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Abstract— This paper presents a searching algorithm for
a group of agents moving in a swarm and sensing potential
targets. The objective of the algorithm is to use these groups
to efficiently search for and locate targets with a finite sensing
radius in some bounded area. We present an algorithm that
both controls agent movement and analyzes sensor signals
to determine where targets are located. We use computer
simulations to determine the effectiveness of this collaborative
searching.

I. INTRODUCTION
Collaborative sensing has long attracted research interest.

Researchers have variously investigated scenarios where sen-
sors require localization [13], where they are used to control
collaborative movement [10], used to detect a scalar field
[12], or are needed to perform a collaborative task [11]. In
addition, using such collaborating sensors to detect targets
within an area has been studied in reference to the “mine
counter-measure” problem [19], referring to the specific
military task of locating ground or water-based mines. In this
paper, we develop an algorithm for a specific type of mine
counter-measure problem, in which a number of independent
agents are tasked with determining the locations of targets
within a fixed area using noisy sensors that detect a scalar
quantity emmitted by the targets, but only when within a
fixed distance rs from a target. We control the motion of
the agents through an algorithm that causes the individuals
to form distinct swarms, and present techniques and filters
that allow for the use of the noisy data to locate targets. This
approach is partly inspired by biological examples such as
birds, which have long been known to form flocks when
moving and searching for food [18].

We assume here a sensing radius rs much smaller than
the domain size but comparable to swarm size. Different
assumptions, however, may require different algorithms. For
example, in [20] there is an infinite sensing radius, but
sensing is limited by obstacles, and in [23] is a scenerio
where communication between agents is not automatic.

A. Scenario Description

We consider a simple scenario in which there are M
targets in an area S, each emmitting a scalar signal g(r)
that decays with distance and effectively drops to zero at
some radius rs. We have N agents, each with a sensor that
can detect the signals of the targets, albeit with (perhaps
very strong) noise. If an agent receives signals from multiple
targets at the same time, only the sum of these signals is
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returned as sensor data. For simplicity, we suppose the agents
take sensor readings once every time step, which is long
enough that noise is independent between two time steps.

The algorithm needs to accomplish three basic tasks:
filter the noisy sensor data into a usable form, control the
coordinated movement of the agents using this data, and use
the data to determine when a target has been acquired and
where that target is located.

B. Structure of this paper

The algorithm is described in the next three sections:
Section II focuses on the techniques we use to process sensor
data, Section III describes the general movement control of
the agents, and Section IV describes the method for locating
the targets. The evaluation of our algorithm is presented in
section V, which is followed by conclusion and ideas for
future research.

II. SENSOR DATA PROCESSING

Due to the existence of noise in the sensor data and the
finite sensing radius of targets, we employ two separate filters
to our data: a Kalman filter and a cumulative sum (CUSUM)
filter. The former is used to simply reduce the initial noise in
the data while the latter is specifically suited to determining
whether or not an agent has entered into the sensing radius
of a target.

We now write our model for the sensor output as a
mathematical formula. As described in Section I, the formula
models scalar sensors with signals that depend only on
distance from a target. Given the M targets at positions yj
and an agent i with current position xi(tk) at timestep k, the
sensor reading si(tk) is given by

si(tk) =
M∑
j=1

g(|yj − xi(tk)|) + ni(tk) (1)

where ni(tk) denotes sensor noise, and g(r) again is the
signal pattern emitted by a target. For simplicity, we have
assumed that g(r) is isotropic, decaying, is the same for all
targets, and has a cutoff at radius rs.

A. Kalman Filter

Before we use the sensor readings to try to estimate the
position of nearby targets or control motion, we pass the data
through a Kalman filter. Since the signal is presumed to vary
smoothly as the agents move throughout the environment, a
Kalman filter is a natural choice to eliminate much of the
initial noise within the sensor readings. This filter takes the



raw signal si of agent i at time tk, and converts it into a
filtered signal fi according to

Pi(tk) =
Pi(tk−1)Ri(tk)
Pi(tk−1) +Ri(tk)

+Qi(tk) (2)

fi(tk) = fi(tk−1)+
Pi(tk)

Pi(tk) +Ri(tk)
(si(tk)−fi(tk−1)) (3)

Here Ri(tk) is the square of noise strength, which is sup-
posed to be known or estimated by the agents. Qi(tk) is
the square of estimated change of the signal between two
time steps, for which we can give a fixed value or estimate
the value using the current velocity of the agent. Pi(tk)
represents roughly the variance of the signal. The output fi
of this Kalman filter is then used in target estimation, as
described later.

