
Coordinate Descent Optimization for ℓ
1 Minimization with Application

to Compressed Sensing; a Greedy Algorithm

Yingying Li∗ Stanley Osher†

Abstract

We propose a fast algorithm for solving the Basis Pursuit problem, minu{|u|1, : Au = f}, which has
application to compressed sensing. We design an efficient method for solving the related unconstrained
problem minu E(u) = |u|1 +λ‖Au− f‖2

2
based on a greedy coordinate descent method. We claim that

in combination with a Bregman iterative method, our algorithm will achieve a solution with speed and
accuracy competitive with some of the leading methods for the basis pursuit problem.

1 Introduction

We wish to solve the compressed sensing (CS) problem [3, 12, 27]

min
u∈Rn

|u|0, subject to Au = f. (1)

A breakthrough for this NP problem is that when A satisfies certain conditions, then the ℓ0 problem (1)
is equivalent to

min
u∈Rn

|u|1 subject to Au = f, (2)

see [5, 8, 10, 11]. Thus there are two main approaches in solving (1). One is to approach (1) directly
using greedy selection algorithms [17, 14]; the other is through ℓ1 minimization methods, like coordinate
descent, also [16, 4, 13]. The ℓ0 approach is faster but unreliable: since (1) is nonconvex, there is no
guarantee of existence and it is difficult to find global minimizers (and not local minimizers). The ℓ1

approach is often slower but guaranteed to find a global minimizer for certain kinds of matrices A and is
stable to noise.

Compressive Sensing

ℓ0 minimization
“Matching Pursuit”

Greedy

ℓ1 minimization

Coordinate descent+

To exploit both of their advantages, we propose a greedy coordinate descent method to solve the
ℓ1 minimization problem. In [31], the authors use the steepest descent method to find the updating
coordinate which makes the most negative gradient. This is also a greedy coordinate descent method.
Our paper also uses greedy selection to choose the coordinate, but uses to another criterion to optimize.

∗yingyingli@math.ucla.edu
†sjo@math.ucla.edu

We use greedy coordinate descent for solving (3) to solve the Basis Pursuit problem [9], which also
arises in compressed sensing. Recently, many efficient algorithms have been developed for solving this.
These include the linearized Bregman method [32, 18] and the fixed point continuation method (FPC) [16]
together with a Bregman iterative method [32, 1]. Our proposed method solves (2) by solving a sequence
of subproblems (3), which is the same as in [32]. We show that our proposed method is competitive in
speed and accuracy for an important class of matrices A.

1.1 Coordinate Descent

In multivariable minimization, coordinate descent methods minimize the objective by solving a sequence of
scalar minimization subproblems. Each subproblem improves the estimate of the solution by minimizing
along a selected coordinate with all other coordinates fixed. Coordinate descent is attractive because it
is simple: scalar minimization is easier than multivariable minimization.

Coordinate descent is efficient when the subproblems can be solved quickly. For some applications,
the subproblem solutions can be expressed in closed form. This is the case for the lasso problem

min
u∈Rn

E(u) = |u|1 + λ‖Au− f‖22 (3)

where f ∈ R
m and A is an m×n matrix with m < n (the matrix is wide). The solution of the coordinate

subproblems involves a shrinkage [15, 31]. There are other fast algorithms for solving the lasso problem,
see [6, 7, 19, 20, 26].

Generally, each coordinate must be visited several times to reach a minimum. The order in which
coordinates are visited is called the sweep pattern. In many applications, the sweep pattern is sequential
where the coordinates are visited in order—this is called pathwise coordinate descent [15] or cyclic coor-
dinate descent. But for some problems, the choice of sweep pattern has a significant effect on the rate
of convergence. The the essential feature in this work is coordinate descent with an adaptive choice of
sweep pattern, which tends to converge faster than sequential or random sweep order.

1.2 Outline

This work is structured as follows. In §2 we introduce the pathwise coordinate descent method [15] for
solving (3). In §2.3, we describe our refined method with a better sweep pattern for solving the same
problem and compare computational costs in §2.5. In §3, we solve (2) by using a Bregman iterative
method, then discuss numerical performance. We give a denoising example in §3.3 and an example
including huge dynamic range in §3.4. In §4, we briefly introduce two other fast methods and compare
them with the proposed method. Finally, we give the conclusion in §5.

2 Solving the Unconstrained Problem

2.1 The Coordinate Subproblem

The coordinate descent method optimizes the objective function through a sequence of one-dimensional
optimizations. The method is essentially the analog of the Gauss-Seidel matrix algorithm for optimization.
We can apply this strategy to

min
u∈Rn

E(u) = |u|ℓ1 + λ‖Au− f‖2ℓ2, (4)

where f ∈ R
m, λ is a scalar parameter and A is a m × n matrix with m < n (the matrix is wide). It

is easy to see that the objective function E(u) is convex, so a local minimum is a global minimum. For

2

(4), there is a simple closed formula for the solution of each coordinate subproblem, which makes the
coordinate descent method efficient for solving it.

The intuition for using coordinate descent comes from the simple solution of the same problem in one
dimension,

min
x∈R

E(x) = |x|+ λ(x− f)2.

The solution is: x = shrink(f, 1
2λ), where the shrink operator is: (refer to Figure 1)

shrink(f, µ) =

f − µ, if f > µ;
0, if − µ ≤ f ≤ µ;
f + µ, if f < −µ.

