analysis as a fast local computation providing a measure of the presence of edges and their orientation. 

Various tensor segmentation methods have been proposed including active contours [26, 27, 30]. For example, the 

work of [26] uses a Gaussian approximation for the nonlinear structure tensor channels and a non-parametric 

histogram for the added image intensity channel, and then the segmentation proceeds to separate these 

distributions with active contours unsupervisedly. In addition, Graph Cuts technique has been recently 

demonstrated with diffusion tensor magnetic resonance imaging data in [29], which uses the symmetric KL 

divergence [30] as dissimilarity measure, and obtains the weights of terminal links by computing the average 

distance of each such tensor to each of the respective seed tensors. However, all these distances are weighted 

equally and the computations of terminal link weights increase dramatically with the sizes of image and seeds 

increase.  

Malcolm et al. [28] generalized these tensor methods to segment images with multimodal object and 

background. This is done by taking into account the Riemannian geometry of the tensor space. Moreover, 

interactive Graph Cuts [13] technique is applied to segment multimodal tensor valued images. In order to improve 

the segmentation quality, intensity information was included with the image derivatives without losing its nice 

properties and a 3×3 extended structure tensor is constructed as the Graph Cuts’ data input. However, the 3×3 

tensor actually fixes the weights of color information and texture information both at approximate 0.5, which 

means that the mixing factor can not be adjusted adaptively to reduce the negative side effect of including too 

much useless information. Furthermore, the introduction of high-order tensor (5×5 when considering all the color 

channels) implies that the energy minimization has to be done in a higher dimensional space, which can be too 

difficult and result in multiple local minima [41]. Additionally, the tensor texture description used in [28] lacks of 

scale information. Therefore, the method will fail when two textures differ only in scale. 
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To deal with scale difference of the classical structure tensor [28] of texture images effectively, a multi-scale 

nonlinear structure tensor is proposed to describe the texture feature of images and integrated into GrabCut [17] 

framework instead of the interactive Graph Cuts method [13] used in [28] to achieve improved interactive image 

segmentation and simplify user interaction. To achieve this goal, we extend the color models of images based on 

GMMs used in [17] to multi-scale nonlinear structure tensors and construct texture feature models of images 

based on GMMs. To minimize the energy in a low dimensional space, we consider the rank-2 tensor and image 

color separately. The symmetric KL divergence [30] is chosen to produce the estimates of the tensor statistics 

instead of the Riemannian structure of the space of tensor as in [28] for easier implementation and more efficient 

computation. The symmetric KL divergence [30] is a low-dimensional approximating of the full distribution in 

Riemannian space, which has been proved to be robust and discriminative enough in [27, 29, 30]. The Conjugate 

norm developed in [31] was employed as the distance measure in color space using Locality Preserving 

Projections (LPP) technique for more discriminating power. To adaptively adjust the mixing factor so that the 

color and MSNST texture features are efficiently integrated into GrabCut framework to achieve more robust 

segmentation performance, we adopt an approximation of the KL divergence to compute the relative 

discriminative capabilities of the present global foreground and background color GMMs. Lastly, an iteration 

convergence criterion is proposed to reduce the time of the iteration of GrabCut algorithm dramatically with 

satisfied segmentation accuracy.  

The remainder of the paper is organized as follows. In Section II, the multi-scale nonlinear structure tensor is 

described. How to integrate the MSNST into GrabCut framework is presented in Section III. Section IV presents a 

number of experimental results. Finally, some conclusions are drawn in Section V. 

II. MULTI-SCALE NONLINEAR STRUCTURE TENSOR (MSNST) 

It is not easy to estimate or even to represent the orientation information from a scalar valued image or a 

vector-valued image, which is indeed a major component of textures feature. The Gabor representation has been 

shown to be optimal in the sense of minimizing the joint two-dimensional uncertainty in space and frequency [32], 

but it unfortunately has the decisive drawback of inducing lots of redundancy. However, the structure tensor is 

widely accepted to compactly derive this feature by the use of image derivatives, which hold the whole orientation 

information. In other words, the components of the structure tensor are as powerful for the discrimination of 

textures as a whole set of Gabor filters of a fixed scale. 

In this section, we will introduce the concept of MSNST based on the classical structure tensor, by making 

use of a redundant dyadic wavelet transform and the nonlinear diffusion [33]. With this concept, the orientation 
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information of an image can be studied at different scales, just like the Gabor wavelets [34]. 

A. Gabor Wavelet 

 In this section, we review the basics of Gabor transforms. The Gabor wavelet has been studied by numerous 

researchers in the context of image representation, object recognition, texture classification and image retrieval 

due to its rich multiresolution representation and simplicity of implementation. It has the property that it can 

segment images with differences in spatial frequency, density of elements, orientation, phase, and energy. A 2-D 

Gabor filter [34] is an oriented complex sinusoidal grating modulated by a 2-D Gaussian function, which is given 

by 
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where σx and σy are the space constants of the Gaussian envelope along the x-axis and y-axis, and the frequency of 

the span-limited sinusoidal grating is given by W. Gabor functions form a complete but nonorthogonal basis set. 

Expending a signal using this basis provides a localized frequency description. Let g(x,y) be the mother Gabor 

wavelet, then we can generate a class of self-similar functions by means of appropriate translations, rotations and 

dilations: 
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where n Kθ π= , 0,1, , 1n K= −… and K is the total number of orientations, and 0,1, , 1m M= −…  and M 

is the total number of scales in the multiresolution decomposition. More implementation details refer to [34].  

The Gabor filter gmn gives a complex-valued function, decomposed by R I
mn mn mng g jg= +  into real and 

imaginary parts. Given the gray level distribution I0 of the original textured image, its Gabor wavelet 

representation is then defined to be the convolution of the image with a bank of Gabor filters 

2 2
0 0 0( ) ( ) ( )R I

mn mn mnI I g I g= ∗ + ∗  

A filter bank consisting of Gabor filters with different orientations and scales is usually used to extract the local 

image details. However, it contains many unavoidable drawbacks, for example, complexity both in memory and 

computational time involved in the convolution is high; low orientation texture discrimination when the number 

of the extracted orientation information is small; a rather large number of parameters need to fix manually. 

B. Structure Tensor 

The classical structure tensor [37] uses the tensor product of the smoothed image gradient to form the tensor, 
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and all channels in RGB color space are taken into account by summing the tensor products along the particular 

channels [40] 
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In above, Kρ  is a Gaussian kernel with standard deviation ρ , the subscripts x  and y  denote partial 

derivatives of the n-th channel of the image I , and N  is the total number of the channels. In the case of scalar 

images or vector-valued images, e.g., color images, we have 1N =  or 1N >  accordingly. Obviously the 

structure tensor yields only three feature channels for each scale without any parameters like 2θ π∈  in Gabor 

filers. Comparing the representation of local orientation provided by the structure tensor with that obtained by 

Gabor filters reveals that the discreteness and the degree of freedom for the orientation known from Gabor filters is 

replaced by the smoothed compact versions of the image derivatives. Apart from this, structure tensor can be 

computed more easily with less memory consumption and information redundancy, and the calculation is acceptable 

even though all channels are taken into account. Moreover, tensor algebra is a solid mathematical body that supports 

further analysis in the tensor domain [41] and can provide more complete information to discriminate different 

feature regions.  

