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Abstract. We introduce two fourth-order regularization methods that remove geometric noise
without destroying significant geometric features. These methods leverage ideas from image denoising
and simplification of high contrast images in which piecewise affine functions are preserved up to
infinitesimally small transition zones. We combine the regularization techniques with active contour
models and apply them to segmentation of polygonal objects in aerial images. To avoid loss of
features during the computation of the external driving forces we use total-variation based inverse
scale-space techniques on the input data. Furthermore, we use the models for feature-preserving
removal of geometric texture on surfaces.

1. Introduction. Geometric variational methods are a key ingredient for solving
inverse problems over sets of shape variables [7, 29, 28]. The wide range of different
representations, geometric numerical schemes and theoretical frameworks has lead to
a plethora of approaches for many different applications. Although, strictly speaking,
image segmentation is not an inverse problem, it is a conceptually closely related and
well-developed research area. It has been tackled most commonly with region-based
methods, for instance by partitioning via the watershed transform, or boundary-based
methods, such as active contour models [11, 18, 42, 10, 33]. The latter class usually
involves the evolution of an initial curve configuration towards the boundary of the
unknown object.

On one hand, regularization is essential to overcome prohibitive amounts of local
minima. On the other hand, common regularization methods may introduce undesired
over-smoothing. This makes it difficult to chose a proper balance between regulariza-
tion and external driving forces. Consider for example the pioneering work of Kass,
Witkin and Terzopoulos [32] which introduced active contours [11] (also known as
snakes) as parametrized curves or surfaces that evolve according to both local prop-
erties of the curve and to image-dependent forces that are directed towards significant
features. The classical image snake method computes minimizers of the functional

E[c] =
α

2

∫ 1

0

‖cz(z)‖2dz +
β

2

∫ 1

0

‖czz(z)‖2dz −
1
2

∫ 1

0

‖∇u0(c(z))‖2dz (1.1)

to find segment boundaries for the input image u0 : Ω → R on the image domain
Ω ⊂ Rd. The functional E is defined on closed curves given by a parametrization
c : [0, 1] → Ω and α, β are positive weights of the respective energy contributions.
The first two, the membrane energy and the thin-plate energy, control the fairness
of the curve and constitute the internal energy. The lower the gradient of u0 is
in magnitude, the stronger is the penalization of the curve by the external energy
given by the last integral. This encourages the minimizing contours to be close to
dominant edges. Due to the immense complexity in most natural images, the evolving
curve would get trapped in a local minimum close to the initial configuration, if we
would not prescribe a certain amount of inner fairness. However, if the regularization
energy does not reflect our expectations on the shape of the object (e.g., segmentation
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of smooth shapes versus polygons or objects with a fractal or fuzzy boundary), the
balancing of the energies is a difficult trade-off. Ideally, the regularization energy
should only penalize implausible shapes. Naturally, plausibility depends highly on
the context. In medical image segmentation, a smoothness assumption is perfectly
valid, in this paper however we would like to devise a regularization energy, which
treats “piecewise” smooth shapes, such as smooth approximations to polygons as
plausible. This allows us to increase the weight of the regularization energy, without
sacrificing in the fidelity of the correct shape.

Active contour models, including all their variants, are commonly used in the
literature and successfully applied to a wide range of segmentation problems, espe-
cially in medical imaging (cf. e.g. [22]). Even though parametric models have serious
difficulties in changing their topology, they are numerically appealing because they
can be solved very efficiently. In many applications the topology is known a-priori
and hence no splitting or merging is required.

Due to the vast amount of research in image segmentation a comprehensive
overview is beyond the scope of this article. We briefly review some well-known seg-
mentation methods. Caselles et al. [12] introduced a geodesic active contour model
by minimizing the related energy

Eg[c] = α

∫ 1

0

‖c′(z)‖2dz +
∫ 1

0

g(‖∇uσ
0 (c(z))‖)2dz (1.2)

in which uσ
0 denotes a regularized version of u0 and σ > 0 plays the role of a scale

parameter. It turns out that the minimization of this energy is equivalent to finding
geodesics with respect to a space-dependent isotropic metric g. In contrast to (1.1),
this functional is completely intrinsic, i. e., the energy does not depend on the specific
parametrization of the contour but only on the geometry of the curve itself. Ring
and Hintermüller introduced a Newton-type optimization technique of this problem
in [28].

A technique due to Mumford & Shah [37] involves minimization of the energy

EMS [u,Γ] :=
∫

Ω

(u− u0)2 dx + β

∫
Ω\Γ
‖∇u‖2 dx + αH d−1(Γ), (1.3)

where H d−1 denotes the d − 1-dimensional Hausdorff -measure. This method com-
bines edge-preserving image denoising with segmentation in such a way that the dis-
continuity set of the reconstructed function u divides the image into separate homo-
geneous regions. Later the regularization term |Γ| has been extended to also take into
account the curvature (Mumford-Shah-Euler & Mumford-Shah-Nitzberg) [38]. Chan
and Vese [13] have formulated a piecewise constant variant of this model, in which
the discontinuity set is represented by a level set function.

All of these methods incorporate curve regularization via length measurement
(possibly non-homogeneously weighted in space), hence none of them directly ad-
dresses the problem of segmenting objects with geometric features: the internal energy
will always result in a smoothing of sharp angles of the boundary contour.

It would appear natural to leverage formal descriptions of anisotropies from ma-
terials science, where cristalline structures are expressed by so called Wulff -shapes
[49]. If complete information about the expected morphology and anisotropy at each
point of the image would be known, for example the orientation of buildings in an
aerial photograph, the minimization of an anisotropic area functional could be guided
by prescribing a Wulff -shape [17]. Numerical methods have already been developed
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for problems as anisotropic mean curvature flow [19, 3], anisotropic ROF [26] or sur-
face diffusion [20, 8, 14]. However, since the automatic detection of Wulff -shapes is
a difficult problem, we focus on automatic feature preservation that is guided by the
geometry of the shape variable itself, allowing the curve to adjust itself to features
without prior knowledge of the morphology.

Our approach is motivated by low-curvature image simplifiers (LCIS) originating
in a paper by Tumblin & Turk [47] and further developed by Bertozzi & Greer [4], who
have proven global existence using regularity and devised a robust numerical scheme.
The key observation is that the fourth-order PDE

ut + div(g(∆u)∇∆u) = 0 (1.4)

produces solutions that dynamically form corners and simultaneously smooth out
noise (here, g is a typical weighting function, with g(0) = 1 and g(s) → 0, s → ∞).
The solution u is smooth, hence the notion of corners is understood in an infinitesimal
sense. The dynamics can be combined with a basic L2 fidelity term, leading to
very effective denoising of piecewise linear data. In contrast, second-order adaptive
filtering techniques like Perona-Malik [39] diffusion filtering or TV-based techniques
like Rudin-Osher-Fatemi (ROF) filtering [40] typically develop some staircaising in
the resulting image which can be undesirable in continuous non-constant regions.
We note that (1.4) is a gradient flow of a non-quadratic energy functional on ∆u and
preferably smoothes in regions of low curvature, while strong kinks, that are indicated
by a large Laplacian lead to a small energy contribution. In this paper we show how
to adapt this approach to geometric objects. In the context of variational processing
of surfaces, the question of which notion of curvature to penalize naturally arises.
Elsey and Esedoglu recently discovered that the minimization of the L1-norm of the
Gaussian curvature leads to a geometric analog of the ROF denoising model [25]. In
this paper, we will focus on mean-curvature based models that arise as analogies of
LCIS and as weighted Willmore flow. In one dimension, these models are of course
very similar.