B. Threshold Check and the CUSUM Filter

Before attempting to locate targets, each agent needs to
determine whether or not it is receiving a true target signal,
rather than simply noise. Equivalently, each agent needs to
know if it is within the sensing radius of a target at any given
time tk. This knowledge is then used both in controlling the
movement of the agents and in determining when to begin
attempting to estimate target locations. In order to determine
the sensing status of an individual, we employ a CUSUM
filter, as this type of filter is well-suited to determining abrupt
changes of state [7], and has been used in the similar task of
boundary tracking [5][21]. In essence, the filter keeps a sort
of running average of the signal, and notes when this average
seems to have changed by rising above a certain threshold,
indicating that the agent is now within the sensing radius of
a target. As the noise is effectively summed up by the filter,
it tends to cancel out.

In the original form of the CUSUM filter, we imagine a
sensor that returns a sequence of independent observations
s(t1)...s(tn), each of which follows one of two probability
density functions: a pre-change function g0 and a post-
change function g1. The log-likelihood ratio is

Z(tk) = log[g1(s(tk))/g0(s(tk))] , (4)

and we define the CUSUM statistic

U(tk) = max(0, Z(tk) + U(tk−1)), U(t0) = 0. (5)

We then choose a threshold Ū , and when U(tk) ≥ Ū for
the first time, the algorithm ends and we declare that the
state has changed from g0 to g1. The threshold should be
chosen so as to minimize both false-alarms (these happen
more frequently for small Ū ) and time to detection (this gets
larger as Ū increases).

In our system, we choose the special case where sensor
output follows a Gaussian distribution. In the pre-change
state, the agent is outside the sensing radius of any target and
senses only noise, which we model as a Gaussian with zero
mean. In the post-change state, the agent enters the sensing
radius of some target, so the mean is larger than zero though

the distribution is still a Gaussian. If we estimate the mean
of state g1 as 2B, then

Z(tk) = log

[
e−[s(tk)−2B]2/2σ2

/(σ
√

2π)
e−s(tk)2/2σ2/(σ

√
2π)

]
(6)

=
−[s(tk)− 2B]2

2σ2
+
s(tk)2

2σ2
(7)

=
2B
σ2

[s(tk)−B] (8)

We also modify the algorithm so that it can detect status
changes both into and out of detection zones. Thus, we
implement two filter values: Ui(tk) to determine when an
agent has entered a zone, and Li(tk) to determine if they
have left a zone. We also define a binary function bi(tk)
which denotes the status of an agent; bi(tk) = 1 denotes that
the agent is near a target and bi(tk) = 0 means otherwise.
These filter values all start at zero, and are updated according
to

Ui(tk) = max(0, si(tk)−B + Ui(tk−1)) (9)

Li(tk) = min(0, si(tk)−B + Li(tk−1)) (10)

bi(tk) =

 1 bi(tk−1) = 0, Ui(tk) > Ū
0 bi(tk−1) = 1, Li(tk) < L̄
bi(tk−1) otherwise.

(11)

In addition, when the status of agent i changes, we reset the
corresponding Ui or Li to zero.

Recall that B is a sensor value that is less than the
predicted mean when inside a sensing radius and Ū is our
chosen detection threshold. So, when the agent is near a
target, sensor data si(tk) tend to be larger than B, causing
Ui(tk) to grow quickly until it is larger than Ū , indicating
a change in status. The converse is true if an agent leaves
the sensing region of a target. The values of the various
parameters of the filter are problem-specific, and should be
estimated in a manner that minimizes both false-alarms while
keeping the average time to detection as low as possible, as
mentioned above.

An example of sensor data from an agent within our
current simulations can be seen in Fig. 1. The Kalman filter
does a good job of reducing initial noise, bringing the sensor
readings much closer to the true values. Near the middle
of the plot, the agent enters into the sensing radius of a
target, and this is reflected by a transition within the CUSUM
filter from b = 0 to b = 1. There is, as expected from the
behavior of CUSUM, a slight delay between when the agent
actually enters into the radius and when this transition of b
occurs. After spending some time within the sensing radius,
the estimated target location stabilizes, the agent begins to
subtract the true signal from its measurements, and the agent
leaves to find further targets.

