
Noname manuscript No.
(will be inserted by the editor)

Direct Sparse Deblurring

Yifei Lou · Andrea Bertozzi · Stefano Soatto

the date of receipt and acceptance should be inserted later

Abstract We propose a deblurring algorithm that explicitly takes into account the sparse
characteristics of natural images and does not entail solving a numerically ill-conditioned
backward-diffusion. The key observation is that the sparse coefficients that encode a given
image with respect to an over-complete basis are the same that encode a blurred version of
the image with respect to a modified basis. Following an “analysis-by-synthesis” approach,
an explicit generative model is used to compute a sparse representation of the blurred image,
and its coefficients are used to combine elements of the original basis to yield a restored
image.

1 Introduction

Deblurring refers to the task of “undoing” the effects of convolving1 the data with a known
kernel. A common instance occurs when an image is taken with a finite-aperture system
that is not well focused, so the measured image is a blurred version of the “ideal image,”
convolved with the point-spread function of the lens. Ideally, one would like to recover, or
“restore,” the image as would be captured by a well-focused lens. Unfortunately, deblurring
is well-known to be an ill-posed inverse problem, so small perturbations in the data (for
instance noise or quantization errors in the measured “blurred” image) lead to large errors
in the reconstruction. These artifacts are usually kept at bay by means of regularization,
following the classical work of Tikhonov [30]. Several choices of such generic regularizers
have been proposed, mostly made for mathematical convenience, some based on empirical
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observations on the quality of the reconstruction. Recently, there has been some convergence
towards regularizers that enforce the statistics of natural images, which are well-known to
possess highly kurtotic behavior [18] due to the presence of large homogeneous regions
bounded by sharp discontinuities at visibility boundaries such as occlusions and cast shad-
ows. Some classic regularizers, such as the Total Variation, implicitly favor these kind of
solutions, and remain among the most competitive deblurring algorithms to this day. Nev-
ertheless, deblurring in this context involves solving an inverse diffusion partial differential
equation (PDE). In [11], Favaro et al. have approached the problem of deblurring using a
“direct” method: Rather than deconvolving the measured image and the noise that goes with
it, they convolve the “model image,” which is noiseless by definition, with the known kernel.
This yields a simple diffusion PDE whose (space-varying) stopping time encodes the value
of the kernel. They do not, however, exploit the statistics of natural images in their solution.

A related literature stream encodes the image as a discrete array of positive numbers,
approximated by linear combinations of local overcomplete bases, where the natural statis-
tics are captured by the fact that the vector of coefficients is sparse, so at any location only
few bases contribute to the approximation [19]. In this case, there is no need for an explicit
regularizer, due to the finite dimensionality of the representation, but there is still a trade-off
between fidelity of the approximation and complexity of the model. While the measured
image is undoubtedly a discrete object, with quantization of both the domain and the range,
the object of inference, or the “ideal image,” is best represented in the continuum, with the
final discretization left only for the numerical implementation of the optimization scheme.
We therefore take the continuum approach, and explicitly write cost functionals that have
the ideal image as an infinite-dimensional unknown.

In this manuscript, we devise a deblurring algorithm that (a) explicitly takes into account
the “sparse” natural statistics of the image as a regularizer, and (b) does not suffer from the
numerical conditioning issues associated with solving an inverse diffusion PDE. We also
extend the method to blind deconvolution by simply augmenting our dictionary to include
several different blurring kernels. We discuss some caveats in Section 4.1.

1.1 The Basic Idea

The idea of direct sparse deblurring is simple and can be illustrated in three steps.
First, we assume that the image is square-integrable and sparse in some basis defined

on the entire real plane. This is a common assumption underlying most image compres-
sion algorithms, in particular those based on over-complete bases, or “dictionaries” {dk} ∈
L2(R2 → R), k = 1, · · · , K where K is the number of atoms in the dictionary. A dictionary
can be used to approximate the original image u to an arbitrary degree by a sparse linear
combination u

.
=

∑K
k=1 dkαk + n

.
= Dα + n where ‖α‖0 is small2 and so is ‖n‖2 [10]. For

the sake of illustration, let us pretend that this representation is exact, that is ‖n‖ = 0, and
u = Dα with ‖α‖0 ≤ L, where L is the bound of L0 norm. We will discuss the role of n

later.
Now, convolving an image with a shift-invariant kernel h yields a blurred image f =

h∗u = h∗Dα; this shows that the coefficients α that represent the sharp image u relative to
the basis {dk} are the same that represent the blurred image f relative to the blurred basis
{bk}

.
= {h ∗ dk}.