This paper is organized as follows. In Section 2 we introduce two approaches for
corner preserving regularization of contours. Aiming at regularization strategies for
a wider class of problems, we will consider both an evolution type approach and a
variational approach, which is based on a general functional depending on the mean
curvature. We will extend the Willmore functional and its variation to a general
mean-curvature-dependent integrand in order to obtain a suitable weak formulation,
that can be split into two inter-dependent second-order equations. In Section 3 we
will describe in detail, how the continuous equations can be discretized with a fi-
nite element scheme. In Section 4 we describe a multiscale strategy based on inverse
scale-space techniques which are especially suitable for generating coarse scale repre-
sentations, that contain the main geometric features and apply them to segmentation
of aerial images. Finally, we will present and discuss results for surface denoising.

2. Feature preserving geometric evolution equations. Unlike in the Eu-
clidean case, there exists no estimator for sharp corners on manifolds that is given by
first-order derivatives only (with respect to its local coordinates). This is due to the
fact that the first derivatives of the parametrization characterize the first fundamental
form, which is an intrinsic property.

In the following we propose geometric analogies of (1.4). We will give an overview
of two different possibilities, that appear naturally in the higher-order case, namely
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• an evolution equation that is motivated by the surface diffusion equation,
which is obtained by a weighted H−1 metric for the area functional, and
• a gradient flow equation of a convex energy depending on the curvature of

the moving contour which resembles a generalized Willmore flow.

2.1. Basic geometric notations. Let us first describe the basic differential
geometric setting. For the sake of a more compact presentation we consider smooth
closed manifolds Γ embedded in Rd+1, d = 1, 2. Given a countable atlas {(xα,Ωα)}α
with reference domains Ωα ⊂ Rd, and the corresponding coordinate map xα : Ωα → Γ,
the vectors ∂

∂ξα
i
, i = 1, . . . , d, span a basis of the tangent space TpΓ at the point p ∈ Γ.

Tangent vectors can be interpreted as linear functionals on C∞(Γ):

∂

∂ξα
i

(x)f :=
∂f(xα)
∂ξα

i

(ξ), x = xα(ξ). (2.1)

On the tangent bundle TΓ, the metric g : TpΓ2 → R for all p ∈ Γ, is due to the
embeddedness and the identification of tangent vectors with vectors in Rd+1 given by

gij = g(
∂

∂ξα
i

,
∂

∂ξα
j

) :=
∂xα

∂ξα
i

· ∂x
α

∂ξα
j

. (2.2)

The components of the inverse g−1 are as usual denoted by (gij)ij .
Due to countability of the atlas, the existence of a partition of unity, allows to

define the integration of a function f on Γ by aggregation. Here, the volume element
dA is given by

√
det gdξ. This leads to a straightforward definition of the scalar-

products on C0(Γ) and C0(TΓ):

(f, g)Γ :=
∫

Γ

fg dA and (v, w)TΓ :=
∫

Γ

g(v, w) dA. (2.3)

The total differential of a function f ∈ C1(Γ) is a linear functional df ∈ TΓ′, i. e.,〈
∂

∂ξi
, df

〉
:=

∂

∂ξi
(ξ)(f) :=

∂f ◦ x
∂ξi

(ξ). (2.4)

The gradient ∇Γf is the representation of df in the metric g, i. e.,

g(∇Γf,
∂

∂ξi
) =

〈
∂

∂ξi
, df

〉
i = 1, . . . , d (2.5)

and for a vector field v we define the divergence divΓv as the dual operator of the
gradient with respect to g:∫

Γ

divΓv ϕdA := −
∫

Γ

g(v,∇Γϕ) dA ∀ϕ ∈ C∞(Γ). (2.6)

Furthermore, the Laplace-Beltrami operator is given by ∆Γ := divΓ∇Γ.

2.2. Weighted surface diffusion. We obtain a straightforward geometric vari-
ant of (1.4) by replacing the differential operators by their corresponding intrinsically
geometric counterparts and by choosing the coordinates x as the free variable. The
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Fig. 2.1. Evolution of a simply initial geometry without external forces. Top row: weighted
surface diffusion at times 0, 2.1079e-05, 4.30717e-05, 8.72062e-05 and 0.000174442 solving equation
(2.8a). Bottom row: simplified version of surface diffusion (2.7a) at times 0, 1.81354e-05, 3.63744e-
05, 7.25345e-05 and 0.000138453. The curve evolution is almost identical. The initial shape is
parametrized by x : [0, 2π]→ R2, t 7→ r(t)(cos(t), sin(t))T , r(t) = 1

2
+ 1

10
sin(15t).

active contour Γ is always understood as a d-dimensional compact and oriented man-
ifold, which is immersed by the coordinate mapping x : Γ → Rd+1. We arrive at the
evolution equation

xt + divΓ(g(h)∇Γ∆Γx) = 0, (2.7a)
x(0, ·) = x0, (2.7b)

which is very similar to the equation which describes the evolution of surfaces under

surface diffusion with a mobility function g(s) =
(
1 + s2

η2

)−1

that depends on the
scalar mean curvature h:

xt + divΓ(g(h)∇Γh)n = 0, (2.8a)
x(0, ·) = x0. (2.8b)

Here, n denotes the outer normal of Γ.

Like regular surface diffusion it preserves volume and decreases area, which points
out the regularizing effect. Furthermore, the preservation of volume is a desirable
property for a regularization method, because it avoids shifting the solution away
from an optimal configuration. Due to the divergence structure, the derivation is the
same as in the unweighted case (v corresponds to the velocity field):

• Volume preservation:

d

dt
|Ω(t)| =

∫
Γ(t)

v dA = −
∫

Γ(t)

divΓ(g(h)∇Γh) dA =
∫

Γ(t)

g(h)∇Γh · ∇Γ1 dA = 0.
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• Area decrease (energy dissipation):

d

dt
|Γ(t)| = −

∫
Γ(t)

vhdA

=
∫

Γ(t)

divΓ(g(h)∇Γh)hdA = −
∫

Γ(t)

g(h)g(∇Γh,∇Γh) dA ≤ 0.