 The smoothing with a Gaussian kernel makes the classic structure tensor suffer from the dislocation of edges, 

leading to inaccurate segmentation results near region boundaries. For example, most of the final objects contours 

obtained in [28] seem larger than the desired boundaries. We also experiment in Fig. 2 to justify this problem of 

standard Gaussian smoothing. To address this problem, nonlinear diffusion, a technique used to reduce the 

smoothing in the presence of edges, has been proposed to replace the Gaussian smoothing. It was introduced by 

Perona and Malik [33], and extended to vector-valued data by Gerig et al. [42] using  
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Above, ( 0)iu t =  is the i-th evolving vector channel of the structure tensor without Gaussian smoothing, and X is 

the total number of independent channels, g is a decreasing function. For applications, the following g is often used 

[43] 
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Above the small positive constant 310ε −=  is introduced to avoiding the division by zeros and the constant p is 

used to balance edge enhancement and smoothing. A larger p gives the better edge enhancement effect. However, 

a larger p requires a longer diffusion time to obtain an appropriate smoothing effect. A number of experimental 

results show that p=0.6 is a good compromise in practical applications. During the implementation of formula (4), 

explicit schemes are only stable for very small time steps, which lead to poor efficiency and limited practical use. 

Thus, we adopt the Additive Operator Splitting (AOS) scheme [44], which is stable for all time steps and can be 

computed at least ten times more efficient under typical accuracy requirements.  

 In segmentation methods such as active contours [26] and Graph Cuts technique [28], structure tensor has 

been widely used to represent the local orientation of the image. However, compared with the Gabor filters, the 

structure tensor used in [26, 28] reflects only the orientation information at a single scale and it fails to 

discriminate two textures that differ only in scale. In order to preserve the multi-scale property of the Gabor filters 

and the compact representing of orientation at a fixed scale, we shall introduce the MSNST which fusion the scale 

information to represent the texture feature of image.  

C. Multi-Scale Nonlinear Structure Tensor 

Multi-scale structure tensor was first defined by Scheunders [45] and named as multi-scale fundamental 

forms. It has been used for multispectral images fusion or merging, color images enhancing, and multivalued 

image noise filtering etc. To the best of our knowledge, this is the first time that MSNST has been applied to 

textured image segmentation.  

An extension towards multi-scale structure tensor can be obtained by using the non-orthogonal (redundant) 

discrete wavelet frameworks introduced by Mallat [46, 47]. Let θ (x, y) be a 2-D differentiable smoothing function, 

for instance the Gaussian function given by formula (1). Define two wavelet function using partial derivatives 

such that ( , ) ( , )x x y x y xψ θ= ∂ ∂  and ( , ) ( , )y x y x y yψ θ= ∂ ∂ . If we denote the dilated function sθ , x
sψ  

and y
sψ  at scale s in the manner of formula (2) with 0θ = , then the wavelet transform of the image I(x, y) in 

RGB color space has two components defined by 
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where S is the total number of scales in the multiresolution decomposition, and a can be set as 2 to decrease the 

computation and storage cost. Therefore, the proposed multi-scale structure tensor can be constructed using the 

tensor product of the gradient of ( )( , )sI x yθ∗  at each scale similar to (3) but without the Gaussian smoothing 
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as 
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where the notations of n and N follow the definition in formula (3). For real applications, a fast algorithm called 

“algorithme à trous” [47] has been developed to approximate this transform through filters associated with a set 

of one dimensional filters iteratively.  

 Finally, the MSNST is computed by applying (4) with initial conditions 2 2
1 ,
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= ∑  for different scale s=0,1,…,S-1, which is just like the nonlinear 

structure tensor does, to replace the Gaussian smoothing. We should notice that each scale is nonlinearly diffused 

separately, and each scale has three different channels and these three channels share the same decreasing function 

g as described in formula (4). In addition, the initial conditions 1µ , 2µ  and 3µ  are three coefficient images 

computed using the method mentioned above corresponding to each scale. Now we can use MSNST together with 

the color information to segment textured images by making use of not only the color information but also the 

orientations and scales of the texture information.  

III. INTEGRATING MSNST INTO GRABCUT FRAMEWORK 

Since only color information sometimes isn’t enough to discriminate the interest regions, effectively fusing 

texture feature will greatly increase the performance of image segmentation methods. There are many excellent 

works about texture segmentation or effective natural image segmentation integrating color and texture features. 

In this Section, how to integrate MSNST into GrabCut framework will be presented. The GrabCut algorithm 

includes two parts: the hard segmentation and border matting. The hard segmentation part consists of two steps. 

The first step is the iterative segmentation by simply placing a rectangle or a lasso around the object. The second 

step is a user editing process similar to [13] which is to refine the result. The border matting process is 

independent of the iterative segmentation process. More detail about the GrabCut framework can be found in [17]. 

Compared with the other interactive image segmentation method based on Graph Cuts [13, 15, 16], the essential 

advantage of GrabCut [17] is the simpler interaction, i.e., just placing a rectangle or lasso around the object. In 

this work, we focus on the iterative segmentation process of GrabCut and try to improve the performance of the 

iterative segmentation by integrating the multi-scale structure tensor into GrabCut framework. This will result in 
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even less user editing in the second step. Moreover, the integrated texture information is also helpful in the 

process of user editing operation.  

A. Distance Measure 

After the color feature and texture feature are extracted from image, we must choose suited distance 

measures so as to effectively discriminate these features, which is essential for the accuracy of image 

segmentation. 

Color features are extracted by representing each pixel with a three-dimensional color descriptor in a selected 

color space. Mostly, the Euclidean norm in RGB color space is employed [13, 15, 16, 17], but such a measure is 

notoriously unreliable for describing perceptually uniform and object boundaries [48]. Thus, in this work we 

choose to represent the color feature using L*a*b* color space which was shown to be approximately perceptually 

uniform by Wyszecki and Stiles [49]. However, it should be noticed that the Gabor filters are still computed using 

the grayscale values of image, and the classical structure tensor and our proposed MSNST are still extracted in 

RGB color space similar to [37, 40, 41].The L*a*b* color space is just used when the color features are computed.   

Inspired by the work of Grady et al. [48], the Conjugate norm developed in [31] was employed using the LPP 

technique as 

 = − = − −
C
( , ) ( ) ( )

T

T T
m n m n m n m nQ Q

dis I I I I I I Q Q I I             (8) 

where the subscript C  denotes that this formula is defined in the color domain and the other formulas follow this 

definition, and the subscripts m and n denote two different points in the L*a*b* color space, and Q is a matrix of size 

3 3× . More implementation details refer to the LPP algorithm [31]. The advantages of LPP are linearity, 

generalization beyond the “training” points and robustness to outliers. These properties are helpful to distinguish 

object boundaries accurately.  