2 ∀ ε ∃ K̄ = K(ε) such that if M > K̄, then ‖f −
∑M

k=1 dkαk‖ < ε.
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But while we do not have access to the sharp image u, we do have access to the original
basis elements {dk}. Therefore, all we need to recover the encoding of the sharp image
are the coefficients of the encoding of the blurred image relative to the blurred basis. The
ensuing algorithm is as follows:
1. Take a dictionary {dk}, either from a generic over-complete basis or learned form the

image using any of a variety of sparse coding algorithms, for instance [1]. Convolve the
basis with the kernel h to obtain a “blurred basis” {bk}

.
= {h ∗ dk}.

2. Perform sparse coding of the blurred image f relative to the blurred basis {bk} to obtain
α̂ with ‖α̂‖0 small such that ‖f −

∑K
k=1 bkα̂k‖ is also small.

3. Reconstruct the original (deblurred) image directly via û =
∑K

k=1 dkα̂k.
Note that this algorithm performs deblurring without solving a backward diffusion or other
numerically ill-conditioned procedure. Instead, it solves the inverse problem by “direct
methods”, an approach sometimes referred to as “analysis by synthesis” [16] whereby an
explicit generative model is used to match the statistics of the measured data, and the model
itself provides both the necessary regularization and the solution to the desired inverse prob-
lem.

Now a few caveats. In practice, no image fits the model u = Dα exactly, sparsely or
otherwise. Therefore, one typically looks for the optimal representation α̂, defined as the
solution of the following optimization problem

α̂ = arg min
α

{∫
‖n‖22dx | u = Dα + n, ‖α‖0 ≤ L

}
, (1)

where the integral is on all of R2. Following the prescription outlined above to extend the
algorithm to blurred images, one would get f = h ∗ u + h ∗ n = h ∗Dα + h ∗ n. Therefore,
the algorithm we have suggested does not solve the problem

α̂ = arg min
α

{∫
‖n‖22dx | f = h ∗Dα + n, ‖α‖0 ≤ L

}
, (2)

where the constraint f = h ∗ u + n describes the image formation model. Instead, we solve
the modified problem

α̃ = arg min
α

{∫
‖h ∗ n‖22dx | f = h ∗Dα + h ∗ n, ‖α‖0 ≤ L

}
, (3)

Note that, in principle, α̃ 6= α̂. However, the blurring kernel h is zero-mean (lest images
would get brighter and dimmer as the focus changes), and therefore∫

‖n‖22dx ≥
∫
‖h ∗ n‖22dx. (4)

So, at least to first approximation, we indeed have that α̃ = α̂. The benefit of this approach
is a considerably simpler “direct” algorithm, and the cost is having changed the terms of
the problem, or equivalently the model and the underlying assumption, from minimizing the
residua error n, to minimizing a blurred version of it.

Of course, the devil is in the details, as real images and dictionaries are not defined on the
entire real plane, and if we wish to keep the complexity of the coding step manageable we
will have to break down the image into patches, which raises the issue of boundary effects
and scale, which causes α̃ 6= α̂. However, there is no reason why α̂ should be “better” than
α̃; they just represent different modeling assumptions. In the words of Box, “all models are
wrong, some are useful.” Ours is useful in the sense of yielding a particularly simple, direct
algorithm, which we now derive for a partition of the image, explicitly taking the issues of
boundaries and scale into account.
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1.2 State of the Art

The concept of sparsity has recently re-gained popularity in image processing and computer
vision; similarly, there is a sizable literature on the problems of deblurring, deconvolution
and shape from defocus or motion blur.