Unfortunately, the preservation of volume can no longer be guaranteed for the
evolution under (2.7). However, solving the exact surface diffusion equation numer-
ically is a quite complex task, since additional equations have to be introduced to
convert vectorial quantities to scalar quantities and vice versa. Furthermore, the
Schur-complement approach makes the solution of a second order linear system in
the inner loop of the iterative solver necessary. To compute the normal velocity v
implicitly in time, a linear system of the form

Π(τL + S)Π V̄ n+1 = ΠL̃X̄n (2.9)

has to be solved. Here, X̄ and V̄ denote the coefficient vector of x and the velocity
with respect to a finite element discretization, L, L̃ correspond to the discretization of
second order differential operators, S stands for the inverse of the Laplacian restricted
to its range, and Π to a projection to the space of functions with a mean value of
zero. In this paper, we are only interested in this equation for the sake of qualitative
comparisons and refer to [2] for details on the isotropic case. We will see later that
equation (2.7) is much easier to implement and is less computationally expensive.

In our context of regularization of geometric inverse problems, we are not inter-
ested in the exact fulfillment of the physical model. Exact volume preservation is not
as important as feature-preservation. It is already a substantial improvement, if the
change in volume is negligible in comparison with mean-curvature flow. Fortunately,
both equations have a very similar behavior: the top row of Figure 2.1 shows the
behavior of weighted surface diffusion, whereas the bottom row shows the evolution
under equation (2.7). The curve develops corners early by accentuating the high-
curvature areas, but still keeps an infinitesimal regularity and eventually converges to
a circle. Note that the circle is stationary for both equations, whereas second order
models usually continue to shrink, since the underlying functionals penalize area. The
parameter λ was set to 1 and the curve has been approximated by a polygon with
512 segments (see Section 3 for more details on the implementation).

To use the evolution equation in a snake evolution context, we consider

xt = −divΓ(g(h)∇Γ∆Γx) + γ fext(x), (2.10)

where fext : Ω → Rd stands for the external driving force. As described before, the
extrinsic force is responsible for moving the curve towards the object boundaries. Its
modeling and computation highly depends on the type of input image and is a subject
on its own. Frequently, such forces are designed to point towards image features, such
as edges. Ideally the force is zero only on the boundary of the object to be segmented,
which is in practice not achievable (or the segmentation problem would already be
solved), so it introduces a dependency of the computed solution to the initial curve
configuration. In Section 4.1 this will be described in more details.

Only normal movements have an influence on the shape of the evolved curve,
but the external force field may point in any direction. Hence, tangential shifts may
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result in an undesirably uneven distribution of points along the discretized curve.
In analogy to the variational approach, where it is sufficient to consider the normal
variations of the energy, we rule out tangential shifts, by replacing the external force
by its projection in normal direction:

xt = −divΓ(g(h)∇Γ∆Γx) + γ (n⊗ n)fext(x). (2.11)

Note that we have dropped the lower order regularization term, since the regulariza-
tion is dominated by the higher order term. A curve shortening term can sometimes
be helpful to move the initial curve to the area of interest. In that case, it should
however not be interpreted as a regularization and can be included in the driving force
term.

2.3. Energies with mean curvature dependent densities. It is often not
convenient to solely have a flow equation available. For instance, optimization tech-
niques and step-size control rules usually require the evaluation of the full regularized
functional. Furthermore, all three fundamental segmentation models mentioned in
the introduction are variational methods. To fill this gap, we now consider the energy

W [Γ] =
∫

Γ

G(h) dA. (2.12)

For quadratic G the above energy corresponds to the so-called Willmore-energy [34,
35, 36, 44, 43, 48, 23, 14, 15]. The energy is entirely intrinsic, since integration takes
place over Γ and the integrand only depends on an intrinsic geometric quantity. We
will see later, that for closed Γ, the variation of W is given by

〈W ′[x], ϑ〉 =
∫

Γ

(
− divΓ(G′′(h)∇Γh)−G′(h)|S|2 +G(h)h

)
ϕdA (2.13)

for variation vector fields ϑ with scalar normal part ϕ. Hence the corresponding
evolution equation, given by gradient descent in L2, is described by

xt =
(
− divΓ(G′′(h)∇Γh)−G′(h)h2 +G(h)h

)
n. (2.14)

To obtain a sensitivity with respect to high curvatures we choose

G(s) := ηs arctan
(
s

η

)
− 1

2
η2 log

(
1 +

s2

η2

)
. (2.15)

Note that G′′(s) =
(
1 + s2

η2

)−1

= g(s) and that the highest-order term is the same
as in the weighted surface diffusion equation (2.8a). However, due to further con-
tributions in non-divergence form, we can no longer expect volume preservation. In
the vicinity of zero, G is close to quadratic and has a regularizing effect similar to
Willmore flow. For s→∞, G becomes almost linear, which leads to the preservation
of strong features. Figure 2.2 shows that the qualitative properties of the evolution is
very similar to (2.8a).

A simple, but useful advantage of the weighted Willmore approach, is that it
can easily be incorporated into a geometric shape minimization approach. Using the
above energy, one could for instance include a higher-order regularization term into
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Fig. 2.2. Evolution of a simply initial geometry without external forces under gradient flow of
the weighted Willmore functional at times 0, 0.6.37621e-06, 1.28998e-05, 2.58389e-05 and 5.16116e-
05.

the Mumford-Shah-functional, which would allow to represent discontinuity sets with
sharp corners by choosing β small:

ÊMS[u,Γ] :=
∫

Ω

(u−u0)2 dx+α

∫
Ω\Γ
‖∇u‖2 dx+βH d−1(Γ)+

1
γ

∫
Γ

G(h) dA. (2.16)

As described in Section 4.1 we will use the following piecewise constant version of this
model for some of our numerical experiments:

Epw
MS[c0, c1,Γ] := γ

∑
i=1,2

∫
Ωi

(ci − u0)2 +
∫

Γ

G(h) dA, (2.17)

where Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅ and Ω̄1 ∩ Ω̄2 = Γ.
In general, we observed in our experiments, that the denoising properties of

weighted surface diffusion, the simplified variant (2.7a) and gradient flow of the
weighted Willmore functional are very similar. Local oscillatory components are very
quickly smoothed out, whereas the global shape is preserved for a longer time.

2.4. Variation of the weighted Willmore functional. In this section we will
compute the variation of the functional W and formulate a weak formulation that is
suitable for a spatial finite element discretization.

2.4.1. Differential geometric tools. We will need the following lemmas. The
proofs can be found in [21], which primarily addresses the anisotropic case.