(5)

-�

6

?

shrink(f, µ)

f−µ µ

�
�

�

�
�

�

Figure 1: Shrinkage

For each coordinate subproblem, we freeze all components of u except the jth component uj. Let aj

denote the jth column of A, aij the element of A in the ith row and jth column, and fi the ith component
of f , the problem is to minimize

min
uj

E(u) = λ

m∑

i=1

(
n∑

j=1

aijuj − fi

)2

+

n∑

i=1

|ui|

= λ
(
‖aj‖

2
2u

2
j − 2βjuj + ‖f‖22

)
+ |uj |+

∑

i6=j

|ui|,

where βj =
∑

i aij(fi −
∑

k 6=j aikuk). The optimal value for uj with all the other coordinates fixed is

ũj =
1

‖aj‖22
shrink

(
βj,

1
2λ

)
. (6)

Here, we assume ‖aj‖
2
2 6= 0; otherwise aij = 0 for any i. Then we can delete the whole jth column of

A since the value of uj does not affect f at all and uj has to be zero to get the ℓ1 minimum. So this
formula (6) corrects the jth component of u, which decreases the energy function E(u).

2.2 Pathwise Coordinate Descent

Coordinate descent applied with the sequential sweep order is called pathwise coordinate descent [15].
Algorithm (Pathwise Coordinate Descent):
While “not converge”
For i = 1, 2, . . . , n,

βj ←
∑

i aij(fi −
∑

k 6=j aikuk)

uj ←
1

‖aj‖2
2

shrink
(
βj ,

1
2λ

)

2.3 Adaptive and Relatively Greedy Sweeping

For the application of compressed sensing [3, 12, 27], we ultimately seek a sparse signal. But sequential
sweeps also change the coordinates which should be zero during the sweep; the process of finding the

3

solution does not give preference to sparsity, see Figure 2. After one sequential sweep (512 iterations),
almost every component becomes nonzero (circles in the left plot and the middle plot for the zoom-in
version), but the exact signal is zero for most of the components (dots). To exploit the sparsity of the
solution, we propose an adaptive sweep. Instead of proceeding through all the coordinates sequentially,
we choose the coordinate that decreases the energy the most. The plot on the right side shows the
numerical performance of using the same number of adaptive sweeps. We see that the result in the right
figure keeps more sparsity than the result in the left figure.

After one sequential sweep zoom in After adaptive sweeps

0 200 400 600 800 1000 1200
−500

0

500

1000

1500

2000

2500

3000

3500

50 100 150 200 250 300 350 400

−60

−40

−20

0

20

40

60

80

100

0 200 400 600 800 1000 1200
−10

0

10

20

30

40

50

60

70

80

90

Figure 2: The dots represent the exact solution of (4) at λ = 1000 and the circles are the results after
512 iterations. The left figure shows the result after one sequential sweep (512 iterations), the middle
one is its zoom-in version and the right one shows the result by using an adaptive sweep.

The formula (6) provides the best choice of the jth coordinate. Therefore, the energy decrease
obtained in updating the jth coordinate is

∆Ej = E(u1, . . . , uj , . . . , un)− E(u1, . . . , ũj , . . . , un)

= λ‖aj‖
2
2

(

uj −
βj

‖aj‖22

)2

+ |uj | − λ‖aj‖
2
2

(

ũj −
βj

‖aj‖22

)2

− |ũj|

= λ‖aj‖
2
2(uj − ũj)

(

uj + ũj −
2βj

‖aj‖
2
2

)

+ |uj| − |ũj |. (7)

We select the coordinate that produces the largest decrease in energy,

j∗ = arg max
j

∆Ej.

Previous work has considered other ways to choose the updated coordinate. In [31], the authors choose
the updated coordinate according to the most negative directional derivative along each coorindate in
the forward or backward directions. Denoting ek as the kth standard basis vector, the objective function
E(u) has directional derivatives

dek
E = lim

σ↓0

E(u + σek)− E(u)

σ
= 2λ(‖ak‖

2
2uk − βk) +

{
1, uk ≥ 0,
−1, uk < 0,

(8)

d−ek
E = lim

σ↓0

E(u− σek)− E(u)

σ
= −2λ(‖ak‖

2
2uk − βk) +

{
−1, uk > 0,
1, uk ≤ 0.

(9)

The updated coordinate is then selected as

j∗ = arg min
j

(
min{dejE, d−ejE}

)
. (10)

4

However, this selection is not very cheap. Our selection strategy is somewhat cheaper for the compressed
sensing problem.

A computational savings is obtained through updating βj , rather than entirely recomputing it through
every iteration. We rewrite βj as

βj = (AT f)j − aT
j Au + (AT A)j,juj = (AT f)j − aT

j Au + ‖aj‖
2
2uj . (11)

then

βk+1
j − βk

j = (AT f)j − aT
j Auk+1 + ‖aj‖

2
2u

k+1
j −

(
(AT f)j − aT

j Auk + ‖aj‖
2
2u

k
j

)

= aT
j A(uk − uk+1) + ‖aj‖

2
2(u

k+1
j − uk

j).

Suppose we choose the pth coordinate to update in the kth iteration, then uk+1 − uk is nonzero only in
the pth coordinate, so uk+1 − uk = (uk+1

p − uk
p)ep, where ep is the pth standard basis vector.

βk+1
j − βk

j = (uk
p − uk+1

p)aT
j Aep + ‖aj‖

2
2(u

k+1
j − uk

j)

=
(
(AT A)j,p − δj,p‖aj‖

2
2

)
(uk

p − uk+1
p)

=

{
(AT A)j,p(u

k
p − uk+1

p) j 6= p

0 j = p.

and

βk+1 − βk = (uk
p − uk+1

p)AT Aep + δj,p‖ap‖
2
2(u

k+1
p − uk

p)

= (uk+1
p − uk

p)(‖ap‖
2
2I −AT A)ep.