The literature on “exemplars” in computer vision, although not explicitly about sparsity,
goes in this direction, including the early work of non-local super-resolution [15,9,26]. The
idea of sparse representation of local patches is widely used in the many applications of
image processing, such as denoising [10], color denoising and inpainting [21] and super-
resolution [32,6]. Deconvolution, on the other hand, is mainly solved by regularization.
For example, the Wiener filter [2] uses the H1 semi-norm of the solution, which favors
smooth reconstructions. Total Variation (TV) [27], as already mentioned, favors piece-wise
constant solutions, whereas some wavelet-based deconvolution does not explicitly enforce
a regularizer, except for [8], but exercises regularization through complexity bounds [24,
7,12–14]. Segmentation-based regularization is discussed in [23]. Deconvolution is also
directly extended from denoising algorithms, such as BLS-GSM [25,17], kernel regression
[28,29] and BM3D [5,4].

There are relatively fewer works addressing the use of sparse priors for deblurring,
which is the goal in this paper. Although super-resolution is a close relative to deblurring (the
point-spread function corresponds to block-averaging of neighboring pixels), the latter has
not been addressed directly in a sparse setting. There are a few papers on image deblurring
using global sparse transforms [20,3], while we focus on local sparsity.

Since we use the K-SVD algorithm [10] as a building block, we will briefly review it
here to make the manuscript self-contained. We will then extend it to the continuum and
apply it to deblurring in Sect. 2. More details on the implementation are presented in Sect.
2.1, and Sect. 3 contains numerical experiments.

1.3 Sparse Representations for Denoising

If we consider discrete image patches, i.e. positive-valued matrices of size
√

n×
√

n pixels,
ordered lexicographically as column vectors x ∈ Rn, then the sparsity assumption corre-
sponds to assuming the existence of a matrix D ∈ Rn×K , the “dictionary,” such that every
image patch x can be represented as a linear combination of its columns with a vector of
coefficients with small L0 norm. If we measure y, a version of x corrupted by additive
Gaussian noise that is spatially white (independent and identically distributed) with stan-
dard deviation σ, then the maximum a-posteriori (MAP) estimator of the “denoised” patch
x is given by Dα̂, where

α̂ = arg min
α
||α||0 s.t. ||Dα− y||22 6 T , (5)

where T is dictated by σ. If one wishes to encode a larger image X of size
√

N ×
√

N

(N � n), with a combination of columns of the low-dimensional dictionary D, a natural
approach is to use a block-coordinate relaxation.

X̂ = arg min
X,αij ,D

||X−Y||22 + λ
∑
i,j

||αij ||0

+µ
∑
i,j

||Dαij −RijX||22 . (6)
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The first term measures the fidelity between the measured image Y and its denoised (and
unknown) version X. The second term enforces sparsity of each patch; the n × N matrix
Rij extracts the (i, j)th block from the image. A simple denoising algorithm [10] based on
sparse coding goes as follows,

1. Initialization: Set X = Y, D = an overcomplete discrete cosine transform (DCT) dictio-
nary.

2. Repeat until it converges:
– Sparse Coding: fix X and D, compute the representation vectors αij for each patch

RijX

α̂ij = arg min
α
||α||0 (7)

s.t. ||Dα−RijX||22 6 T .

– Dictionary Update: fix X and {αij}, compute D via K-SVD [1] one column at a
time.

3. Set:

X =
Y + µ

∑
ij RT

ijDαij

Id + µ
∑

ij RT
ijRij

, (8)

which is a simple averaging of shifted patches.

One could also fix the dictionary and only perform sparse coding in the iteration. Alterna-
tively, the dictionary can be learned from a large number of patches in natural images via
K-SVD [1] so that it is tailored to the data.

2 Direct Sparse Deblurring

In this section we formalize the problem of direct sparse deblurring. We find the formal-
ization to be clearer when written in the continuum, so one knows on what domain each
function is calculated. The previous claim, that the blurred image can be sparsely repre-
sented in the blurred basis by the same coefficients that the “ideal” image would have on the
original basis, will become clear.