Lemma 2.1. Let xε = x + εϑ + O(ε2) be a variation of x ∈ Γ in direction of
the variation vector field ϑ = φn+Dx(v) and hε the mean curvature of the perturbed
surface xε. Then

∂εhε

∣∣∣
ε
= −∆Γϕ− |S|2ϕ+ tr([∇·S]) (2.18)

= −∆Γϕ− |S|2ϕ+ g(gradΓ h, v). (2.19)

Lemma 2.2 (Derivation of the area-element). Let xε = x + εϑ + O(ε2) be a
variation of x ∈ Γ in direction of the variation vector field ϑ = φn + Dx(v). Let gε

be the fundamental form of the perturbed surface. Then the derivation of the area
element is locally given by

∂ε

√
det gε dξ = divΓϑ

√
det g dξ (2.20)
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Lemma 2.3 (tangential and normal components of ∆Γϑ). Let ϑ = ϕn+Dx(v) ∈
χ(Γ) be a perturbation vectorfield on Γ, then the following identity holds:

∆Γϑ =
(
∆Γϕ− ϕ|S|2

)
n︸ ︷︷ ︸

∈Dx(TΓ)⊥

+2Dn(∇Γϕ) + ϕDx(∇Γh)︸ ︷︷ ︸
∈Dx(TΓ)

+∆ΓDx(v), (2.21)

where the normal component of the last term is given by

〈∆ΓDx(v), n〉n = − (g(v,∇Γh) + 2tr(S∇·v))n. (2.22)

2.4.2. First variation. From now on we will consider an immersion x : Γ→ Rd

and formulate the energy W in terms of x instead of Γ. Let

W [x] =
∫

Γ

G(h) dA. (2.23)

Recall that we assume that Γ is a closed manifold, in order to avoid several boundary
integrals. Let us now derive the first variation of W at x in a perturbation vector
field ϑ:

〈W ′[x], ϑ〉 =
d

dε
W (xε)

∣∣∣
ε=0

(2.20)
=

∫
Γ

G′(h)∂εhε dA+
∫

Γ

G(h)divΓϑ dA

= −
∫

Γ

G′(h)
(
∆Γϕ+ |S|2ϕ− g(gradΓ h, v)

)
dA

+
∫

Γ

G(h)divΓϑ dA

(2.24)
= −

∫
Γ

G′(h)
(
∆Γϕ+ |S|2ϕ− g(gradΓ h, v)

)
dA

+
∫

Γ

divΓ(G(h)v)−G′(h)g(gradΓ h, v) +G(h) div(ϕn)︸ ︷︷ ︸
ϕh

dA

=
∫

Γ

(
−G′(h)

(
∆Γϕ+ |S|2ϕ

)
+ divΓ(G(h)v) + ϕG(h)h

)
dA,

where we have used the relation

divΓ(G(h)v) = G(h)divΓv + g(gradΓG(h), v)
= G(h)divΓv +G′(h)g(gradΓ h, v). (2.24)

The first term becomes

−
∫

Γ

G′(h)∆ΓϕdA = −
∫

Γ

G′(h)divΓ(∇Γϕ) dA

=
∫

Γ

g(∇ΓG
′(h),∇Γϕ) dA

= −
∫

Γ

divΓ(∇G′(h))ϕdA

= −
∫

Γ

divΓ(G′′(h)∇Γh)ϕdA,
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and we obtain

〈W [x]′, ϑ〉 =
∫

Γ

(
− divΓ(G′′(h)∇Γh)−G′(h)|S|2 +G(h)h

)
ϕdA. (2.25)

Lemma 2.4 (First Variation, preliminary weak form). Let xε = x+ εϑ+O(ε2) be
a variation of x ∈ Γ in direction of the variation vector field ϑ = ϕn+Dx(v) ∈ χ(Γ).
Then the first variation of the weighted Willmore functional can be written as

〈W ′
g[x], ϑ〉 =

∫
Γ

〈−G′(h)n,∆Γϑ〉 dA− 2
∫

Γ

G′(h)Dx(∇Γn) : Dx(∇Γϑ) dA

+
∫

Γ

G(h)Dx(∇Γx) : Dx(∇Γϑ) dA (2.26)

Proof.

〈W ′
g[x], ϑ〉 =

∫
Γ

G′(h)∂εhε

∣∣
ε=0

dA+
∫

Γ

G(h)divΓϑ dA

= −
∫

Γ

G′(h)
(
∆Γϕ+ |S|2ϕ− g(∇Γh, v)

)
dA

+
∫

Γ

G(h)Dx(∇Γx) : Dx(∇Γϑ) dA.

We know from the proof of Thm. 71 in [21] using γ(n) = ‖n‖ and hence aγ = 1 :
TΓ→ TΓ that

Dx(∇Γn) : Dx(∇Γϑ) = ϕ|S|2 + tr(S∇·v). (2.27)

Using this and Lemma 2.3 we obtain:

〈−G′(h)n,∆Γϑ+ 2nDx(∇Γn) : Dx(∇Γϑ)〉 =−G′(h)(∆Γϕ− ϕ|S|2)
+G′(h)g(v,∇Γh)
+ 2G′(h)tr(S∇·v)
− 2G′(h)|S|2

− 2G′(h)tr(S∇·v)
=−G′(h)(∇Γϕ+ ϕ|S|2)

+G′(h)g(v,∇Γh)

which is the desired result.
Theorem 2.5 (First Variation, weak form). Let xε = x+εϑ+O(ε2) be a variation

of x ∈ Γ in direction of the variation vector field ϑ = ϕn+Dx(v) ∈ χ(Γ). Then using
the variable substitution w = −G′(h)n the first variation of the weighted Willmore
functional can be written as

〈W ′
g[x], ϑ〉 =

∫
Γ

Dx(∇Γw) : Dx(∇Γϑ) dA

− 2
∫

Γ

〈nlDx(∇Γwl), niDx(∇Γϑi)〉 dA

+
∫

Γ

G(h)Dx(∇Γx) : Dx(∇Γϑ) dA.

10



Proof. We further analyze the following terms from Lemma 2.4:∫
Γ

〈G′(h)n,∆Γϑ〉 dA +
∫

Γ

〈G′(h)n, 2nDx(∇Γn) : Dx(∇Γϑ)〉 dA =: (I) + (II).

By integrating by parts, we obtain

(I) =
∫

Γ

〈G′(h)n,∆Γϑ〉 dA

= −
∫

Γ

g(∇Γ(G′(h)nk),∇Γϑk).

The second term can be transformed the following way

(II) = 2
∫

Γ

G′(h)Dx(∇Γn) : Dx(∇Γϑ) dA

= 2
∫

Γ

g(〈n,G′(h)n〉∇Γn,∇Γϑ) dA

= 2
∫

Γ

g(∇Γ(G′(h)ni),∇Γϑi) dA

− 2
∫

Γ

g(nl(∇ΓG
′(h)nl)ni,∇Γϑi) dA

− 2
∫

Γ

g ((∇Γnl)G′(h)nlnk,∇Γϑk))︸ ︷︷ ︸
=0

dA.

Remark Observe that the combination of the terms leads to a change in sign of the
term ∫

Γ

g(∇Γ(G′(h)nk),∇Γϑk) dA.