Therefore, we get the algorithm for using an adaptive sweep,

Precompute: wj = ‖aj‖
2
2;

Initialization: u = 0, β = A⊤f ;
Iterate until converge:

ũ = shrink(β
wj

, 1
2λwj

);

j = arg maxi ∆Ei or j = arg mini {deiE, d−eiE},
then uk+1

i = uk
i , i 6= j,

uk+1
j = ũj;

βk+1 = βk − wj |u
k
j − ũj| (A

⊤A)ej ,

βk+1
j = βk

j .

If A is a column normalized matrix, then the computation simplifies to wi = 1 and

∆Ej = λ(uj − ũj)(uj + ũj − 2βj) + |uj | − |ũj |, (12)

To simplify the computation even further, we observe that a large difference |uj − ũj| indicates that
changing uj to ũj probably yields a large decrease in E. So we use the following simplification for choosing
the updating component based on the relative error:

∆Ej ≈ λ|uj − ũj|. (13)

We call this a relatively greedy choice, because we have essentially removed the absolute magnitudes of
uj and ũj from the decision process. This simplification makes the computation easier than computing
the exact ∆E. We have two adaptive sweeps (12) and (13) to process coordinate descent for solving

5

(3). The first updates the coordinate which makes the energy decrease the most, the second chooses the
coordinate that produces the biggest difference |uj − ũj|. For the compressed sensing problem, numerical
experience suggests that they both need a similar number of iterations to get the same accuracy but
the latter (13) takes less time compared to the other two ways of greedy selections, (10) and (12). For
simplification, we shall use column normalized matrices for all the numerical tests in this paper and the
latter sweep in the coordinate method, which is called a refined sweep. If we do not normalize A initially,
then we can approximate ∆E by ‖aj‖

2|uk
j − ũj|. If we precompute B = A⊤A, then (A⊤A)ej is the jth

column of B in the algorithm.
Algorithm (Coordinate descent with a refined sweep):

Precompute: wj = ‖aj‖
2
2;

Normalization: A(·, i) = A(·, i)/wi;
Initialization: u = 0, β = A⊤f ;

Iterate until converge:
ũ = shrink(β, 1

2λ);
j = arg maxi |ui − ũi|,
then uk+1

i = uk
i , i 6= j,

uk+1
j = ũj;

βk+1 = βk − |uk
j − ũj |(A

⊤A)ej ,

βk+1
j = βk

j .

2.4 Convergence of Greedy Coordinate Descent

Consider minimizing functions of the form

min
ui∈R

H(u1, u2, . . . , un) = F (u1, u2, . . . , un) +
n∑

i=1

gi(ui), (14)

where F is differentiable and convex, and gi is convex. Tseng (1988) proved pathwise coordinate descent
converges to a minimizer of H [28, 29]. Here, with several additional conditions on H, the following
theorem shows that our greedy coordinate descent method also converges to a minimizer of H.

Theorem 1. Suppose F (u1, u2, . . . , un) is smooth and convex, | ∂2F
∂ui∂uj

|∞ ≤ M , and H is strictly convex

with respect to any one variable ui, then the statement that u = (u1, u2, . . . , un) is an optimal solution of

(14) is equivalent to the statement that every component ui is an optimal solution of H with respect to

variable ui for any i.

Proof. Suppose u = (u1, u2, . . . , un) satisfies the condition that every component ui is an optimal solution
of H with respect to variable ui. That is,

H(u1, u2, . . . , ui + ǫi, . . . , un)−H(u1, u2, . . . , ui, . . . , un) ≥ 0, for any ǫi.

Since H is strictly convex along any one coordinate, ui is the unique solution of minui H. Therefore,

H(u1, u2, . . . , ui + ǫi, . . . , un)−H(u1, u2, . . . , ui, . . . , un) > 0, for any ǫi 6= 0. (15)

From (15), we obtain by the mean value theorem

H(u1, u2, . . . , ui + ǫi, . . . , un)−H(u1, u2, . . . , ui, . . . , un)

= F (u1, u2, . . . , ui + ǫi, . . . , un)− F (u1, u2, . . . , ui, . . . , un) + gi(ui + ǫi)− gi(ui)

= ǫi
∂F

∂ui
(u) +

ǫ2
i

2

∂2F

∂ui
2
(ũ) + gi(ui + ǫi)− gi(ui) > 0.

6

for some ũ between ui and ui + ǫi. When ǫi > 0, then

∂F

∂ui
(u) +

ǫi

2

∂2F

∂ui
2
(ũ) +

gi(ui + ǫi)− gi(ui)

ǫi
> 0

Now we want to prove

∂F

∂ui
(u) +

gi(ui + ǫi)− gi(ui)

ǫi
≥ 0, for any ǫi > 0.

If it is not true, there is an ǫi such that

∂F

∂ui
(u) +

gi(ui + ǫi)− gi(ui)

ǫi
= c < 0.

Since gi is convex, we have

gi(ui + ηi)− gi(ui)

ηi
≤

gi(ui + ǫi)− gi(ui)

ǫi
for 0 < ηi ≤ ǫi.

Therefore,

∂F

∂ui
(u) +

ηi

2

∂2F

∂ui
2
(ũ) +

gi(ui + ηi)− gi(ui)

ηi

≤
∂F

∂ui
(u) +

ηi

2

∂2F

∂ui
2
(ũ) +

gi(ui + ǫi)− gi(ui)

ǫi

= c +
ηi

2

∂2F

∂ui
2
(ũ) for 0 < ηi ≤ ǫi.