To get good texture feature, each pixel is represented with the MSNST Γ , which is described in Section 

II-C as a set of matrixes of size 22× . The number of elements in Γ  is the number of scales of the MSNST. 
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and the “hat” denotes that the corresponding 

component has been nonlinearly diffused. One key factor in the tensor space analysis is a proper choice of tensor 

distance norm to measure similarity or dissimilarity between tensors and compute the tensor mean. The authors of 
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[26, 50] draw reduction of the full tensor to a single scalar, but lose much of the discriminating power. Notice that 

in [27, 51] the Frobenius norm was used, which relies on a very restrictive hypothesis. Taking into account the 

Riemannian structure of the tensor space, [52, 53] produce more accurate estimates of the tensor statistics. 

However, there is no closed form defined for the mean tensor which needs to be computed by using the gradient 

descent algorithm. Meanwhile, it is complicated to estimate the tensor statistics in Riemannian space when 

respecting the multi-scale structure and analyzing the Gaussian mixture distributions. In our proposed method, for 

easier implementation and more efficient computation we use the symmetric KL divergence [30] as a 

low-dimensional approximating of the full distribution in Riemannian space, which proved to be robust and 

discriminative enough in [27, 29, 30]. It naturally follows from the physical phenomena of diffusion and interprets 

the symmetric positive definite tensor as the covariance matrix of local Gaussian distribution, then defines the 

dissimilarity measure grounded in concepts from information theory. Although losing some discriminating power 

compared with the Riemannian measure, it still has the property of being affine invariant and offers the 

advantages of solving in closed form and computationally tractable. Additionally, our reliance on the MSNST 

feature and GMM statistics is quite robust and could be compensating although less discriminating. The 

experimental result (Fig. 7) verifies that our choice of a low-dimensional parametric representation is robust 

enough. The tensor distance for MSNST can be defined as the square root of the sum of the symmetric KL 

divergence for all scales, which have a very simple form [30] given by 
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Above ( )tr ⋅  is the matrix trace operator, the other notations follow the definitions of (8) but in the MSNST 

space with texture domain.  

B. Initial Clustering 

In order to establish the GMMs, the initial foreground and background produced by placing a rectangle or a 

lasso around the object must first be classified into KC clusters based on the color feature and KT clusters based on 

the texture feature respectively. Then we will create a total of 2×(KC + KT) Gaussian components. Note that KC 

doesn’t necessary equal to KT and the clustering result in color space isn’t necessary identical to that in texture 

space. The two clustering processes are independent of each other. How to choose the initial clustering algorithm 

and which algorithm to be employed isn’t clarified in [17]. However, in our experiments, the initial clustering 

results are shown to be important to the performance and efficiency of the iterative segmentation in GrabCut. The 

tight and well-separated clusters will be helpful to the accuracy and efficiency of the iterative segmentation 
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process in GrabCut. The better the initial clustering is, the more accurate the iterative segmentation is and the less 

the iterative time is.  

There is a wide variety of excellent algorithms that could be used for the initial clustering, such as k-means 

and the improved version fuzzy c-means, and so on. Guided by Ruzon and Tomasi [54] and Chuang et al. [55], we 

use the binary tree quantization algorithm described by Orchard and Bouman [56] in color domain. In this work, 

color feature is extracted in L*a*b* color space as mentioned before. This algorithm starts with all pixels in a 

single cluster, and then calculates the mean value and covariance matrix of color over the cluster. This is then 

repeated to find in the resulting clusters whose covariance matrix has the largest eigenvalue and split it by using a 

function of the associated eigenvector as the split point until the desired number of clusters is achieved. For large 

clusters with Gaussian distributions it can be shown that this strategy is optimal [56]. However, in MSNST texture 

space, the extracted texture feature is regarded as matrix value but not vector value, and it is hard to define the 

matrix values’ covariance matrices of the Gaussian approximation over regions due to the fact that we employ KL 

divergence but not the Riemannian manifold to measure the distances. Therefore, we must choose another 

clustering algorithm. Inspired by the work of Li et al. [15], we extend the k-means method by using formula (10) 

as a chosen distance measure and using formula (11) to calculate the cluster centre.  

C. Energy Function 

To define the Probability Density Function (PDF) of the extracted features, we follow the practice that is 

already used in [17] to construct the GMMs in color domain, the only difference is the color space applied: RGB 

is used in [17] and we use L*a*b*. For each GMM, there are KC components and each component has three 

parameters, i.e. the vector-valued mean µC, the symmetric positive definite full-covariance matrix ΣC and a 

real-valued mixture weighting coefficient πC. More details refer to [17]. In MSNST texture space, we extend to 

use GMMs to model the statistics of MSNST feature analogously. Therefore, we can integrate the texture 

information appropriately into the GrabCut framework and ensure good expandability of the framework. 

Moreover, the color and MSNST features can be effectively fused into a unified energy function so that the good 

performance revealed by the traditional GrabCut method [17] can be completely inherited. Note that both the 

color GMMs and texture GMMs are created based on the initial clustering or learned from the previous 

segmentation in the iterative process. 

To define the mean value of a MSNST field Γ  over a region R using KL distance measure has a closed 

form [30] given by 

{ }0 1 1( , ) ( , ), ( , ), , ( , )T T T T SR R R R−=M M T M T M T…Γ             (11) 
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where { }1 1

0,1, , 1
( , )T s s s s s s

s S
R − −

= −

⎡ ⎤= ⎢ ⎥⎣ ⎦
M T B B A B B

…
, = ( )s sR

x dx∫A T  and 1= ( )s sR
x dx−∫B T . 

However, it is hard to define the covariance matrices as described in Section III-B. To address this problem, we 

follow the idea of [38] which gives the definition of variance in the Riemannian manifold case, and define the 

variance σ 2
T

 of random variables over region Ω
T

 in the MSNST space as the expected value of the squared 

KL distance from the mean tensor, which is given by  

2 21 ( , )
T

TT T x
T

dis dxσ
Ω

=
Ω ∫ MΓ                             (12) 

Therefore, each GMM in texture domain, one for the background and one for the foreground, is taken to be a 

general Gaussian density mixture analogous to the 1-D situation with TK  components in the MSNST texture 

space. For each component, there are also three parameters, i.e. the mean value TM (a set of matrixes of size 

22× ), variance σ 2
T

(a real) and weight π
T

(a real), where π
T

 can be easily obtained by computing the 

percentage between the number of points in this component and the number of all the points in the foreground or 

background.  

The GMMs approximation is very robust for color channels as various experimental results have been shown 

for the original GrabCut [17]. When it is combined with the proposed approach for the MSNST field, the method 

can deal with a much larger range of images. In order to take into account the both extracted features, the general 

energy function is proposed as follows 

 ( ) ( ) (1 ) ( )C TE E Eα ξ α ξ α= + −                                (13) 

where α  denotes the assigned label, with 0 for background and 1 for foreground, and ξ  is the mixing factor 

used to balance the relative weights of the color and texture based energy terms. 