The forward diffusion of the highest order operator is hence “hidden” in the term
involving the normal projection.

3. Numerical approximation. In this section, we will describe the numerical
schemes that we have used for the discretization of the previously introduced geometric
evolution equations. Both variants directly lead to weak formulations that allow the
discretization by a finite element method.

3.1. Discretization in space. We consider a finite element discretization with
a Lagrange basis of piecewise affine elements on the discrete interface Γh and define
the following general forms of mass and stiffness matrices:

Mh[ω] :=
(∫

Γh

ωIh(Φi Φj) dA
)

1≤i≤n,1≤j≤n

(3.1)

L[ω] :=
(∫

Γh

ω∇ΓΦi · ∇ΓΦj dA
)

1≤i≤n,1≤j≤n

(3.2)

L[A] := (L[Aij ])1≤i≤d,1≤j≤d (3.3)

11



Here, Ih : C0(Γh) → Vh stands for the nodal interpolation operator, which implies
that the so called lumped mass matrix Mh is diagonal and can easily be inverted
[46]. In order to calculate the elements of the stiffness matrices, we consider for each
triangle T a reference triangle T̂ ∈ Rd. For d = 2, we choose ξ0 = (0, 0), ξ1 = (1, 0)
and ξ2 = (0, 1). The local chart X is then given by a simple affine map from T̂ onto
T , which maps the nodes ξi onto the corresponding nodes P i ∈ T , and hence the local
first fundamental form is given by

gij =
∂X

∂ξi
· ∂X
∂ξj

,
X

∂ξi
= P i − P 0. (3.4)

From the definition of the gradient (2.5), we deduce the local representation

∇Γh
Φl =

∑
i,j

gij ∂Φl

∂ξj
(P i − P 0),

(
∂Φl

∂ξ1

∂Φl

∂ξ2

)
=
(
−1
−1

)
,

(
1
0

)
,

(
0
1

)
, (3.5)

if we consider nodal basis functions Φl ∈ Vh. For weights ω which are constant for
each triangle, e. g., functions depending on the gradient of a function fh ∈ Vh, the
entries of the stiffness matrix (3.2) are given by

L[ω]ij = |T |ωT ∇Γh
Φi · ∇Γh

Φj . (3.6)

3.2. Discretization of Variant I. In the following, we will describe a simple
discretization scheme for the one-dimensional case of problem (2.7). We observe, that
(2.11) can be written as a coupled system of two equations:

xt = divΓ(g(h)∇Γy) + γ(n⊗ n)fext(x)
y = −∆Γx

which yields the weak formulation(
xt, ϑ

)
Γ(t)

+
(
g(h)∇Γy,∇Γϑ

)
TΓ(t)

= γ
(
(n⊗ n)fext(x), ϑ

)
Γ(t)(

y, ψ
)
Γ(t)

=
(
∇Γx,∇Γψ

)
TΓ(t)

for all ϑ, ψ ∈ C∞(Γ(t)).
For the discretization in time we consider a first-order difference quotient approx-

imation of xt, i. e.,

xt ≈
xk+1 − xk

τ
with xk := x(kτ). (3.7)

We choose a semi-implicit scheme in time and obtain(
xk+1 − xk, ϑ

)
Γ(t)

+ τ
(
g(hk)∇Γy

k+1,∇Γϑ
)
TΓ(t)

= τγ
(
(nk ⊗ nk)fext(xk), ϑ

)
Γ(t)

,(
yk+1, ψ

)
Γ(t)

=
(
∇Γx

k+1,∇Γψ
)
TΓ(t)

,

again for all test functions. As usual we now restrict the problem to the finite di-
mensional space Vh and denote the discrete representations of a continuous functions,
obtained for example by projection, by capital letters. The coordinate vector of y
is given by Ȳ = LX̄. Note that the mean curvature lags behind from the previous
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time-step. The dependence of the differential operators on the metric is also treated
explicitly. In terms of matrix and vector representations, this can be written as(

Mh + τL[g(Hk)]M−1
h L

)
X̄k+1 = MhX̄

k + τγMh[Nk ⊗Nk] ¯Fext(Xk). (3.8)

For one-dimensional contours, this system can be solved directly by a combination
of the Sherman-Morrison method and Thomas’ algorithm for banded matrices on
periodic domains. In the case of surfaces, one can choose an iterative method such as
a SSOR-preconditioned conjugate gradient solver, since the matrix on the left hand
side is symmetric positive definite.

3.3. Discretization of Variant II: Weighted Willmore flow. Let us now
describe the discretization of the gradient flow of the weighted Willmore functional
using the weak formulation of Theorem 2.5.

Following the approach for the discretization scheme of Rusu [41] for isotropic
Willmore-flow and the implementation of Diewald [21] in the anisotropic case, we treat
the term which depends on the normal of the surface explicitly and the other terms at
least semi-implicitly. We especially want to treat the highest-order term implicitly by
solving a Newton iteration or semi-implicitly by solving a single Newton-step during
each time-step. We will treat the coefficient G(h) of the second-order term explicitly.

More precisely, we apply the following time stepping scheme:∫
Γ

xk+1 − xk

τ
=−

∫
Γ

Dx(∇Γ(wk+1)) : Dx(∇Γϑ) dA

+ 2
∫

Γ

〈
nlDx(∇Γw

k
l ), niDx(∇Γϑi)

〉
dA

−
∫

Γ

G(hk)Dx(∇Γx
k+1) : Dx(∇Γϑ) dA.

Note that wk+1 = −G(hk+1)n depends nonlinearly on xk+1. After a straightforward
linearization we obtain thanks to sufficient smoothness of G the following Newton
iteration scheme for wk+1:

wk+1
j+1 = −G′′(hk+1

j )(hk+1
j+1 − h

k+1
j )n︸ ︷︷ ︸

=:wk+1
j+1,1

−G′(hk+1
j )n︸ ︷︷ ︸

=wk+1
j,2

for j = 0, . . . and hk+1
0 := hk. Let us now express wk+1

j+1,1 and wk+1
j,2 in a weak sense:∫

Γ

wk+1
j+1,1 ϑ

G′′(hk+1
j )

dA =
∫

Γ

−(hk+1
j+1 − h

k+1
j )n dA =

∫
Γ

(
∆Γx

k+1
j+1 −∆Γx

k+1
j

)
dA

= −
∫

Γ

Dx
(
∇Γ(xk+1

j+1 − x
k+1
j )

)
: Dx(∇Γϑ) dA ∀ϑ ∈ H1(Γ,Rd)∫

Γ

wk+1
j,2 ψ dA =

∫
Γ

−G′(hk+1
j )nψ dA ∀ψ ∈ H1(Γ,Rd)

After restricting the problem to the discrete finite element space, the two equa-
tions are given in matrix form as follows:

W̄ k+1
j+1 = −

(
Mh[G′′(Hk+1

j )−1]
)−1

LX̄k+1
j+1 +

(
Mh[G′′(Hk+1

j )−1]
)−1

LX̄k+1
j + W̄ k+1

j ,

(3.9)

MhX̄
k+1
j+1 = −τLW k+1

j+1 − τL[G(Hk)]Xk+1
j+1 + MhX̄

k + τ2L[Nk ⊗Nk]W k. (3.10)
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Here Nk denotes the normal of the discrete configuration Γk. By substituting (3.9)
into (3.10) and shifting all explicitly treated terms to the right hand side, we obtain
the following discrete system:

MhX̄
k+1
j+1 + τL

(
Mh[G′′(Hk+1

j )−1]
)−1

LX̄k+1
j+1 + τL[G(Hk)]X̄k+1

j+1

= MhX̄
k+1
j + τL

[(
Mh[G′′(Hk+1

j )−1]
)−1

LX̄k+1
j − W̄ k+1

j

]
+ τ2L[Nk ⊗Nk]W̄ k.

(3.11)

4. Numerical experiments. In this section we will describe three different
application scenarios, namely segmentation of aerial images, surface processing and a
geometric inverse problem.

4.1. Segmentation of objects with sharp corners. We have applied the
proposed regularization to segmentation of Kanizsa’s triangle and real-world satellite
images, aiming at the segmentation of man-made objects with sharp corners, in par-
ticular on the detection of buildings. Figures 4.1 and 4.2 show the segmentation of
two such objects.

In real-life applications the external forces usually give rise to a serious non-
convexity of the problem. A natural approach to overcome this problem is to consider
multi scale techniques for the generation of the external forces in addition to the
internal regularization. A common multi scale approach for the regularization of
variational problems is a coarse-to-fine strategy, which can be understood as a choice-
criterion for picking a meaningful solution of the large space of local minima. One first
computes the solution to a modified problem in which the non-convexity is strongly
regularized and then aims to follow the path of solution as more detail is added. Even
though this technique does usually not give any guarantees on computing the global
minimum, the solutions that are computed this way have a very good chance of at-
taining a significantly lower energy value than that of the original problem. Naturally,
it is crucial to approach the unregularized problem iteratively. This avoids having to
chose a fixed scale parameter for preprocessing, which would always lead to loss of
fine-scale information.

4.1.1. Inverse scale space techniques. One of the most basic coarse-to-fine
scale-space technique consists in applying a linear filter such as linear diffusion on
the initial image and to successively refine the scale. Even though one can get rid of
most of the irrelevant and undesirable background patterns, strong features marked
by edges will be blurred equally. We consider inverse scale-space techniques that
are motivated by the Bregman-type iterations of the ROF-regularization with a L1

fidelity term [9]. In case of the TV-L1 denoising model, the Bregman-iteration leads
to a sequence uk by successively computing

uk = arg min
u

‖u‖BV + λ‖vk−1 + f − u‖L1 , k ≥ 0, (4.1)

where f = uk +vk and v0 = 0. By interpreting the change of v as an approximation to
the time derivative vt, Burger et al. [9] obtain a relaxed continuous inverse scale space
formulation, which for the TV-L1 denoising model, leads to the following evolution
of the coupled system

ut = div
(
∇u
|∇u|

)
+ λ(sign(f − u) + v) , vt = α sign(f − u). (4.2)

14



This flow yields a natural inverse scale, that starts at a very coarse scale—typically
the mean of the initial image—and eventually converges back to the original image.
However, already on coarse scales, the edges are remarkably well preserved and are
thus a very suitable choice for the input of the segmentation process. We have chosen
λ = 104 and α = 103 for our experiments.

4.1.2. Ambrosio-Tortorelli approximation of the edge-map. The gener-
ation of a suitable external source term is a topic unto itself. We will rely on a
multiscale approach for the generation of the edge map as well, since the regulariza-
tion of the external force leads to a rounding effect on the corners of the objects. On
the other hand, the energy landscape on the coarse initial scale has a heavily reduced
amount of local minima.

We considered the phase-field approximation of the Mumford-Shah functional of
Ambrosio & Tortorelli [1] for the computation of an edge map wε : Ω→ [0, 1], which
is close to zero on edge sets and one elsewhere. More precisely, we follow the finite
element discretization approach of Bourdin & Chambolle [6] to minimize the energy

EAT [u,w] =
λAT

2

∫
Ω

(u− uISS(t))2 dx +
1
2

∫
Ω

(w2 + kε)‖∇u‖2 dx

+
νAT

2

∫
Ω

(
ε‖∇w‖2 +

(1− w)2

4ε

)
dx , (4.3)

where the weight λAT > 0 controls the fidelity of u to uISS, the solution of (4.2). The
parameter νAT controls the phase-field approximation of the length term H d−1(Γ),
while ε controls the width of the profile of the phase field function w. We have set
λAT = 104 and ν = 2. This allows us to pursue the minimization using coarse to fine
edge indicators by initially choosing a large value for epsilon and reducing it until it
is in the order of the grid size. The small and positive parameter kε ensures strong
ellipticity of the coupled system. The negative gradient of the phase field function
can then be used as the external driving force for the snake evolution equation.

4.1.3. Iterative procedure for controlling sensitivity to high curvature.
In the early stage of the segmentation, the edge preserving property of the segmen-
tation process is not yet important. It could even be misleading, since the contour
should ideally first capture only the approximate shape of the segment. Using a very
low sensitivity with respect to the curvature in the beginning and a higher sensitivity
during the final stage has in our experiments shown to lead to better results in the
overall segmentation process.

In the iterative segmentation procedure we aim to choose an appropriate coupling
for the curvature sensitivity, the scale of the input image and the phase-field parameter
ε. The iteration can be summarized as follows:

The external force computation in line 5 is only an example of possible approaches.
This step opens a wide range of modeling possibilities, including interactive tools to
influence the flow in complicated problem scenarios, where an automatic segmentation
may fail.

Figure 4.1 shows an example on which we perform the scale space procedure.
Figure 4.1(a) shows, the original image, 4.1(b) the TV-L1 filtered image, 4.1(c) the
initial edge-map, followed by different stages of the evolution with (4.1(d), 4.1(e)) and
without (4.1(f)) curvature dependent weight. Let us describe the whole process in
more detail. As already mentioned above, the interactive segmentation process starts
by computing the evolution of the relaxed inverse scale space equation (4.2) until
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(a) original image (b) applying TV-L1 ISS filtering

(c) initial edge map, ε = 0.1 (d) intermediate stage of evolution

(e) final result, ε = 0.002, η = 2 (f) result without curvature weight

Fig. 4.1. Segmentation of a satellite image of a depot building using equation (2.11)

the main features of the desired object are clearly visible. Then we have chosen an
initial ε = 0.1 (the image domain is scaled to have a unit edge length) and compute
the minimum of the energy (4.3) (see Figure 4.1(b)). At that stage we are mainly
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(a) original image (b) applying TV-L1 ISS filtering

(c) initial edge map, ε = 0.05 and initial
configuration

(d) intermediate stage of evolution

(e) final result, ε = 0.001, η = 2 (f) dropping the curvature weight

Fig. 4.2. In this example, a piecewise constant Mumford-Shah energy combined with the exter-
nal force induced by the phase field function (4.4) and the weighted Willmore functional has been
minimized (cf. equation (2.17)).
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Algorithm 1 Iterative multiscale segmentation
1: Choose initial curve Γ0

2: Choose initial scale parameters, i.e., a time t0 for the inverse scale space flow, ε0
for the Ambrosio-Tortorelli approximation of the edge-map and η0, set k = 0.