Let ηi = − c
M , then |ηi

2
∂2F
∂ui

2 (ũ)| ≤ ηi

2 M = − c
2 , which means

∂F

∂ui
(u) +

ηi

2

∂2F

∂ui
2
(ũ) +

gi(ui + ηi)− gi(ui)

ηi
≤

c

2
< 0,

which is a contradiction. Therefore,

∂F

∂ui
(u) +

gi(ui + ǫi)− gi(ui)

ǫi
≥ 0 for any ǫi > 0.

The analogous result for ǫi < 0 can be obtained similarly,

∂F

∂ui
(u) +

gi(ui + ǫi)− gi(ui)

ǫi
≤ 0 for any ǫi ≤ 0.

In conclusion, we have

ǫi
∂F

∂ui
(u) + gi(ui + ǫi)− gi(ui) ≥ 0 for any ǫi.

Therefore, by the convexity of F ,

H(u1 + ǫ1, u2 + ǫ2, . . . , un + ǫn)−H(u1, u2, . . . , un)

= F (u1 + ǫ1, u2 + ǫ2, . . . , un + ǫn)− F (u1, u2, . . . , un) +
∑

i

(
gi(ui + ǫi)− gi(ui)

)

≥
∑

i

ǫi
∂F

∂ui
(u) +

∑

i

(
gi(ui + ǫi)− gi(ui)

)

≥ 0.

7

Now checking the objective function E in (4), F = λ‖Au−f‖22 is smooth and convex, ∂2F
∂ui∂uj

= (A⊤A)ij

is bounded, E with respect to any single variable ui has the form λ(ui − b)2 + |ui|1, which is strictly
convex for any value of b and λ 6= 0. Thus, E satisfies all the conditions in the theorem.

Lemma 1. Denote v = (u1, u2, . . . , ui−1, ui+1, . . . , un) and f(v) = arg minui H(u1, u2, . . . , ui, . . . , un),
then f is continuous for any i.

Proof. Suppose there is a sequence (vk) that converges to v, we want to prove that f(vk) converges to f(v).
Denote ũk

i = f(vk), ũi = f(v) and H̃(v, ui) = H(u1, u2, . . . , ui, . . . , un). Since H(vk, ũk
i) ≤ H(vk, ũi) and

limk H(vk, ũi) = H(v, ũi), we have for some M ,

|H(vk, ũk
i)| ≤ |H(v, ûi)|+ M for all k.

Then, since H has bounded level sets, there exists T such that
∥
∥(vk, ũk

i)
∥
∥
∞
≤ T . Therefore, (ũk

i) has a
convergent subsequence (ũpk

i), ũpk
i → ûi. Then

H(v, ûi) = lim
k→∞

H(vpk , ûpk
i)

≤ lim
k→∞

H(vpk , ũi) = H(v, ũi),

but arg minu H(v, u) is unique, so ûi = ũi. Therefore, every cluster point of the bounded sequence (ũk
i)

converges to ũi. Then (ũk
i) converges to ũi, so f is continuous.

Theorem 2. If limui→∞ H(u1, u2, . . . , un) = ∞ for any i, then the greedy coordinate descent method

based on the selection rule: j = arg maxi ∆Hi converges to an optimal solution of (14).

Proof. It is easy to get
min
u∈Rp

H(u) ≤ H(up+1) ≤ H(up). (16)

H(up) is nonincreasing and bounded from below, so it converges to some Ĥ,

lim
p→∞

H(up) = Ĥ. (17)

Since limui→∞ H(u) = ∞, we have H(up) ≤ M implies sup ‖up‖∞ is bounded (the function H has
bounded level sets). Therefore, the sequence (up) is also bounded, which implies there exists a subsequence
(up(k)) converging to a limit û. Since H is continuous, H(û) = Ĥ.

Define
∆Hi(u) = H(u1, . . . , ui, . . . , un)−H(u1, . . . , ũi, . . . , un),

where ũi = arg minui H(u) is the optimal solution of H with respect to variable ui with all the other
uj (i 6= j) fixed. Using the lemma, ũi is continuous on v = (u1, . . . , ui−1, ui+1, . . . , un), so ∆Hi(u) =
H(u1, . . . , ui, . . . , un)−H(u1, . . . , ũi, . . . , un) is continuous.

Since up(k) → û, for any coordinate i,

∆Hi(û) = ∆Hi(lim
k→∞

up(k)) = lim
k→∞

∆Hi(u
p(k)).

For the sweep pattern j = arg maxi ∆E for choosing the updated coordinate,

∆Hi(u
p(k)) ≤ H(up(k))−H(up(k)+1) = 0

and
∆Hi(û) = lim

k→∞
∆Hi(u

p(k)) ≤ lim
k→∞

H(up(k))−H(up(k)+1) = 0.

According to Theorem 1, û is an optimal solution to (14).

8

Remark 1. For our problem, H(u) = |u|1 +λ‖Au−f‖22, so lim|ui|→∞ H(u) =∞ for any i. So the greedy

coordinate descent method works here. Also in this case, ũi = f(v) is obtained by a shrinkage, which is

clearly continuous.

We can prove the convergence of coordinate descent when using the sweep pattern j = arg maxi |ui−ũi|
for solving H(u) = |u|1 + λ‖Au− f‖22.

Lemma 2. Consider function H(x) = (ax − b)2 + |x|, where a > 0. It is easy to know that x̃ =
arg minx H(x) = shrink(b

a , 1
2a2). Now we claim that for any x,

|x− x̃| ≤
1

a

(
H(x)−H(x̃)

)1/2
. (18)

Proof. Assume that b
a ≥ 0, then x̃ = arg minx H(x) = shrink(b

a , 1
2a2) ≥ 0.

If x̃ = 0, then b
a ≤

1
2a2 so 2ab ≤ 1.