Let u : Ω ⊂ R2 → R+; x 7→ u(x) be the “ideal image”, corresponding to X in the
discrete model. The procedure of extracting a small patch from an epsilon ball centered at x

can be represented by

ux(y) = {u(y) : y ∈ Bε(x)} = {u(x + y) : y ∈ Bε(0)}. (9)

The function ux(·) describes a mapping from an epsilon ball to a patch centered at x, which
can be expressed by an indicator function χε(x− y) acting on the image u(x).

Let dk : Bε(0) ⊂ R2 → R, k = 1, . . . , K be a given overcomplete basis ofLloc(Bε(0) →
R), and αk(x) be the kth sparse coefficient of the patch centered at x. Then the sparse rep-
resentation of one image patch is given by

ux(y) = χε(y)u(x + y) (10)

=

K∑
k=1

dk(y)αk(x)
.
= d(y)α(x) ,
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Fig. 1 Diagram of the continuum formulation.

where d(y) = [d1, d2, · · · , dK ](y), y ∈ Bε(0) and α(x) = [α1, α2, · · · , αK ](x), x ∈ Ω.
Fig. 1 illustrates the dictionary elements and how they match to local patches.

We want to use this local sparsity to enforce a global reconstruction prior in the sense
that u(x) is the minimizer of the sparse representation error for all the local patches.

û(x) = arg min J(u) , (11)

where J(u) is defined to be

∫
x∈Ω

∫
y∈Bε(0)

‖χε(y)u(x + y)− d(y)α(x)‖2dydx

=

∫∫
Ω×Ω

χε(y)‖u(x + y)− d(y)α(x)‖2dydx (12)

=

∫∫
Ω×Ω̄

χε(z − x)‖u(z)− d(z − x)α(x)‖2dzdx .

where z = x + y and Ω̄ = Ω + Bε(0).
To solve for u(x), we compute its Euler-Lagrange equation

∂uJ(u)(z) (13)

=

∫
χε(z − x)

(
u(z)− d(z − x)α(x)

)
dx

=
[ ∫

χε(z − x)dx
]
u(z)−

∫
χε(z − x)d(z − x)α(x)dx .

There is a closed-form solution for u(x) w.r.t α(x) that minimizes the objective function
J(u). It is obtained by setting the Euler-Lagrange equation to zero:

û(x) =
1

ω

∫
χε(x− y)d(x− y)α(y)dy , (14)
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where ω =
∫

χε(x−y)dy is the area of the ε−ball. Now, the measured image is, by assump-
tion

f(x)
.
=

∫
h(x− x̄)u(x̄)dx̄ + n(x) (15)

=
1

ω

∫
h(x− x̄)

∫
χε(x̄− y)d(x̄− y)α(y)dx̄dy + n(x)

=
1

ω

∫∫ [
h(x− x̄)χε(x̄− y)d(x̄− y)dx̄

]
α(y)dy + n(x) ,

where h is a space-invariant blurring kernel and n(x) is the additive noise, whose variance
is σ2. The blurred basis is easily defined as

bk(z)
.
=

∫
h(z − x̄)χε(x̄)dk(x̄)dx̄ . (16)

The characteristic function χε implies that the boundary condition for the convolution is
zero-padding. Denote with r the support of the blurred basis, in particular r = ε + supp(h).
Therefore the measured image is a sparse representation under this blurred basis:

f(x) =
1

ω

∫
χr(x− y)b(x− y)α(y)dy + n(x) . (17)

We solve for the sparse coefficients in the following,

α̂(x) = arg min

∫
‖α(x)‖0dx , (18)

s.t.
∫
‖f(x)− ω−1

∫
χr(x− y)b(x− y)α(y)dy‖2dx 6 T .

This optimization problem (a) is finite-dimensional (the only unknown is α) and (b) does
not involve de-blurring. All that is required is to find the finite-dimensional sparse set of
coefficient that best approximates the given image. Note that this is accomplished by blur-
ring the base. In other words, one is only required to solve a direct problem, rather than the
inverse problem of deblurring. Once the coefficients α̂ are obtained, we can compute the
“deblurred” image û via eq. (14). Note that the deblurred image is a sparse combination of
the (original, non-blurred) basis, and therefore – by construction – one should expect the
reconstruction to exhibit the same spatial frequencies of the original (unblurred) data from
which the overcomplete basis has been learned.