3: repeat
4: Compute the solution uISS(tk) of (4.2).
5: Set up the external forces, e.g., by first computing the phase field approxima-

tion of the edge-map wεk
of uISS(tk) and extracting the negative gradient

vectors.
6: Compute a stationary solution Γk of the segmentation model.
7: Set k ← k + 1
8: Refine scale parameters tk, εk and ηk. The other parameters, such as ν, µ and

λ are kept constant.
9: until stopping criterion fulfilled

interested in driving the contour towards an attracting regime that is close enough to
the correct boundaries of the object, such that the scale can safely be refined without
risking the computation of a false local minimum.

In this phase we keep the contour smooth until it hits interesting features and
start evolving according to (2.11) by chosing a large sensitivity value of η, (= 25 in our
test cases, see (2.7) for the role of η). Once we have reduced ε and reached a fine scale,
in which corners become significant, we reduce η to a value around 1. To demonstrate
that the formation of corners is truly due to the curvature dependent weight and not
only due the multiscale generation of the external potential, we have increased η at
the final segmentation shown in Figure 4.1(e) and recomputed the new stationary
point. We observe that the contour flips back to an overly smooth approximation of
the boundary as shown in Figure 4.1(f).

All the proposed formulations lead to entirely intrinsic evolution equations. The
condition of the discrete approximation of the differential operators depends on the
spacing of the grid points on the curve. Even though the projection helps significantly
to reduce the effect of tangential shifts, the implicit time stepping and the movement
of the curve into concavities often leads to an irregular spacing, which we correct
by a retriangulation. Furthermore, it is desirable to maintain a sufficient number of
discrete grid points close to the corners to be able to approximate the geometry well.
In the one-dimensional case, retriangulation can be easily achieved using the arc-
length parametrization. For two-dimensional manifolds a simple volume-preserving
mesh regularization technique (see Sec. 4.2) can be used.

In Figure 4.2 we have experimented with a variational segmentation model on a
similar input image. We have minimized the piecewise-constant Mumford-Shah model
(cf. (2.17)), combined with the weighted Willmore functional:

E[ci,Γ] =
∫

Γ

G(h) dA+ γMS

∑
i=1,2

∫
Ωi

(ci − u0)2 + γAT

∫
Γ

wε dA, (4.4)

where wε is the phase-field function from the solution of (4.3). In this example we
chose γMS = 108 and γAT = 106, so that the piecewise-constant Mumford-Shah term
is the dominant external force contribution.

In order to compute the gradient of the energy functional numerically, integrals
over Ω1 and Ω2, i.e., the regions divided by Γ have to be evaluated. We used an eikonal
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solver to compute a signed distance function starting with initial signed distances on
the corners of all cells that are intersected by Γ. These cells are tesselated into triangles
to achieve subpixel accuracy along the interface.

In the experiments, the region-based partitioning has proven quite insensitive
to strong misleading gradients in the image (see the small hole in the roof). This
would be difficult to achieve with a local feature based external force term only, as
for example in (1.1).

In 4.2(f) we again verify the positive impact of the curvature dependent weighting
term. Also, the beneficial effect of the inverse scale space method is apparent: already
at a short time the regularized image reflects the main contour of the building very
sharply. The irrelevant smaller objects, which could have a negative influence on the
segmentation, are not yet visible.

An indicative test case is the segmentation of Kanizsa’s triangle (Figure 4.1.3),
which aims at the detection of subjective contours [31], i.e., the identification of an
object which is not perceptible in its raw form, but only through continuation of
partially visible boundaries. The human observer can easily identify the triangle as
the most plausible simple geometric object, that fits into the given geometric con-
figuration. Due to the sharp concavities, the object is a good candidate for feature
preserving regularization. To segment the interior triangle we proceeded as follows.
Since the input image Fig. 4.3(a) is clean and does not contain fine-scale patterns, we
did not need to apply any pre-filtering. To obtain an initial edge map in Fig. 4.3(b),
we chose the phase-field parameter as ε0 = 0.2 for Eq. (2.11). To help the circle shrink
towards an attracting regime, corresponding to the corners of the triangle, we have
added a modest length penalization to compute the first stationary solution Γ0 with
η0 set to 100, which basically turns off the feature-preservation (see Fig. 4.3(c)). The
curve Γ0 is now sufficiently close enough to allow to switch off the length penalization,
which would only unnecessarily smooth the curve and undo the corner-preservation
regularization. We set ε1 = 0.05 and increased the curvature sensitivity by setting
η1 to 10 which computes the solution shown in Fig. 4.3(d). The steep external force
field, already pulls the snake very close to the desired triangle shape. The curvature-
dependency is however not strong enough to avoid the regularization on the tip of the
corners. After reducing η2 further to 1, we finally arrive at the segmentation result
shown in Figs. (4.3(e)) and (4.3(f)).

4.2. Surface smoothing. One of the most natural applications of feature-pre-
serving regularization techniques is feature-preserving smoothing. Furthermore, there
exists a wide range of problems, that are based on scale-space techniques. We have
considered two basic approaches:

4.2.1. Generating a multiscale by computation of initial value prob-
lems. Similarly to PDE-based scale-space approaches in image processing, we can
simply evolve the initial input geometry Γ0 under the evolution equation (2.7) to
obtain a family of smoothed surfaces Γ(t).