H(x)−H(x̃) = a2x2 + |x| − 2abx

≥ a2x2 + (1− 2ab)|x|

≥ a2x2

= a2(x− x̃)2.

If x̃ > 0, then x̃ = b
a −

1
2a2 so b = ax̃ + 1

2a . We have

H(x)−H(x̃) = (ax− b)2 + |x| − (ax̃− b)2 − x̃

≥ (ax− b)2 + x− (ax̃− b)2 − x̃

= a(x− x̃)(ax + ax̃− 2b + 1
a)

= a(x− x̃)(ax− ax̃− 1
2a + ax̃− ax̃− 1

2a + 1
a)

= a2(x− x̃)2.

When b
a ≤ 0, the analysis is the same.

Theorem 3. The greedy coordinate descent method with the selection rule: j = arg maxi |ui−ũi| converges

to an optimal solution of

min
u∈Rn

H(u) = |u|ℓ1 + λ‖Au− f‖2ℓ2, (19)

Proof. We know that the function H restricted on the ith coordinate is a function like λ‖ai‖
2
2(x−b)2+|x|,

where ai is the ith column of A, so by Lemma 2

|ui − ũi| ≤
(H(v, ui)−H(v, ũi))

1/2

‖ai‖2
, for any v. (20)

We have limk→∞ |u
k − uk+1|∞ ≤ limk→∞

(H(uk)−H(uk+1))1/2

minj ‖aj‖2
= 0, so (uk) is a Cauchy sequence and

converges to û. Denote uk = (vk
i , uk

i) and û = (vi, ui), then lim(vk
i , uk

i) = (v̂i, ûi). Let

ũi = fi(vi) = arg min
ui

H(vi, ui)

=
1

‖ai‖22
shrink

(
∑

j

aji(fj −
∑

k 6=iajkuk),
1
2λ

)

,

9

Since shrinkage is continuous, fi is continuous and fi(v
k
i)→ fi(v̂i). Denote ũk

i = fi(v
k
i), then

|ûi − fi(v̂i)| = lim
k→∞

|uk
i − fi(v

k
i)| = lim

k→∞
|uk

i − ũk
i |

≤ lim
k→∞

max
j
|uk

j − ũk
j |

= lim
k→∞

‖uk − uk+1‖∞

≤ lim
k→∞

(H(uk)−H(uk+1))1/2

minj ‖aj‖2
= 0 for any i.

So ûi = fi(v̂i). This means û is optimal in each coordinate. By Theorem 1, û is optimal.

2.5 Comparison of Numerical Speed

Table 1 compares the runtimes using the pathwise coordinate descent and the refined coordinate descent
for solving

min
u∈Rn

|u|1 + λ‖Au− f‖22. (21)

In this experiment, we form a 256 × 512 matrix A by choosing elements uniformly distributed in [0, 1]
and then normalizing columns, f by a 512-sample input signal with 26 uniformly distributed nonzero
components. The stopping conditions for two different methods are almost the same, which means the
relative residuals and the relative errors obtained from the two algorithms are almost the same.

λ 0.1 0.5 1 10 100

Pathwise 43s 42s 49s 242s 1617s

(10) 0.33s 0.31s 0.26s 0.56s 4.0s

(12) 0.24s 0.22s 0.19s 0.42s 2.7s

Proposed (13) 0.18s 0.17s 0.16s 0.33s 2.2s

Table 1: Runtimes of pathwise coordinate descent versus adaptive sweep methods for solving (21) when
they achieve the same accuracy.

From the table, we see that the proposed method (13) is much faster than pathwise coordinate descent
for any parameter λ. The proposed method is also faster than the other two adaptive sweep methods
included by (10) and by (12).

All methods slow down with increasing λ. We need large λ to approximate the constrained problem
min {|u|ℓ1 , s.t. Au = f}. Unfortunately, when λ is very big, the threshold is 1

λ and consequently advances
in the coordinate descent are small and the convergence is slow. However, applying Bregman iteration,
the methods speed up considerably for moderate λ and converge rapidly to a solution of the constrained
problem. We will discuss this in detail in §3.2 and §3.3.

3 Solving the Constrained Problem

3.1 The Unconstrained Problem and The Constrained Problem

We consider the unconstrained problem

min
u∈Rn

|u|1 + λ‖Au− f‖22 (22)

10

and the constrained problem
min

u
|u|1 s.t. Au = f. (23)

Table 3 shows how increasing λ in (22) affects speed and accuracy. We use the refined coordinate descent
method and compare the relative residuals ‖Au− f‖2 / ‖f‖2 and errors ‖u− uexact‖2 / ‖uexact‖2. Here, A
is a 256×512 column normalized matrix uniformly distributed in [0, 1], and the sparse solution to (23) is a
512-sample input signal with 26 nonzero components. We use the stopping time ‖uk−uk−1‖ℓ∞ ≤ 1×10−6.

λ 0.1 0.5 1 10 102 104 108

relative residual 8.5× 10−3 1.7× 10−3 8.5× 10−4 8.5× 10−5 8.6× 10−6 5.4 × 10−7 5.7 × 10−8

relative error 2.3× 10−2 4.7× 10−2 2.3× 10−3 2.3× 10−4 2.3× 10−5 1.0 × 10−6 0.08

Runtime 0.18s 0.17s 0.16s 0.33s 1.26s 113s 0.87s

Table 2: The relative residuals and the relative errors for different λ using the refined method.

From the table, we see that the relative residual and the relative error goes to zero as λ increases,
which implies the solution of (22) converges to the solution of (23). Figure 3 shows the convergence
graphically.

λ = 0.01 λ = 0.1 λ = 100

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600
0

10

20

30

40

50

Figure 3: The circles are the numerical outputs at a certain λ and the points represent the true solution.
If the numerical outputs are very close to the true solution, then the points should be in the center of
the circles.