2.1 Boundary Issues

In practice, solving for α from (18) is not an easy task, since α at different y contribute to
one value. Instead we minimize an upper bound.∫

‖
∫

χε(x− y)f(x)dy −
∫

χr(x− y)b(x− y)α(y)dy‖2dx

6
∫∫

χε(z)‖f(z + y)− b(z)α(y)‖2dzdy . (19)

The above equation suggests coding the blurry patch centered at y in terms of the blurred
basis {bi}. Furthermore, the characteristic function indicates that the blurry patch has to be
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Fig. 2 Left: the blurry patch with zero-padding. Right: the blur basis. The red square indicates the region for
our refined dictionary.

zero-padded in order to be consistent with the dimension of the blurred basis. However, these
two terms cannot match due to the boundary issue of convolution, as shown in Fig. 2. Instead
we match them in the region where the convolution is computed without the zero-padded
edges. In particular, we refine our blurred basis to be

b̃k(z) =

{
bk(z) |z| < ε− supp(h)

.
= ε0

0 otherwise.
(20)

Experimentally we find that it is better to tailor the clear basis to have the same domain
size as the blurred one. Therefore we have a two step algorithm for sparse deblurring

1. Solve the coefficients from the measured image

α̂(x) = arg min ‖α‖0 , (21)

s.t.
∫

χε0(z)‖f(z + y)− b(z)α‖2dy 6 T .

2. Stitch all the patches by averaging

û(x) =

∫
χε0(x− y)d(x− y)α̂(x)dy∫

χε0(x− y)dy
. (22)

2.2 From Continuum to Discrete

In the discrete case, we assume the clear basis {dk} to be of size a × a and the blur kernel
h be of size c× c. It follows from (20) that the blurred basis {b̃k}, which is the inner part of
{bk}, is of size a0×a0, where a0 = a− c+1. We crop the clear basis to be a0×a0 as well,
denoted as {d̃k}

The first step (21) amounts to sparse coding for every x, or pixel (i, j) in the discrete
sense. We use the Orthogonal Matching Pursuit (OMP) algorithm [31] to solve α̂ from (5)
with y being the patch centered at (i, j) of size a0×a0 and dictionary D being comprised of
{b̃k}. The second step is to replace the blurred patch with the clear basis {d̃k} multiplying
the sparse coefficient α̂. Finally, since each pixel is covered by different patches, the restored
value is chosen to be the mean.

We use the L0 solver OMP over a million of methods on L1 minimization for two
reasons. First, there is no additional parameter for L0 and it has a natural stopping criterion,
i.e. stops when the residual is smaller than the standard deviation of the addition noise.
Second, it takes more iterations for L1 to get a reasonable sparse coefficients.
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2.3 Weighted Averaging

In addition to mentioned artifacts, the averaging of overlapping patches also degrades the
reconstruction. As an alternative, one could use a weighted average or median to combine
the results from local sparse coding. Accordingly, we perform sparse coding as described to
get the coefficients α(y), then use weighted averaging to combine the results

û(x) =

∫
y∈Bε(x) d(x− y)α(y)w(y)dy∫

y∈Bε(x) w(y)dy
. (23)

When the dictionary is rich enough, each patch can be ideally represented by single atom.
It is reasonable to assume that the smaller the L0 norm of the sparse coefficients, the better
representation of this patch. Therefore, the weight is chosen to penalize large L0 norm of
the coefficients, for example,

w(y) = exp

{
−|α(y)|0

s

}
, (24)

where s is a control parameter.