The color based energy term ( )CE α  takes the following form 

 [ ] [ ]

[ ] ( ){ }

3
1

T 1

1 2
C

( , )

1( ) log ( , ) exp
(2 ) ( , )

1 ( , ) ( , ) ( , )
2

( , ) exp ( , )
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C C u
u U k C u

u C u C u u C u

m n C C m n
m n

E k
k

I k k I k

dis m n dis I I

α π α
π α

µ α α µ α

α α γ β τ

∈ =

−

−

∈

⎧⎪= − ×⎨
Σ⎪⎩

⎫⎛ ⎞− − Σ − ⎬⎜ ⎟
⎝ ⎠⎭

+ ≠ − +

∑ ∑

∑
N

          (14) 

where α( , )
u

k  denotes the k-th component of foreground GMM when α = 1
u  or background GMM when  
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α = 0
u  for each vertex u U∈ , U  represents the vertices located in the supplied rectangle, N is the set of 

pairs of neighboring pixels, τ  is the denoising constant we newly include, other notations follow the original 

paper [17]. 

The texture based energy term ( )TE α  is defined as 

 

[ ] ( ){ }

2

22
1

1 2

( , )

( , ) ( , ( , ))( ) log exp
2 ( , )2 ( , )

( , ) exp ( , )

TK
TT u T u u

T
u U j T uT u

m n T T T m n
m n

j dis jE
jj
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π α αα
σ απσ α

α α γ β τ

∈ =

−

∈

⎧ ⎫⎛ ⎞⎪ ⎪= − −⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭

+ ≠ − +

∑ ∑

∑
N

MΓ

Γ Γ

            (15) 

We can adaptively set β
C

 and β
T

 during segmentation to be 

β β

− −

∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
1 1

2 2
C

( , ) ( , )

( , ) ( , )

2 2
m n T m n

m n m n

C T

dis I I dis

andN N

N N

Γ Γ
     (16) 

where N  denotes the number of pairs in the set N . 

D. Adaptive Fusion 

 In previous works [26] and [28], the color and texture are approximate equally weighted as 0.5ξ =  by 

simply augmenting the feature vector, which make the mixing factor can not be adjusted efficiently and robustly 

to reduce the negative side effect. This will make the discriminating power of main feature decrease especially for 

the boundaries with low contrast. Although color is the main feature when dealing with natural images, in many 

important cases, texture information is often a more appropriate discriminating feature when the foreground and 

background differ more distinct in texture. Therefore, effectively fusing the two features will greatly improve the 

performance of the algorithm to segment natural images. To achieve this goal, we can set this parameter manually 

based on the experience of the user. However, to maximize robustness, an ideal system should adaptively adjust 

the mixing factor. A mixture fusion technique is proposed in [41], which adjusts this parameter depending on the 

relative discriminative power of texture and color terms. In order to reflect that of texture term, [41] assumes that 

the foreground and background satisfy the single Gaussian distribution with zero mean and mean tensor as 

covariance matrix, then computes the relative weight using the overlapping between both distributions. With 

respect to color term, Euclidean distance between the mean color values of foreground and background is 

employed.  

In this paper, we can adaptively mix two models only according to the main feature of color and don’t need 
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to measure the discriminative power of both feature terms so as to avoid adjust normalizing factor. In order to 

measure the discriminative power in color space, we follow the idea of considering the PDFs in both foreground 

and background regions and compute their KL distance as [19]. A large value for that distance means that the 

foreground and background features can be well separated. However, in our case the image is represented by a 

continuous probabilistic framework based on GMM but not single PDF, and there is no closed form expression for 

the KL divergence between two GMMs. In this paper, we adopt an approximation of the KL divergence between 

two GMMs models [39] 

 
{1, , }1

( ) min ( ( ) log )
F

B

FK
F B F F B k

k k i Bi Kk i

KL GMM GMM KL N N ππ
π∈=

= +∑
…

            (17) 

Here, the superscripts F and B denote the corresponding variables belong to foreground or background 

respectively, and F
kN  and B

iN  are the k-th component of foreground GMM and the i-th component of 

background GMM respectively. The KL divergence between F
kN  and B

iN  can be computed in L*a*b* color 

space as   

 

, 1
, , , ,

,

1
, , , , ,

1( ) (log (( ) )
2

( ) ( ) ( ))

B
C iF B B F

C C k C i C i C kF
C k

F B T B F B
C k C i C i C k C i

KL N N tr

µ µ µ µ

−

−

Σ
= + Σ Σ +

Σ

− Σ −

            (18) 

where ( )tr ⋅  is the matrix trace operator, see [39] for more details. 

Consequently, our adaptive estimation of ξ  can be designed to be 

 ( )1 exp ( , ) /
C

F B
C C C KLKL GMM GMMξ σ= − −             (19) 

where 
CKLσ  is a parameter to control the influence of CKL , which can be used to balance the relative weights of 

texture and color terms. If the foreground and background color can be well separated, i.e., CKL  is large, then ξ  

is set to be large and the result will mainly rely on the color-based term. Otherwise, ξ  is small and the 

texture-based term will make more contribution. 

E. Iteration Convergence Criterion 

 The minimum of the general energy E(α) will yield a globally optimal segmentation for the current iteration 

of the iterative process or for the refine editing. In the process of iterative segmentation, when does the 

convergence happen? The straightforward criterion is to check whether the labels assigned to the pixels of image 

change or not after the iteration. However, it is often a waste of computing resources and prone to vibration. In 
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this paper, an adaptive criterion can be defined as the KL distance between the current foreground and background 

in both color and texture fields, ( )T
C TKL KL=KL . The iteration automatically terminates when the following 

formula holds 

 Λ Λ σ−− ≤ −
2 2

1 1 0
KL KL KL KL              (20) 

where ΛKL  indicates the vector composed of CKL  and TKL  at the Λ-th iteration, especially 
0

KL  

indicates the KL distance between the initial foreground and background formed by the rectangle placed around 

the object by user, and σ  is a decreasing coefficient which can be used to control the convergence speed and 

segmentation accuracy. Obviously, Λ ≥ 2 . The first Λ satisfying the constraint (20) gives the iterative 

numbers. The computation of TKL  is similar to CKL  by (17). However, the component of GMMs in MSNST 

texture space is defined as a general Gaussian density analogous to the 1-D situation, thus the KL divergence 

between F
kN  and B

iN  can not be computed using (18). Fortunately this situation is a special case of the 

generalized Gaussian density (GGD) [36], where the shape parameter is fixed and equals to 2. Then we can get the 

following closed form for the KL divergence between them in MSNST texture space  

 
2 2

, ,
, , 2 2

, ,

( ) ( )1( ) (log 1)
2 ( ) ( )

B F
T i T kF B

T T k T i F B
T k T i

KL N N
σ σ
σ σ

= + −              (21) 

Since CKL  can be computed by (19) for dynamically adapting the relative weight, we only need to compute 

TKL  additionally, which is easy to compute using formula (21). A number of experiments show that this strategy 

can reduce the time of the iteration dramatically with satisfied segmentation accuracy. 