By choosing large λ, the unconstrained problem (22) has more weight in the penalty term and its
solution approximates the solution of (23), see Figure 3. However, when λ is very big, the algorithm needs
more accuracy and the algorithm converges slowly to the sparse solution of the constrained problem (23).
From Table 2, we see that it takes much longer time when λ = 104. When λ = 108, the relative error is
surprisingly bad even through the relative residual is very small. The reason for this is that a larger λ
deemphisizes the ℓ1 term, so the sparsity of the solution and hence the accuracy is negatively affected.
In Figure 3, we see that the numerical result and the exact solution are very close to each other when
λ = 100.

If we want more accuracy, we have to use bigger λ, which will take much more computation. To
overcome this inefficiency, we use a Bregman iterative method.

11

3.2 Bregman Iterative Method

The Bregman distance [1] is defined as

Dp
J(v, u) = J(v)− J(u)− 〈v − u, p〉, p ∈ ∂uJ

where p ∈ ∂J(u) is an element in the subgradient of J at the point u.
The Bregman iterative method for solving the basis pursuit problem (23) was proposed in [32]. Here,

J(u) = |u|1 and H(u, f) = λ‖Au− f‖22.
Algorithm (Proposed):
1: Initialize: k = 0, u0 = 0, f0 = 0.

2: while ‖Au−f‖2

‖f‖2
> tolerance do

3: Solve uk+1 → arg minu |u|1 + λ‖Au− fk‖22 by coordinate descent
4: fk+1 → f + (fk −Auk+1)
5: k → k + 1
6: end while

The largest computational cost is in step 3, which we solve by refined coordinate descent. One
advantage of using Bregman iteration is that it will converge to the exact solution of the constrained
problem for any choice of λ in the subproblem (step 3). So λ should be selected such that the subproblem
can be solved efficiently. When λ is very big, the convergence is slow. This effect is evident in Table 1 and
Table 2. In the other extreme, if λ is too small, then more Bregman iterations are needed. So the best
value for λ is something intermediate. Numerical experiences show that, by choosing an appropriate λ
such that both the subproblems are solved quickly and few Bregman iterations are needed, the constrained
problem can be solved with more accuracy and faster than solving (22) with a big λ.

Another advantage of the proposed algorithm is helpful for its speed. Using the Bregman iterative
method for solving (23), it is not necessary to solve the subproblem (step 3) very accurately, which is
very time-consuming. Here, we pick the stopping condition as ‖∆u‖∞ ≤ 10−5.

3.3 Numerical Results

Now we implement the proposed algorithm to solve (23). For every Bregman iteration, we solve an
unconstrained problem using the coordinate descent method, then update f and go to the next Bregman
iteration. We repeat this process until convergence. Table 3 shows the accuracy at each Bregman
iteration using the pathwise coordinate descent method with a fixed λ. Table 4 shows the accuracy using
the refined coordinate descent method. The numerical examples are the same as in the previous section
and we use a fixed λ = 0.01 for Table 3 and λ = 0.1 for Table 4.

Bregman iteration steps After 1 step After 2 steps After 3 steps

relative residuals 8.0× 10−3 1.8× 10−7 2.3× 10−8

relative errors 1.8× 10−1 1.7× 10−6 2.1× 10−7

Table 3: The relative residuals and errors for solving (23) after each Bregman iteration using the pathwise
coordinate descent method. The total computational time after 3 Bregman iterations is 46s.

From the two tables, we see that the numerical results have very high accuracy after only 3 Bregman
iterative steps, so it solves the constrained problem (23). Compared to method of solving (23) by using
very big λs, this is much more efficient and accurate.

12

Bregman iteration steps After 1 step After 2 steps After 3 steps

relative residuals 8.0× 10−3 1.3× 10−8 8.8× 10−9

relative errors 1.8× 10−1 1.6× 10−7 9.9× 10−8

Table 4: The relative residuals and errors for solving (23) after each Bregman iterative step using the
refined method. We obtain very accurate solution with 0.3s computational cost.

3.4 Denoising

If the input data f is noisy, and we know the noise level, then we can stop before convergence to denoise,
see [32, 18]. Assume the noise level is known ‖f−fexact‖

2
2 = ǫ, then we use coordinate descent to minimize

E(u) = |u|1 + λ‖Au − f‖22 with the stopping condition ‖Au − f‖22 ≤ ǫ. The numerical example uses the
same matrix A and uexact as in the previous, see Figure 4.

Input f (SNR 28.1) Recovery u (SNR 26.9)

0 100 200 300 400 500 600
70

75

80

85

90

95

100

105

110

115

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

Figure 4: For the left picture, the circles are the numerical noisy inputs and the points represent the clean
f ; for the right plot, the circles are the numerical results and the points represent the exact solution.
Parameters: λ = 0.3, runtime 0.35s.

3.5 A Special Numerical Example

In this example, our original sparse signal has a high dynamical range. uexact has 80 spikes, whose values
are generated by multiplying a uniform random number in [0, 1] with another one randomly picked from
{1, 10, . . . , 1010}. The matrix A is a normalized Gaussian matrix of size 1200 × 4000. By choosing a big
λ = 106, our recovered result is very accurate, see figure 5. It stopped after 776 iterations (runtime 0.25s)

and ‖Au−f‖2

‖f‖2
= 4.26 × 10−14, ‖u−uexact‖2

‖uexact‖2
= 3.65 × 10−14 and ‖u− uexact‖∞ = 1.64 × 10−4.