A related approach is to consider the gradient-flow of the weighted Willmore
functional

xt = − gradL2(Γ(t))W [Γ(t))] with Γ(0) = Γ0. (4.5)

Both versions define a scale-space operator S(T ) : Γ0 7→ Γ(T ). By construction we
have S(0) = 1 and S(T1 + T2) = S(T2) ◦ S(T1) (semigroup property) a fundamental
requirement for the construction of scale-spaces. In Figures 4.4 and 4.5 we show a
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(a) initial configuration (b) initial edge map

(c) intermediate step of the segmenta-
tion

(d) intermediate step of the segmenta-
tion for a finer edge map

(e) final result on top of the finest edge
map used

(f) final result on top of the original
image

Fig. 4.3. Psycho-visual segmentation: segmentation of the Kanizsa triangle.
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Fig. 4.4. Different multi-scales on the armadillo data set. The left column shows the evolution
of the original surface (top) under standard Willmore flow at time steps 1 and 4. In the middle
row, the simplified surface diffusion (2.7) has been computed. The right column shows the weighted
Willmore flow. Time steps 1, 3 and 5 are depicted. The timestep τ is 10−8 and η = 10.

comparison of standard Willmore flow (left column) and the two curvature-dependent
evolutions, i.e., (2.7) (middle column) and weighted Willmore flow (right column).
While standard Willmore flow rounds-off all parts of the surface homogeneously, the
weighted versions produce a much more appealing coarse to fine scale, in which im-
portant geometric features such as smooth creases and tips are preserved significantly
better. The curvature sensitivity parameter has been set to η = 10 in both variants.

The horse mesh contains a fine-level geometric texture. During Willmore flow,
this texture is removed already in the early stage of the evolution, however, the creases
are unnaturally rounded off. During the evolution of the weighted Willmore-flow, the
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Fig. 4.5. Comparison of different higher-order multi-scales on the horse data set. The left
column shows the evolution of the original surface (top) under standard Willmore flow at time
steps 1 and 4. In the middle row, the simplified surface diffusion (2.7) has been computed. The
right column shows the weighted Willmore flow. The timestep τ is 10−9 and η = 10. All variants
remove geometric texture very rapidly, but the curvature-dependent flows also preserve important
features.

texture is removed quickly as well, but the shape of the object on a macro-scale is
well preserved.

4.2.2. Energy minimization with a fidelity term. Inspired by the set-up of
the Rudin-Osher-Fatemi model, we might also consider the variational problem:

min
A

∫
Γ

G(h) dA︸ ︷︷ ︸
=W [Γ]

+λ
∫

Γ

d(·,Γ0) dA (4.6)
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Fig. 4.6. Denoising of the fandisk data set with fidelity. Top left shows the noisy model. On the
top right the surface is denoised with standard mean curvature flow. The bottom left shows denoising
with Willmore flow. The bottom right shows the denoising result with the weighted Willmore flow.

for a given, initial noisy surface Γ0. In contrast to the Euclidean case, the choice
of the fidelity function d : Rd+1 × Rd+1 → R+

0 is not straightforward in the case of
surfaces. Naturally the Hausdorff distance would be a good candidate for measuring
the fidelity of Γ to the initial surface, we chose d(x,Γ0) := dist(x,Γ0)2 which simplifies
the minimization process, because d can be precomputed for a given initial surface.
In this model, λ defines a balance between the regularity of Γ and how close the
smoothed surface should be to the original surface. For fixed λ, the overall functional
is minimized.

Even with spatial acceleration structures, such as KD-tree or bounding volume
hierarchies, the on-the-fly computation of the fidelity integral would be costly, because
the projection of a point onto a triangulated surface involves at least a local search.
Instead, we computed the distance function of Γ0 on the bounding box on a uniform
grid, in a two-step procedure:

1. Initialize the distance function in the vicinity of Γ0. More precisely, for all
triangles T of the discrete noisy surface Γ0,h, find all cubes CT,i, that are
intersected by T , compute for all nodes of CT,i the distance to T . If this
distance is smaller than a potentially previously computed value, update its
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value.
2. Now that the values of the distance function are known close to the interface,

we can use a solver for the eikonal equation ‖∇u‖ = 1 to extend the distance
function onto the whole domain (i.e. the enlarged bounding box of Γ0).

In Figure 4.6 we show the results of this approach applied to the well-known fandisk
dataset. We have compared our functional with the area functional and the Willmore
energy and adjusted η in each case to obtain visually appealing results to have a some-
what fair comparison. Not surprisingly the curvature-dependent approach preserves
the creases much better than the other two. In this computation we have set η = 5.

Note that the construction of the signed distance function also introduces some
numerical errors. The result can thus not be compared with pure mesh-based smooth-
ing techniques. We also observe that creases do not evolve to perfectly sharp feature
lines, an effect which hints to an analogy to the Euclidean case, in which LCIS over-
comes staircaising effects.

4.2.3. Remarks. An inconvenient side-effect of the movement of vertices during
the evolution is that the mesh may degenerate, leading to a very high condition
number. Hence, depending on the number of steps taken and the initial regularity of
the mesh, retriangulation of the mesh can become unavoidable. We have found the
scheme proposed by Bänsch et al. [2] very useful, since it is fast, easy to implement
and preserves the enclosed volume of the mesh, which is particularly for higher-order
flows a desirable property.

Compared to the range of existing feature-preserving surface denoising techniques
in the literature, for instance the anisotropic geometric diffusion approach of Clarenz
et al. [16] or Hildebrandt & Polthier [27], bilateral filtering of Jones et al. [30],
we focused on the different qualitative smoothing which has a “rounding” effect, in
contrast to the “shrinking” effect that is typical for second order techniques, that
are based on the penalization of area. The iterative feature preserving smoothing
of normal fields Tasdizen & Whitaker [45] and fitting for surfaces represented by
level set functions has a similar effect, although it is strictly speaking not a fourth
order flow. The variational setting is flexible and easily extends to other applications
and variational set-ups, for instance to apply recent developments for cartoon-texture
decomposition methods of images onto surfaces.

Our finite element computations have used the OpenMesh library for the traversal
of elements [5].

5. Summary and conclusion. Motivated by low-curvature image simplifiers
in image processing, we have presented geometric and fully intrinsic fourth-order fea-
ture preserving regularization techniques by drawing analogies to surface diffusion
in a weighted H−1 metric and a weighted Willmore functional. We observed, that
a simplified form of the first variant has very similar qualitative properties, but is
much easier to implement and can be computed much more efficiently. Due to the
need for a suitable energy functional for feature-preserving regularization of geometric
variational problems, we extended the finite element formulation of Rusu to a more
general mean-curvature dependent energy functional. We applied the new regular-
ization methods to segmentation of aerial images and were able to precisely extract
object boundaries with sharp corners. We also compared the different variants in the
context of surface denoising and again verified very similar results, which allows to
choose the model depending on the problem context. When a flow equation is suffi-
cient, the simplified variant of surface diffusion is more convenient, since it is easier to
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implement than weighted Willmore flow. Both methods smooth out geometric texture
quickly without destroying sharp features.

From our first promising results, we see a large potential to improve the regular-
ization in a wide range of geometric optimization problems. We can expect further
improvement by extending the isotropic curvature weight by an anisotropic one in the
spirit of Clarenz et al. [16] or Diewald [21].

The recently presented numerical scheme by Dziuk [24] for parametric Willmore
flow completely cancels tangential shifts. The derivation of an analogous weighted
formulation would be an interesting extension to circumvent the mesh regularization
steps (and their associated numerical errors) we currently employ to avoid degenerated
elements.
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