III. MOVEMENT CONTROL OF AGENTS

We have chosen to control the movement of our agents
by breaking up our total agent population N into a number
of distinct, leaderless “swarms”. This is done for a variety
of reasons. First, it increases robustness, as any individual



Fig. 1. Sample filter results from one agent within a simulation as a
function of time. The fine-dashed purple line represents the true signal that
should be detected by the agent. The blue dots are the actual signal detected
by the agent at each time step (i.e., the purple curve plus noise). The green
line is the signal status returned by the CUSUM filter, with a thin crimson
line representing the value B = 0.1. The sparsely-dashed red curve is the
result of the Kalman filter.

swarm member is not critical to the functioning of the swarm
as a whole. Second, since we imagine that any sensor data
acquired by these agents is local in space, a swarm provides
a method of extending the effective sensing area to that of the
whole swarm. Third, a swarm of nearby agents may use their
combined measurements to decrease sensor noise. Fourth, the
swarm provides the ability to locate targets via triangulation
or gradient methods. Each of the various swarms may search
within a different region of space if a divide-and-conquer
tactic is desired, or each swarm may be free to roam over
the entire region. In the following two sections we mainly
focus on the control of one swarm.

Since the agents have a limited sensing radius, we choose
to employ two different phases of swarm motion. When there
are no targets nearby, the agents should move through the
space as quickly and efficiently as possible, performing a
simple flocking movement as legs of a random search. After
a signal is sensed via the CUSUM filter, the agents should
stop, then slowly move around the area, searching for the
exact point of the nearby target. We call these two phases
the searching phase and the pinpointing phase, respectively.
For a general idea of the two types of motion, see Fig. 2.

A. The Swarming Model

There are a variety of mathematical constructs that lead
to agent swarming (see for example [3], [4] and [6]). Here
we choose a second-order control algorithm similar to that
described in [1] and [2], which has been successfully imple-
mented as a control algorithm for second order vehicles on
real testbeds[8],[9]. In this system, each agent of the swarm
is subject to self-propulsion, drag, and attractive, repulsive,
and velocity alignment forces from each other agent. The
position and velocity of an individual agent i are governed
by

dxi
dt

= vi (12)

mi
dvi
dt

= (α−β|vi|2)vi−∇iU(xi)+
N∑
j=1

Co(vj − vi) (13)

Fig. 2. A screenshot from the simulation. Four swarms with eight agents
each are used. Three of them are in the searching phase, and the upper right
swarm is in the pinpointing phase. Large circles around targets denote the
sensing radius. Small crosses are already registered targets.

where

U(xi) =
N∑
j=1

Cre
|xi−xj |/lr − Cae|xi−xj |/la (14)

Depending upon the various values of the parameters, the
swarms can undergo many complex motions [1], two of
which are flocking and milling. In addition, in some cases
the swarms can alter motions spontaneously [22]. For our
purposes, we simply alter the parameters as necessary to
accomplish the type of motion currently desired.

B. Searching Phase

In this phase, the agents move together in a single direction
as a regularly-spaced group moving with a fixed velocity.
Since the agents know nothing about the location of targets,
a random search is chosen here. Specifically, we use a Levy
flight, which is known to be optimally efficient under certain
search conditions [16], and is the same movement that some
birds employ [18]. To accomplish this type of search, we
simply command the swarm to turn by some random angle
after flocking for some random length of time. For a Levy
flight, the time interval ∆t between two turns follows the
heavy-tailed distribution

P (∆t) ∼ ∆t−µ (15)

where µ is a number satisfying 1 < µ ≤ 3. The value of
µ should be chosen optimally according to the scenario in
question [16]. For destructive searching, µ should be as close
to 1 as possible. For nondestructive searching, the optimal
µ ∼ 2−1/[ln(λ/rs)]2, where λ is the mean distance between
targets and rs is the sensing radius.