4 Comparison to Other Methods

We introduce two other fast methods and then compare their numerical speed with the proposed method
for solving (23). The fixed point continuation (FPC [16, 30]) method is efficient for solving (22). The
method works in the following way:

min
u

E(u) = 1
2‖Au− f‖22
︸ ︷︷ ︸

φ1

+ µ|u|1
︸ ︷︷ ︸

φ2

,

13

Exact and recovered u

0 500 1000 1500 2000 2500 3000 3500 4000
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

Figure 5: The recovery of signal with high dynamical range. The dots are the original signal and the
circles are recovered result. Parameters: λ = 106, runtime 0.25s.

where µ = 1
2λ . We denote T1 = ∂φ1 = µ sgn(u), T2 = ∂φ2 = A⊤(Au− f). Then

0 = ∂E(u)⇔ 0 = (u + τT1(u))− (u− τT2(u))

⇔ u = (I + τT1)
−1(I − τT2)u.

The fixed point iterative method obtains the exact solution by updating u as

uk+1 := (I + τT1)
−1(I − τT2)u

k.

It turns out that (I + τT1)
−1 = shrink(·, τ/µ), where ν = τ/µ. So

uk+1 = shrink(uk − τA⊤(Auk − f), ν).

To solve (22), we update u using the above formula until convergence. For the application to compressed
sensing, we use FPC to solve the subproblem (step 3) in the Bregman iterative step. If we think of the
coordinate method as Gauss-Seidel, then FPC method is indeed SOR, where τ is the relaxation factor,
and I, T1, and T2 take the roles of the diagonal, the lower triangular and upper triangular parts of the
operator. So FPC needs fewer iterations, but the computational cost of one FPC iteration is O(nm)
and the computational cost of one coordinate iteration is O(n). The FPC method has a new version
(FPC BB) [30] to accelerate convergence, and we use the new version in the comparison (Table 5).

The linearized Bregman method [32, 18] solves the constrained problem

min µ|u|1 +
1

2δ
‖u‖22, s.t. Au = f, (24)

where λ is a positive scalar parameter. When δ is large enough, its solution is the solution of (23), see
[2, 33]. The algorithm is a two-line code:

v0 = 0;u0 = 0.

uk+1
i ← shrink(vk

i , µδ), i = 1, . . . , n,

vk+1 ← vk + δA⊤(f −Auk+1).

14

Now we compare the three different methods. For the numerical tests, A is an m×n normalized Gaussian
matrix, and the original sparse signal uexact has round(0.05×n) spikes, which have amplitudes uniformly
distributed in [0, n]. When A is a normalized Gaussian matrix instead of a uniformly distributed in [0, 1]
as in some previous numerical examples, all three methods converge faster, which does not effect the
comparison result. For the proposed method, we assume A⊤A is computed ahead, which is not included
in the total time showing in the table.1

m× n 512× 1024 1024 × 2048 2048 × 4096

LB 0.8 5.9 10
FPC BB 0.3 1.3 6.2
Proposed 0.07 0.21 0.94

Table 5: The runtime (in seconds) comparison of FPC BB, linearized Bregman and proposed methods.

Generally, the FPC and proposed method use few Bregman iterations but both of them need lots
of iterations to solve the subproblem (step 3); the linearized Bregman method has closed form for the
subproblem but it needs many more Bregman iterations than the other two. For the same type of data
as used in Table 5 (m = 0.5 × n), FPC converges with a fixed number of iterations. However the
proposed method needs a number of iterations which linearly depends on the number of spikes of uexact

(round(0.05 × n)). But the computational cost of one FPC iteration is O(mn) and the computational
cost of one iteration with the proposed method is O(n). Both of them use O(mn) computation for the
total cost, but our proposed method is faster than FPC.

If the matrix A is a DCT or FFT matrix, then it takes O(n log n) to multiply A with a vector. The
total cost of FPC becomes O(n log n), but the total time of the proposed method is still O(mn), which
makes FPC faster than the proposed method with big matrices, see Table 6 (m = 0.5×n). The linearized
Bregman iterative method has two parameters µ and δ, which are crucial to the speed.

m× n 512 × 1024 1024 × 2048 2048 × 4096 4096 × 8192

FPC BB 0.05 0.08 0.16 0.73
Proposed 0.03 0.12 0.46 2.04

Table 6: The runtime (in seconds) comparison of FPC BB and proposed methods.

Actually, for recovering a sparse signal, there is no need to compute the entire B = A⊤A. We only
need parts of the columns of B. To save the computation, we only compute the column when we need, and
then save it in case we need it again. Moreover, to compute the columns of B and the other computation
in the proposed algorithm is separable, which gives an advantage for possible parallel computation.

5 Conclusion

In this article, we developed a fast coordinate descent method to solve (22). By increasing the penalty
parameter λ, we can solve the basis pursuit problem (23), but at the cost of long runtimes. So instead,
we combine a Bregman iterative method with a greedy coordinate optimization method, which allows us
to solve (23) for small λ without losing accuracy and efficiency. Numerical examples indicate that this is
a very efficient method.

1All the experiments are done on an AMD Athlon 64x2 Dual Core 5600+ and 2GB RAM and coded in Matlab R2007b.

15

6 Acknowledgment

Thanks to Pascal Getreuer for his helpful suggestions. This research was supported by ONR Grant
N00014710810 and the Department of Defense.

References

[1] L. Bregman. “The relaxation method of finding the common point of convex sets and its appli-
cation to the solution of problems in convex programming.” USSR Computation Mathematics and
Mathematical Physics, 7(3): pp. 200–217, 1967.

[2] J. Cai, S. Osher and Z. Shen. “Linearized Bregman Iterations for Compressed Sensing.” Math.
Comp., 78: 1515–1536, 2009.