IV. EXPERIMENTAL RESULTS 

In this section, a large set of color images with natural scenes have been used to test the performance of the 

proposed method. The compared experiments using the synthesized texture images and the real images based on 

GrabCut framework between MSNST and Gabor wavelet with different scales are carried out to reveal the 

powerful texture discriminating capability of MSNST. The comparison between different texture and color 

measures also demonstrates that the selected texture distance measure (KL measure) and color distance measure 

(Conjugate norm) can distinguish the regions more effectively than the usually used Euclidean measure. We also 

experimentally demonstrate that the KL measure is robust enough compared with the Riemannian measure for our 

reliance on the GMM statistics. Moreover, the effects of Section III-D and Section III-E are experimentally 

justified in this section. Finally, we conduct a number of compared experiments using the real images to 
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demonstrate the superiority of the proposed method integrating the MSNST texture feature and color feature in 

GrabCut framework. 

We employ the publicly available implementation of Gabor filters [34] and Maxflow Graph Cuts [14] in our 

experiments and build the whole system in c++. In order to simplify the user interaction and make the comparison 

more accurate, the initial “incomplete labelling” is supplied by a rectangle but not a lasso, and every group of the 

compared experiments share the same rectangle. Moreover, in all the experiments we only compute three 

orientations for each scale for Gabor filters as MSNST yields only three feature channels for each scale. Since the 

classical structure tensor is the special case of MSNST whose scale is one, in our experiment we denote the 

classical structure tensor as MSNST with one scale. It should be noticed that for most of the experiments expect 

for Fig. 11 only the iterative segmentation process of GrabCut framework has been used in this paper, which is the 

main advantage of the GrabCut method compared with the other interactive segmentation methods based on 

Graph Cuts and leads to simpler user interaction and better segmentation performance.  

There are a number of parameters that must be appropriately determined for the implementation of the 

proposed method. Parts of the default values for these parameters have been given when we described the 

corresponding algorithms. For the point of clarity and integrity, we give the description of the parameters setting 

again. The implementation of the Gabor filters is the same as in [34], where the lower and upper center 

frequencies of interest are set 0.05 and 0.4 respectively and the radius is chosen as 60 to build the filter 

coefficients for the convolution. The parameters ε  and p in formula (5) are fixed as 0.001 and 0.6, respectively. 

When implementing the nonlinear diffusion (4) using the AOS scheme, the time step and the number of steps are 

held as 5000 and 2 respectively in all the experiments. The parameters KC and KT in formula (14) and (15) denote 

the number of components in the GMMs for color and texture, respectively. The both parameters are always 

chosen as 5. The γ
C

 and γ
T

 in formula (14) and (15) are used to control the smoothness of color and texture, 

respectively. We fix them as 5 in all the experiments. The denoising constant τ  in formula (14) and (15) is fixed 

as 2.5. The 
CKLσ  in formula (19) controls the adaptive mixing factor and can be set as 10 by optimizing 

performance against ground truth over a training set of more than 20 images. The σ  in formula (20) influences 

the speed of terminating and can be simply set as 0.01 for all the images. 

The first experiment is that of a synthesized texture image with five different textures in Fig. 2, we display 

the obtained multi-scale structure tensor and justify the problem of standard Gaussian smoothing and the 

superiority of nonlinear diffusion. The original texture images are from the Brodatz texture database, and we set 
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the standard deviation as 3 similar to [28] when applying the Gaussian smoothing. In this experiment, no color 

information is used so that we can obtain more convictive comparison. The results in the first six columns of Fig.2 

show that the second scale of structure tensor has more powerful discriminating capability than the first scale, and 

the nonlinear diffusion with a more superior performance compared with the standard Gaussian smoothing in 

terms of denoising and preserving of edges. In addition, the final segmentations demonstrate that the standard 

Gaussian smoothing really suffers from the dislocation of edges while nonlinear diffusion performs better. 

In Fig.3-5, we test the texture region discriminating capability of different texture features and their different 

distance measures based on GrabCut framework using the synthesized texture. In the three experiments, only 

texture feature is considered and color information isn’t used so that we can obtain more accurate comparison 

between different texture descriptions with changing scales and between different texture distance measures. All 

the textures used to synthesize the experimental images in Fig. 3-5 are of the same type respectively, and only 

differ in the orientation and scale. The five texture regions in the test image of Fig. 3 only differ in orientations 

and have the same scales, and the orientation differences between the five texture regions are at most π/9. The 

results in Fig. 3 show that the structure tensor has more powerful orientation discriminating capability and 

MSNST texture with only one scale can distinguish the texture region better than the Gabor filters with three 

scales. The main reason for this is that the Gabor filters selected by us include only three orientations. This means 

that they can only deal with the orientation difference which is bigger than π/3 when the scale is one. But in the 

synthesized texture images, the orientation differences between the five texture regions are at most π/9, which 

Fig. 2 The compared results between Gaussian smoothing and nonlinear diffusion for different channels (the first six columns 

from left to right given by T0(1,1), T0(2,2), T0(1,2), T1(1,1), T1(2,2) and T1(1,2)) of multi-scale structure tensor and the final 

segmentations (the last column). Row 1 shows the obtained multi-scale structure tensor and the original image; Row 2 shows the 

corresponding results by Gaussian smoothing and the final segmentation; Row 3 shows the corresponding results by nonlinear 

diffusion and the final segmentation. 
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Fig. 4 (a) Gabor wavelet with one scale; (b) Gabor wavelet with two scales; (c) Gabor wavelet with three scales; (d) MSNST 

with one scale using Euclidean measure; (e) MSNST with one scale using KL measure; (f) MSNST with two scales using 

Euclidean measure; (g) MSNST with two scales using KL measure; 

(a) (b) (c) 

(d) (e) (f) (g) 

Fig. 5 (a) Gabor wavelet with one scale; (b) Gabor wavelet with two scales; (c) MSNST with one scale using 

Euclidean measure; (d) MSNST with one scale using KL measure; (e) MSNST with two scale using Euclidean 

measure; (f) MSNST with two scales using KL measure. 

(a) (b) 

(c) (d) (e) (f) 

Fig. 3 (a) Gabor wavelet with one scale; (b) Gabor wavelet with two scales; (c) Gabor wavelet with three scales; (d) 

MSNST with one scale using Euclidean measure; (e) MSNST with one scale using KL measure;  

(a) (b) (c) (e) (d) 
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makes the Gabor filters fail when the scale is one or two (see Fig. 3(a, b)). Until the scale increases to 3 (see Fig. 