C. Pinpointing Phase

When enough agents agree that a target is nearby (see
section III, CUSUM filter), the pinpointing phase begins.
In this phase, we want the agents to move only toward the
target, so we remove the velocity alignment force (Co = 0),
disable self-propulsion (α = 0), and issue a halt command
so that all agents begin the pinpointing with zero velocity. In
addition, data from those agents that are within the sensing
radius are used to continually estimate the position ȳ of the
target (see section IV) and the swarm members then try to
move towards it, thus causing other agents not yet in the
sensing radius to move closer to the target as well.

To make the agents move towards the target, we add an
additional potential to equation (14) of the form

Uc = Cc(xi − ȳ)2/2 (16)

where ȳ is the estimated position of the target. The full
control equations in the pinpointing phase are therefore
Eq. 12 and

mi
dvi
dt

= −β|vi|2vi −∇iU(xi) (17)

where

U(xi) =
1
2
Cc(xi − ȳ)2+

N∑
j=1

Cre
|xi−xj |/lr − Cae|xi−xj |/la . (18)

To show that this system converges to a stationary swarm
centered on the target, we note that the total energy of the
pinpointing system

E =
1
2

N∑
i=1

miv
2
i +

N∑
i=1

U(xi) (19)

serves as a Lyapunov function, so the collective tends to
minimize this quantity. That is,

Ė = −β
N∑
i=1

v4
i ≤ 0 . (20)

Hence, the velocities will eventually reach zero (due to the
drag) and the swarm members will spatially order themselves
so as to minimize the potential energy, forming a regular
pattern centered on the target position. This stationary state
serves as a spiral sink, however, so the swarm tends to
oscillate about the target position for some amount of time
that depends upon the value of Cc, with high Cc yielding less
oscillation. However, since the potential being minimized
now includes a term that is effectively attracting all of the
agents toward the center of mass, the overall swarm size will
be smaller than it was before the pinpointing potential was
added, so too large of a Cc will make the swarm smaller
than desired. In practice, then, we want to make Cc just
large enough to minimize the oscillations in space without
causing the swarm to become too small.

IV. LOCATING TARGETS

During the pinpointing phase of motion, all agents of the
swarm that are within the sensing radius keep a common
register of all of their positions and signal readings made
since entering the radius (see “threshold check” above). The
agents then use a least-squares algorithm to give an estimate
ȳ of where the target is located via

ȳ = min
y

N ′∑
k=1

[g(|y − x(tk)|)− f(tk)]2 , (21)

where N ′ is the number of sensor readings in the common
register.

Solving this least square minimization is quite straightfor-
ward, but this technique requires certain assumptions. First,
it assumes that the form of g(r) is know by the agents. For
certain classes of targets and scalar fields, we believe this
assumption is fair. Second, it supposes that only one target
is nearby, or that one target is much closer to the agents than
any other target. When the sensing radius is small compared
to the average distance between targets, these assumptions
should hold true. If, however, these assumptions are invalid
for the particular task at hand, other methods such as gradient
estimation could be employed.

If the estimated position of the target stabilizes, the agents
register the position of the target and return to the searching
phase. The model signal g(r) from the registered target will
be subtracted from further sensor readings so that it is not
detected again. We modify (1) to read

si(tk) =
M∑
j=1

g(|yj − xi(tk)|) + ni(tk)

−
M ′∑
j=1

g(|ȳj − xi(tk)|) , (22)

where M ′ is the total number of registered targets. Note that
the positions of these targets may or may not be accurate,
since noise and other error exists. If, instead of the position
stabilizing, the agents lose track of the target, they simply
return to the searching phase without registering anything.

For a general idea of the entire algorithm, see Fig. 3.

V. PERFORMANCE

Two main criterion for evaluation of our algorithm are
efficiency and accuracy. For the algorithm proposed here,
the two criterion are roughly determined by two different
phases: efficiency is mainly related to the swarming phase,
while accuracy is mainly related to the pinpointing phase.
To evaluate the performance of the algorithm numerically,
we use the following values: the average time needed for
the group to pinpoint one target (average time), the average
distance between the located targets and their estimated
positions (average error), and the percentage of registered
positions that are not within any actual sensing radius (false
register). Note that the false registers are not included in the
average error calculation.



Fig. 3. A simple flowchart of the algorithm.