3 Experiments

In this section we compare our algorithm to alternate methods such as ROF [27], the wavelet-
based “ForWaRD” approach [24], regularized kernel regression-based deblurring (AKTV)
[29] and BM3D-based image restoration [4]. The optimal method parameters for both ROF
and ForWaRD are chosen from a series of values with wide range. Publicly available code
was used for comparison with AKTV and BM3D, including the suggested parameter values.
The parameters in our algorithm are determined by the data: the size of the dictionary is
proportional to the width of the blurring kernel and the stopping criterion for the sparse
coding stage is when the residual is below the variance of the noise.

We use root-mean-square (RMS) as a means of judging performance, RMS(u, I) =√∫
x∈Ω (u(x)− I(x))2 dx , where I(x) is the original image and u(x) is the recovery.

3.1 Binary Text Images

We synthesize a template with all the alphanumeric characters and common punctuation as
well as 5 text images from different categories of CNN news. The dictionary is comprised of
10×10 image patches randomly sampled from the three images and the template, all shown
in Fig. 3. The template contains all individual characters, while the training images serve to
represent meaningful pairs. We test the deblurring on the other two text images. The data
are corrupted by convolution with a 5 × 5-pixel Gaussian kernel with σ = 1 and additive
noise whose standard deviation is 5. For direct sparse deblurring, the visual quality is for the
most part satisfactory except for the smoothing effects around some letters. This is mostly
attributed to the limitations of the dictionary.

We also measure the effect of the number of the elements in the dictionary on the de-
blurring performance. Fig. 5 shows the results averaged from ten different experiments of
randomly sampled elements in the dictionary. In general, increasing the number of elements
in the dictionary improves the results, but with a diminishing return.
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Fig. 3 The training data. The dictionary is obtained by randomly sampling raw 10 × 10 patches from the
text images as well as the template shown on the top left. All the text images are from different categories of
CNN news.

3.2 Blind Deconvolution of the Text Images

For blind deconvolution, we convolve the clear basis with 3 different Gaussian kernels (same
size, different σdict). Now the blurred basis has 3 times more elements than in the non-blind
case. There still exists correspondence between blurred basis and clear basis. Therefore,
sparse deblurring follows the same procedure as the non-blind case.

The blurry noisy data is obtained by convolving the image with 5 × 5 Gaussian kernel
with σdata = 1 plus noise. The clear dictionary is comprised of randomly sampling 10,000
patches from the training set. There are two cases for the blurring kernels to construct the
blurred basis.

Case A σdict = 0.5, 1, 1.5: one of them happens to be the exactly same as σdata.
Case B σdict = 0.6, 0.9, 1.2.

The results for both cases are presented in Fig. 6, along with the non-blind deconvolution.
Case A is almost as good as non-blind with slightly worse RMS.

3.3 General Case

As in the case of super-resolution [32], the dictionary consists of random samples from the
training images, which have statistics similar to the test image. Here we consider three im-
ages: “Rose,” “Koala,” and “Castle.” The training images are taken from the image datasets
of flowers, animals and architecture respectively, while excluding the test ones. Fig. 7 shows
several examples in each training set. Flower images are from the Internet, while the other
images are from the Berkeley Segmentation Dataset [22]. For each category we randomly
sample 20,000 patches of size 16× 16 to form the dictionary.
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Original Image Blurry noisy input Our method

ROF model AKTV BM3D

Original Image Blurry noisy input Our method

FoWaRD model AKTV BM3D

Fig. 4 Text Deblurring with 20,000 dictionary elements.

The input data are corrupted by convolving with a 9× 9 Gaussian kernel of σ = 1 with
additive noise whose standard deviation is 5. As shown in Fig. 8, ROF returns piecewise
constant images, while ForWaRD produces noticeable artifacts in the reconstruction.
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Fig. 5 Influence of the number of the elements in the dictionary on the deblurring performance. The average
of 10 experiments for each column is reported.

original blurry noisy input

non-blind blind case A blind case B
RMS = 15.07 RMS = 16.53 RMS = 21.37

Fig. 6 Blind deconvolution with comparison to non-blind case.
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Fig. 7 Examples in the training images.