3(c)) the Gabor filters can roughly discriminate the texture object with inaccurate boundary. The results reveal that 

the structure tensor can describe the orientation information of textures more effectively than the Gabor filters, 

and actually can represent the whole orientation space of textures, as just like mentioned above. The compared 

results between Fig. 3(d) and 3(e) show that the KL divergence is more suited to discriminate MSNST texture 

feature than the Euclidean measure.  

The five texture regions in the test image of Fig. 4 only differ in scales and have the same orientations. The 

Gabor filters can roughly discriminate the texture object with inaccurate boundary until the scale increases to 3 

(see Fig.4(c)). The classical structure tensor [28], i.e. MSNST with one scale (in Fig.4(d, e)), has no way to 

separate the texture object, and the MSNST with two scales using the KL divergence works well, and can extract 

the object perfectly (in Fig.4(g)). In the synthesized texture image on Fig. 5, the five texture regions differ in both 

orientations and scales. As the difference between the five texture regions is more distinct than in Fig. 3 and 4, the 

Gabor filters with two scales can roughly discriminate the texture object (see Fig.5(b)), but MSNST with two 

scales using the KL divergence gives more prefect result (see Fig. 5(f)). Moreover, the Gabor filters with one scale 

( Fig. 5(a)) completely fail to distinguish anything, just like in Fig. 3(a) and Fig. 4(a), which is much worse than 

MSNST with one scale does. Therefore, using the MSNST texture can obtain better results with less feature        

(a) Gabor wavelet with one scale (b) Gabor wavelet with two scales 

Fig. 6 The compared experimental results based on different texture features, no color information is used. 

(c) MSNST with one scale using Euclidean measure (d) MSNST with one scale using KL measure 

(e) MSNST with two scales using Euclidean measure (f) MSNST with two scales using KL measure 
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channels than the Gabor filters. The compared results in Fig. 4 and 5 also reveal that the KL divergence is more 

suited to discriminate the MSNST texture feature than the Euclidean measure. 

Fig. 8 The compared results between different color space and color distance measure. Just color information is 

used. Top: RGB + Euclidean norm; Bottom: L*a*b* + Conjugate norm. 

(a) The segmentations at successive iterations from left to right using KL measure. 

(b) The visualizations of GMMs for tensors corresponding to (a). 

(c) The segmentations at successive iterations from left to right using Riemannian measure. 

(d) The visualizations of GMMs for tensors corresponding to (c). 

Fig. 7 The compared results between KL measure and Riemannian measure with one scale MSNST for our 

reliance on the GMM statistics, no color information is used.  



 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even though synthetic images allow us to precisely demonstrate the goodness of the segmentation method 

and enable a direct comparison with related approaches, the use of real-world images is more interesting and can 

also provide insight into the segmentation performance. The test results of the real-world images shown in Fig. 6 

also demonstrate the superiority of the MSNST texture with the KL divergence. In addition, in order to verify that 

our choice of KL measure is robust enough compared with the Riemannian measure, we try mapping our MSNST 

using the procedure in [28] and constructing the GMM statistics of tensors following the ideas of [52, 53] 

respecting the Riemannian structure in Fig.7. The compared results in Fig. 7 demonstrate that with the iterations 

going on, our choice of KL measure can still robustly separate the foreground GMM (blue) from the background 

(a) An example with texture as main feature. 

Mixing Factor

0.0

0.2

0.4

0.6

0.8
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1 2 3

Mixing Factor

0.0

0.2

0.4

0.6

0.8

1.0
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Fig. 9 The first column of (a) and (b) shows the results of fixing the mixing factor at 0.5; the 

middle column shows the results of our proposed adaptive fusion strategy; the last column 

shows the computed fixing factors at successive iterations respecting to the adaptive fusion. 

(b) An example with color as main feature. 

(b) The differential KL value changes at successive iterations. (c) The energy value changes at successive iterations. 

Differential KL Value

1 4 7 10 13 16 19

Energy Value

1 4 7 10 13 16 19

(a) The segmentations at successive iterations from left to right. 

Fig. 10 The displaying of segmentations, differential KL values and energy values at successive iterations. 
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GMM (red) in tensor space gradually like the Riemannian measure does, the foreground/background labelling 

becomes more and more accurate and nearly the same final segmentation results are obtained with little difference. 

However, the computation of Riemannian measure is at least 5 times slower than the using of a low-dimensional 

parametric representation such as KL divergence in our implementation. Therefore, for easier implementation and 

more efficient computation, the KL measure is chosen in our method since it is robust enough with our reliance on 

the GMM statistics for compensating. Notice that all these examples in Fig.6 and Fig.7 were performed using only 

the texture feature and no color information was used. For the convenience of visualizing the MSNST GMMs in 

the limited visualizing space, we only include one scale MSNST in Fig. 7 and the mean tensor manifolds are first 

mapped to a Euclidean tangent plane around the identity similar to [53]. 

The experiments presented in Fig. 8 give the comparison between different color feature spaces and color 

distance measures. We compare the color feature discriminating capability between RGB space + Euclidean norm 

used in the original GrabCut [17] and L*a*b* space + Conjugate norm used in our method. Note that these 

examples were performed using only the color information without any textured feature included. In the three test 

images in Fig. 8, all the objects surrounded by the rectangle given by user include the boundary with low contrast, 

which is difficult to completely determine by using the RGB color space and the Euclidean norm. However, by 

using the L*a*b* color space and the Conjugate norm, we can obtain more accurate results. We should notice that 

when the foreground and background have quite discriminative color distributions, there is little difference 

between these two strategies. But for the images with low contrast boundary like that in Fig. 8, our method is 

more robust and accurate than the traditional GrabCut when dealing with color natural images. 

In Fig. 9, our proposed adaptive fusion strategy in Section III-D was tested against fixing the mixing factor at 

0.5. Except for the mixing factor, the other parameters are set the same as described above. We include two 

extreme examples, one with texture as main feature and the other with color as main feature. The experimental 

results demonstrate the robustness of this strategy to estimate the main feature and obtain more accurate 

segmentations. When fixing the mixing factor at 0.5, Fig. 9(a) fails to segment the expected object because too 

much useless color information is included, while in Fig. 9(b) because too much useless texture information is 

included the segmentation accuracy isn’t very good. However, our fusion strategy can estimate the main feature 

and the approximate percentage, and reduce the negative side effect of including too much useless information. 

In order to display the iterative process and justify the effect of our proposed new iteration convergence 

criterion in Section III-E, we show the iterative process of the zebra image in the first row of Fig.10. The results in 

Fig. 10(b) and Fig. 10(c) show that the proposed iteration convergence criterion is identical to the energy 

decreasing process, and can estimate the convergence robustly. If we use the changes of labelling as the criterion 
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like [17] does, the algorithm will converge after over 19 iterations. However, our proposed method terminates 

after 4 iterations with satisfied segmentation accuracy. Therefore, the computational efficiency is greatly 

enhanced. 