[3] E. Candes, J. Romberg and T. Tao. “Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information.” IEEE Transactions on Information Theory, vol. 52,
pp. 5406–5425, 2006.

[4] E. Candes and T. Tao. “Decoding by Linear Programming.” IEEE Transactions on Information
Theory, Dec. 2005.

[5] E. Candes and J. Romberg. “ Sparsity and incoherence in compressive sampling.” Inverse Prob-
lems, (23) 00. 969–985, 2007.

[6] S. Chen, D. Donoho and M. Saunders. “Atomic decomposition by basis pursuit.” SIAM J. Sci.
Comput., (20) 3361, 1998.

[7] J. Claerbout and F. Muir. “Robust modeling with erratic data.” Geophysics, (38) 826844, 1973.

[8] R. Chartrand. “Nonconvex compressed sensing and error correction.” in Proceedings of the 32nd
Inter- national Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 889892 , 2007.

[9] S. Chen, D. Donoho and M. A. Saunders. “Atomic decomposition by basis pursuit.” SIAM
Journal on Scientific Computing, 20,pp. 33–61, 1998.

[10] P. Combettes and J. Pesquet. “Proximal thresholding algorithm for minimization over or-
thonormal bases,” SIAM J. Optim., 18, pp. 13511376, 2007.

[11] J. Darbon and M. Sigelle. “Image restoration with discrete constrained total variation, Part I:
Fast and exact optimization.” J. Math. Imaging Vision, 26, pp. 261276, 2006.

[12] D. Donoho. “Compressed sensing.” IEEE Transactions on Information Theory, 52, pp. 1289–1306,
2006.

[13] D. Donoho. “For most large underdetermined systems of linear equations, the minimal ell-1 norm
near-solution approximates the sparsest near-solution.” Communications on Pure and Applied Math-
ematics, 59(7), pp. 907-934, July 2006.

[14] D. Donoho, Y. Tsaig, I. Drori and J. Strack. “Sparse solutions of underdetermined linear
equations by stagewise orthogonal matching pursuit.” IEEE Trans. on Signal Processing; 2006.

[15] J. Friedman, T. Hastie, H. Hofling and R. Tibshirani. “Pathwise coordinate optimization.”
The Annals of Applied Statistics, vol. 1, pp. 302–332, 2007.

16

[16] E. T. Hale, W. Yin and Y. Zhang. “A Fixed-Point Continuation Method for ℓ1-Regularized
Minimization with Applications to Compressed Sensing.” CAAM Technical Report, 07-07.

[17] S. Mallat and Z. Zhang. “Matching pursuit with time-frequency dictionaries.” IEEE Transac-
tions on Signal Processing; 41(12), pp. 489–509, 1993.

[18] S. Osher, Y. Mao, B. Dong and W. Yin. “Fast linearized Bregman iteration for compressive
sensing and sparse denoising.” UCLA CAM Report 08-37.

[19] F. Santosa and W. Symes. (1986). “Linear inversion of band-limited reection seimo- grams.”
SIAM J. Sci. Statist. Comput. (7) 13071330, 1986.

[20] H. Taylor, S. Banks and J. McCoy. “Deconvolution with the ell-1 norm.” Geophysics, (44)
3952, 1979.

[21] R. Tibshirani. “Regression shrinkage and selection via the lasso.” J. Roy. Statist. Soc. Ser. B, (58)
267288, 1996.

[22] J. Tropp. “Just relax: Convex programming methods for identifying sparse signals.” IEEE Trans-
actions on Information Theory, 51, pp. 1030–1051, 2006.

[23] J.A. Tropp and A.C. Gilbert. “Signal recovery from random measurements via orthogonal
matching pursuit.” IEEE Trans. on Info. Theory, 53(12):4655-4666, 2007.

[24] P. Tseng. “Coordinate ascent for maximizing nondifferentiable concave functions.” Technical Re-
port LIDS-P; 1840, Massachusetts Institute of Technology. Laboratory for Information and Decision
Systems, 1988.

[25] P. Tseng. “Convergence of block coordinate descent method for nondifferentiable maximization.”
J. Opt. Theory and Applications; 109(3), pp. 474–494, 2001.

[26] R. Tibshirani. “Regression shrinkage and selection via the lasso.” J. Roy. Statist. Soc. Ser. B, (58)
267–288, 1996.

[27] J. Tropp. “Just relax: Convex programming methods for identifying sparse signals.” IEEE Trans-
actions on Information Theory, 51, pp. 1030–1051, 2006.

[28] P. Tseng. “Coordinate ascent for maximizing nondifferentiable concave functions.” Technical Re-
port LIDS-P; 1840, Massachusetts Institute of Technology. Laboratory for Information and Decision
Systems, 1988.

[29] P. Tseng. “Convergence of block coordinate descent method for nondifferentiable maximization.”
J. Opt. Theory and Applications; 109(3), pp. 474–494, 2001.

[30] Z. Wen, W. Yin, D. Goldfarb and Y. Zhang. “A Fast Algorithm For Sparse Reconstruction
Based on Shrinkage, Subspace Optimization and Continuation.” Submitted, Nov. 2008.

[31] T. Wu and K. Lange. “Coordinate Descent Algorithm for Lasso Penalized Regression.” The
Annals of Applied Statistics, vol. 2, pp. 224–244, 2008.

[32] W. Yin, S. Osher, D. Goldfarb and J. Darbon. “Bregman iterative algorithm for ℓ1 mini-
mization with applications to compressed sensing.” SIAM J. Imaging Sciences, pp. 143–168, 2008.

[33] W. Yin. “On dual penalty methods for basis pursuit.” Preprint, 2008.

17