Image ROF ForWaRD AKTV BM3D Our method
Text 1 65.43 62.75 60.68 69.87 14.60
Text 2 63.59 61.78 57.93 70.33 13.81
Rose 6.68 5.75 4.90 4.83 5.62
Koala 9.80 8.98 8.45 7.97 8.64
Castle 14.23 12.82 12.51 11.77 13.62

Texture 14.46 14.54 12.91 12.13 8.72 (G) 10.37 (T)

Table 1 RMS errors for different methods. (G) and (T) indicate what kind of dictionary to use for our method
with (G) for generic and (T) for trained. In some case, BM3D is marginally better than our method (by about
10%), while in other cases our method fares significantly better (three times better in the Text examples and
50% better in the Texture).

3.4 Trained Dictionary

We conduct a deblurring experiment of a trained dictionary. We cut a texture image into
half, one as training and the other as testing. We take all the overlapping 16 × 16 patches
in the training image to train a dictionary that has 1024 atoms. The dictionary, as shown in
Fig. 9, is trained via KSVD [1]. We blur the test image with a Gaussian kernel of σ = 2 plus
additive noise. As a comparison, we also construct a generic dictionary, which is comprised
of 20,000 random samples from the training image. Fig. 10 summarizes the results.

A quantitative comparison is provided in Table 1. In some case, BM3D is marginally
better than our method (by about 10%), while in other cases our method fares significantly
better (three times better in the Text examples and 50% better in the Texture).
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Original Images

Blurry noisy input

ForWaRD

BM3D

Our method

Fig. 8 Grayscale image deblurring with 20,000 dictionary elements.



15

Training Testing

Fig. 9 The dictionary is trained using all the 16 × 16 patches in the training image (top left), which has a
similar structure to the test one.

4 Discussion

4.1 Coherence

The precision and stability of our “direct” approach depends on the smoothness of the blur-
ring kernel and the geometry of the dictionary. The latter is roughly measured by the concept
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Original Image Blurry noisy input

ROF AKTV our method (trained)

ForWaRD BM3D our method (generic)

Fig. 10 The dictionary is either trained or generic (comprised of random samples from the training image).
Our method using either dictionary improves upon traditional methods, with the generic dictionary providing
further improvement over the trained one.

of Coherence, which is defined to be the maximum absolute inner product between two dis-
tinct vectors in the dictionary [31]. If the coherence of a dictionary is large, it is difficult for
the sparse coding algorithms to choose the best atoms.

The coherence of a clear dictionary is usually larger than the one of the blurred dic-
tionary. For example, it is very likely that two blurred atoms bi and bj are similar or even
identical, but their clean versions di and dj are completely different. In this case, the algo-
rithm may confuse di with dj , leading to a large deblurring error. As a result, the coefficients
α̂ recovered by sparse coding the blurred image f relative to the blurred basis {bk} could be
very different from the true coefficients α of the clean image, and the deblurring estimation
error can be thus inaccurate.

The amount of blur we can handle is limited by how distinctive the dictionary atoms
are. For example, deblurring text images and texture yields very good results, since the
dictionaries of these two cases are distinctive and the coherence of the blurred dictionary
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is more or less the same to the one of the clear dictionary. On the other hand, the results
of “Rose,” “Koala,” and “Castle” imply that the associated dictionaries can only deal with
smaller smoothing kernels.

4.2 Domain Overlapping

We want to point out the problem in minimizing the upper bound to the original formulation.
Ideally, pixels that overlap with many blobs should be jointly coded, but it is computationally
expensive. Instead, we adapt the procedure in [1,21] to code the pixels multiple times and
average each encoding. However, it is the averaging that in turn degrades the image recon-
struction. One could code non-overlapping patches independently, but there is no guarantee
for the smooth transition between neighboring patches. Yang et. al. [32] process the patches
in a raster-scan order with one additional constraint in the sparse coding step, that is, to
enforce the overlap between the current target patch to match with previously reconstructed
ones. This amounts to adding a linear equation into the optimization, thus easy to solve.
However, it is not satisfactory since the results depend on the order of the scan. A better
approach would consist in using a partition of unity of the domain of the image to trade off
boundary artifacts while avoiding multiple encoding of the same pixel. We intend to pursue
this approach as part of our future work.
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