The experiments in Fig. 11 compare the proposed method with the original GrabCut [17]. In the proposed 

method, we integrate the MSNST texture feature into the GrabCut framework. The color feature is represented by 

using the L*a*b* color space with the Conjugate norm and the texture feature is represented by using the MSNST 

feature with two scales and the KL divergence. The parameters are set as described above and the color feature 

and texture feature are adaptively fused by the scheme introduced in Section III-D. The comparison process 

includes the iterative segmentation process and the further refining by user editing. Notice that in the refining 

Fig. 11 The systematical compared experimental results between GrabCut [17] and our method for all the stages on two 

real-world images. (a) zebra. (b) leopard. The left of (a) and (b) shows the results of the GrabCut [17] and the right of (a) and (b) 

shows the results of the proposed method. Row 1 shows the original images with the rectangle around the object; Row 2 shows 

the results of iterative segmentation process; Row 3 shows the marks for the refining which are placed by user; Row 4 shows the 

result of the refining process; Row 5 shows the last object regions 

(a) (b) 
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Fig. 12 The compared experimental results between the GrabCut [17] and our method. All the images come from the Berkeley 

Segmentation Dataset [35]. The colomn 1 and 3 are the results by GrabCut [17], and the colomn 2 and 4 are the results by our 

method. 
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process of the proposed method, we still use the integrated feature description just like the iterative process does. 

This makes the refining process of the proposed method also more effective than that of the original GrabCut [17]. 

In Fig. 11 two groups of the comparing experimental results are shown: the one is a zebra (Fig.11(a)) and the other 

is a leopard (Fig. 11(b)). From the results, we can find that the proposed method can get better iterative 

segmentation results. Thus, in the refining stage (in row 3 and 4), the proposed method can get the prefect results 

by adding less refining strokes. Moreover, from the final results (in row 5), the boundaries of the object regions 

are more accurate and smoother by the proposed method than by the original GrabCut [17]. This demonstrates that 

the MSNST texture feature is very essential to segment the images with rich texture information. 

A number of comparing experimental results are shown in Fig. 12 using the images from the well known 

Berkeley Segmentation Dataset (BSDS) [35]. The selected feature spaces and distance measures of color and 

texture information and the parameters setting are the same as the experiments in Fig.11. The comparison between 

the proposed method and the original GrabCut method [17] includes only the iterative segmentation process with 

the same initialized rectangle placed by user. The results in Fig. 12 demonstrate the superiority of the proposed 

method.  

V. CONCLUSION 

An interactive color image segmentation method integrating MSNST texture feature based on the GrabCut 

framework is proposed to achieve an improved segmentation performance. We propose to exploit the MSNST to 

describe the texture feature of images in such a way that not only the orientation texture difference can be dealt 

with effectively, but also the scale problem is overcome perfectly. Applications of our method to synthetic texture 

images show that it is more powerful to discriminate the texture objects than the Gabor filters and the classical 

structure tensor [28]. The energy function for the iterative process of the GrabCut method is constructed based on 

the adaptively integrated L*a*b color and MSNST texture features by extending the color GMM used in [17] to 

MSNST texture with more discriminating distance measures, such as the Conjugate norm for color and the 

symmetric KL divergence for MSNST. The performance comparison between the proposed method and the 

original GrabCut method [17] is conducted using a large set of color images with natural scenes. The comparison 

demonstrates that the proposed method can achieve more superior interactive image segmentation results by 

simply placing a rectangle around the objects of interest so that the further user refining is less or even not needed. 

As future work, we would like to improve the ideas of [52, 53] and solve the GMM statistics respecting the 

Riemannian structure in closed form or speed it up, which will let us design a more discriminative and more 

computationally practicable segmentation process. 



 27

REFERENCES 
[1] H. D. Cheng, X. H. Jiang, Y. Sun and J. Wang, "Color image segmentation: advances and prospects", Pattern 

Recognition, vol.34, pp. 2259-2281, 2001. 
[2] E. N. Mortensen, "Simultaneous Multi-Frame Sub-pixel Boundary Definition using Toboggan-Based 

Intelligent Scissors for Image and Movie Editing", Ph.D. Thesis dissertation, Department of Computer Science, 
Brigham Young University, Provo, UT., 2000. 

[3] D. H. Ballard and C. M. Brown, Computer Vision, Prentice Hall Professional Technical Reference, 1982. 
[4] J. T. Tou and R. C. Gonzalez, Pattern recognition principles, Addison-Wesley Reading, Mass, 1974. 
[5] L. J. Reese, "Intelligent Paint: Region-Based Interactive Image Segmentation", Master's thesis, Brigham 

Yound University, 1999. 
[6] M. Sonka, V. Hlavac and R. Boyle, Image processing, analysis, and machine vision. 2nd, vol.770. Pacific 

Grove, CA: PWS Publishing, 1999. 
[7] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming, Princeton: NJ: Princeton University Press, 

1962. 
[8] N. Xu, N. Ahuja and R. Bansal, "Object segmentation using graph cuts based active contours", Computer 

Vision and Image Understanding, vol.107, pp. 210-224, 2007. 
[9] E. N. Mortensen and W. A. Barrett, "Intelligent scissors for image composition", Proc. ACM Siggraph, pp. 

191-198, 1995. 
[10] S. Wang and J. M. Siskind, "Image segmentation with ratio cut", IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol.25, pp. 675-690, 2003. 
[11] Z. Wu and R. Leahy, "An optimal graph theoretic approach to data clustering: theory and its application to 

image segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, pp. 1101-1113, 
1993. 

[12] J. Shi and J. Malik, "Normalized cuts and image segmentation", IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol.22, pp. 888-905, 2000. 

[13] Y. Boykov and M. P. Jolly, "Interactive graph cuts for optimal boundary and region segmentation of objects 
in N-D images", Proc. International Conference on Computer Vision, pp. 105-112, 2001. 

[14] Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy 
minimization in vision", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, pp. 
1124-1137, 2004. 

[15] Y. Li, J. Sun, C. K. Tang and H. Y. Shum, "Lazy snapping", Proc. SIGGRAPH Conference, pp. 303-308, 
2004. 

[16] Y. Boykov and G. Funka-Lea, "Graph cuts and efficient N-D image segmentation", International Journal of 
Computer Vision, vol.70, pp. 109-131, 2006. 

[17] C. Rother, V. Kolmogorov and A. Blake, "GrabCut: interactive foreground extraction using iterated graph 
cuts", ACM Transactions on Graphics (TOG), vol.23, pp. 309-314, 2004. 

[18] H. Lombaert, Y. Sun, L. Grady and C. Xu, "A multilevel banded graph cuts method for fast image 
segmentation", Proc. International Conference on Computer Vision, 2005. 

[19] J. Cardelino, G. Randall and M. Bertalmio, "An Active Regions Approach for the Segmentation of 3D 
Biological Tissue", Proc. IEEE International Conference on Image Processing, pp. 277-280, 2005. 

[20] G. R. Cross and A. K. Jain, "Markov Random Field Texture Models", IEEE Transactions on Pattern 
Analysis andMachine Intelligence, vol.5, pp. 25–39, 1983. 