We run computer simulations of the algorithm in a di-
mensionless 20 by 20 area, with a total of 32 agents and
a dimensionless sensing radius of 1. The signals have a
Gaussian form, with the peak signal-to-noise ratio being
about 10.5dB. We then run two different cases. In the first
case, there are 20 targets and we restrict the duration of the
simulation with the main goal of measuring efficiency. In the
second case, we distribute only 5 targets on the board and use
a much longer time limit with the main goal of measuring
accuracy. In either case, the simulation ends when time runs
out or when all targets are found. For each case, we do 100
trials and calculate the average of the statistics.

Since we may have multiple groups, it is important to
decide how they cooperate with one another. We try two
different policies here. One is a simple divide-and-conquer
tactic where we divide the whole region into subregions
before the simulation, and each group is in charge of a single
subregion, remaining within that area the entire time. The
other policy allows all groups to search the entire region
independently. In the results, we denote the use of divide-
and-conquer tactics with an asterisk.

Another important factor in these measures is how many
swarms we divide the agents into, or equivalently, the size
of each swarm. We therefore present the results for various
subdivisions. The final results are listed in Tables I and II,
with their associated plots presented in Figs. 4 and 5.

From the results we can see that the size of the swarms
works as a balance between accuracy and efficiency. As we
may have guessed, using larger swarms makes the results
more accurate, while using multiple swarms makes the
searching more efficient. To have an acceptable error and
false register rate, groups of at least four agents should be
used. This is perhaps due to the fact that at least three agents

TABLE I
CASE 1: 20 TARGETS, TIME LIMIT 50.0. ASTERISKS DENOTE THE USE

OF DIVIDE-AND-CONQUER TACTICS.

#Swarms Size Average time Average error False register
1 32 9.17 0.163 9.77%
2* 16 4.83 0.155 8.40%
2 16 5.45 0.159 11.90%
4* 8 3.15 0.158 8.68%
4 8 3.52 0.16 10.59%
8* 4 2.67 0.208 9.91%
8 4 2.9 0.200 11.73%

16* 2 2.64 0.257 15.59%
16 2 2.64 0.253 15.17%

TABLE II
CASE 2: 5 TARGETS, TIME LIMIT 200.0. ASTERISKS DENOTE THE USE

OF DIVIDE-AND-CONQUER TACTICS.

#Swarms Size Average time Average error False register
1 32 45.53 0.128 10.76%
2* 16 25.51 0.116 8.06%
2 16 26.89 0.117 8.95%
4* 8 14.22 0.134 8.96%
4 8 16.64 0.118 8.79%
8* 4 8.35 0.161 7.24%
8 4 10.58 0.172 8.97%

16* 2 8.31 0.223 11.97%
16 2 8.91 0.252 13.79%

Fig. 4. Average search time (left) and average error (right) for case 1: 20
targets, time limit 50.0. The blue line is for the divide-and-conquer method,
and the red dashed line is the result without divide-and-conquer.

Fig. 5. Average search time (left) and average error (right) for case 2: 5
targets, time limit 200.0. The blue line is for the divide-and-conquer method,
and the red dashed line is the result without divide-and-conquer.



are needed to locate a target using triangulation. Also, divide-
and-conquer tactics seem to work well for this searching
scenario.

VI. CONCLUSION AND FUTURE RESEARCH

We considered a mine counter-measure type scenario using
multiple agents that move cooperatively via swarming. The
agents use a variety of signal filters to determine when they
are within sensing range of a target and to reduce noise for
more accurate control and locating of targets.

There are many openings for future research in this area.
First, we can use alternative methods in some parts of
the algorithm. A potential change is to use a compressed
sensing method [17] for target locating, which enables us to
find multiple targets at the same time. Another interesting
modification is to use an anisotropic Levy search [15] and
take previously covered paths into account. Also, different
scenarios can also be evaluated, which might lead to different
results for accuracy and efficiency, or even suggest the use
of new algorithms. For example, we can extend the 2D
problem to 3D, as would be the case for underwater searches.
Or, perhaps a model for the detected signal is unknown, in
which case we will need different formulations to estimate
the target location. Finally, apart from numerical simulations,
we also plan to do experiments on a testbed where we have
small robotic vehicles as agents. This will provide an actual
evaluation of the algorithm in the presence of real sensor
noise, which may not be Gaussian in nature.
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