[21] B. S. Manjunath and R. Chellappa, "Unsupervised texture segmentation using Markov random field models", 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, pp. 478-482, 1991. 

[22] C. Bouman and B. Liu, "Multiple resolution segmentation of textured images", IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol.13, pp. 99-113, 1991. 



 28

[23] B. G. Kim, J. I. Shim and D. J. Park, "Fast image segmentation based on multi-resolution analysis and 
wavelets", Pattern Recognition Letters, vol.24, pp. 2995-3006, 2003. 

[24] B. Sandberg, T. Chan and L. Vese, "A level-set and Gabor-based active contour algorithm for segmenting 
textured images", Mathematics Department, UCLA, Los Angeles, USA, Technical Report 39, 2002. 

[25] C. Sagiv, N. A. Sochen and Y. Y. Zeevi, "Texture segmentation via a diffusion-segmentation scheme in the 
gabor feature space", Proc. Texture 2002, 2nd International Workshop on Texture Analysis and Synthesis, pp. 
123-128, 2002. 

[26] M. Rousson, T. Brox, R. Deriche, O. I. Projet and F. Sophia-Antipolis, "Active unsupervised texture 
segmentation on a diffusion based feature space", Proc. IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, 2003. 

[27] Z. Wang and B. Vemuri, "Tensor field segmentation using region based active contour model", Proc.  
European Conference on Computer Vision, pp. 304-315, 2004. 

[28] J. Malcolm, Y. Rathi and A. Tannenbaum, "A graph cut approach to image segmentation in tensor space", 
Proc. Workshop on Component Analysis Methods (CVPR), pp. 18-25, 2007. 

[29] Y. T. Weldeselassie and G. Hamarneh, "DT-MRI segmentation using graph cuts", Proc. SPIE, pp. 1-9, 2007. 
[30] Z. Wang and B. C. Vemuri, "An affine invariant tensor dissimilarity measure and its applications to 

tensor-valued image segmentation", Proc. IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, pp. 228-233, 2004. 

[31] X. He and P. Niyogi, "Locality Preserving Projections", Proc. Advances in Neural Information Processing 
Systems 16(NIPS 2003), 2003. 

[32] J. G. Daugman, "Complete discrete 2-D Gabor transforms by neural networks for imageanalysis and 
compression", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, pp. 1169-1179, 1988. 

[33] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion", IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol.12, pp. 629-639, 1990. 

[34] B. S. Manjunath and W. Y. Ma, "Texture features for browsing and retrieval of image data", IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol.18, pp. 837-842, 1996. 

[35] D. Martin, C. Fowlkes, D. Tal and J. Malik, "A Database of Human Segmented Natural Images and Its 
Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", Proc. Eighth Int'l 
Conf. Computer Vision, pp. 416-423, 2001. 

[36] M. N. Do and M. Vetterli, "Wavelet-based texture retrieval using generalized Gaussian densityand 
Kullback-Leibler distance", IEEE Transactions on Image Processing, vol.11, pp. 146-158, 2002. 

[37] J. Bigun, G. H. Granlund and J. Wiklund, "Multidimensional orientation estimation with applications to 
texture analysis and optical flow", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, pp. 
775-790, 1991. 

[38] P. T. Fletcher and S. Joshi, "Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion 
Tensors", Proc. ECCV Workshops CVAMIA and MMBIA, pp. 87-98, 2004.  

[39] J. Goldberger, S. Gordon and H. Greenspan, "An efficient image similarity measure based on approximations 
of KL-divergence between two gaussian mixtures", Proc. CVPR, pp. 487-494, 2004. 

[40] Z. S. Di, "A note on the gradient of a multi-image", Computer Vision, Graphics, and Image Processing, 
vol.33, pp. 116-125, 1986. 

[41] L. G. de, R. Deriche and C. Alberola-L, "Texture and color segmentation based on the combined use of the 
structure tensor and the image components", Signal Processing, vol.88, pp. 776-795, 2008. 

[42] G. Gerig, O. Kubler, R. Kikinis and F. A. Jolesz, "Nonlinear anisotropic filtering of MRI data", IEEE 
Transactions on Medical Imaging, vol.11, pp. 221-232, 1992. 

[43] T. Brox, M. Rousson, R. Deriche and J. Weickert, "Unsupervised segmentation incorporating colour, texture, 
and motion", Proc. 10th International Computer Analysis of Images and Patterns, pp. 353-360, 2003. 



 29

[44] J. Weickert, B. Romeny and M. A. Viergever, "Efficient and reliable schemes for nonlinear diffusion 
filtering", IEEE Transactions on Image Processing, vol.7, pp. 398-410, 1998. 

[45] P. Scheunders, "A multivalued image wavelet representation based on multiscale fundamental forms", IEEE 
Transactions on Image Processing, vol.11, pp. 568-575, 2002. 

[46] S. Mallat and S. Zhong, "Characterization of signals from multiscale edges", IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol.14, pp. 710-732, 1992. 

[47] S. Mallat, A Wavelet Tour of Signal Processing, 2nd, New York: Academic Press, 1999. 
[48] L. Grady, T. Schiwietz, S. Aharon and R. Westermann, "Random walks for interactive alpha-matting", Proc. 

Visualization Imaging and Image Processing(VIIP), pp. 423–429, 2005. 
[49] G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulae, Wiley, 

New York, 1982. 
[50] L. Zhukov, K. Museth, D. Breen, R. Whitaker and A. Barr, "Level set modeling and segmentation of 

DT-MRI brain data", Journal of Electronic Imaging, vol.12, pp. 125-133, 2003. 
[51] M. R. Wiegell, D. S. Tuch, H. B. Larsson and V. J. Wedeen, "Automatic segmentation of thalamic nuclei 

from diffusion tensor magnetic resonance imaging", Neuroimage, vol.19, pp. 391-401, 2003. 
[52] C. Lenglet, M. Rousson, R. Deriche and O. Faugeras, "Statistics on the Manifold of Multivariate Normal 

Distributions: Theory and Application to Diffusion Tensor MRI Processing", Journal of Mathematical Imaging 
and Vision, vol.25, pp. 423-444, 2006. 

[53] X. Pennec, P. Fillard, and N. Ayache, "A Riemannian Framework for Tensor Computing", International 
Journal of Computer Vision, vol. 66, pp. 41-66, 2006. 

[54] M. A. Ruzon and C. Tomasi, "Alpha estimation in natural images", Proc. IEEE Conf. Comp. Vision and 
Pattern Recog., pp. 18-25, 2000. 

[55] Y. Y. Chuang, B. Curless, D. H. Salesin and R. Szeliski, "A Bayesian approach to digital matting", Proc. 
CVPR, pp. 264-271, 2001. 

[56] M. T. Orchard and C. A. Bouman, "Color quantization of images", IEEE Transactions on Signal Processing, 
vol.39, pp. 2677-2690, 1991. 

 
 
 
 


