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Abstract. In this work, we propose a novel idea of representing surface diffeomorphisms using
Beltrami coefficients, which are complex-valued functions defined on the surface that describe lo-
cal non-conformal distortions of the surface map. According to Quasiconformal Teichmuller theory,
there is an one-to-one correspondence between the set of surface diffeomorphisms fixing three points
and the set of Beltrami coefficients with L∞-norm strictly less than 1. Every surface diffeomorphism
is associated with a unique Beltrami coefficient. Conversely, given every such coefficient, we can re-
construct the associated diffeomorphism exactly using a flow, called the Beltrami holomorphic flow,
which solves the Beltrami equation. The use of Beltrami coefficients to represent surface diffeomor-
phisms is a powerful method because it captures the most essential features of surface maps, such as
conformality distortions, rotational changes and dilations. By adjusting the Beltrami coefficient, we
can adjust the surface diffeomorphism accordingly to obtain desired properties of the map. More-
over, the Beltrami holomorphic flow guarantees to give a smooth sequence of surface diffeomorphisms.
Therefore, a sequence of surface diffeomorphisms can be represented by a sequence of Beltrami coef-
ficient and can be reconstructed by the Beltrami holomorphic flow. Using this approach, we propose
several applications to properties adjustment of surface maps. It includes the accurate alignment of
landmark curves, the reconstruction of surface diffeomorphisms, the construction of Riemann maps
and the restoration of diffeomorphic and conformality properties. We apply our algorithms on differ-
ent Riemann surfaces. Experimental results show that the Beltrami coefficient can effectively assist
us to represent and adjust surface diffeomorphisms.

Key words. Beltrami coefficient/equation, holomorphic flow, genus zero surface diffeomor-
phism, conformal map, landmark matching/alignment, Riemann map

1. Introduction. In shape analysis, it has become increasingly popular to find
diffeomorphisms of surfaces satisfying certain properties for further study [4, 5, 14, 17].
Besides, finding special diffeomorphisms such as the conformal parameterizations of
surfaces is also of great theoretical and practical interest. Two types of surfaces com-
monly occur in the study of shapes, especially in medical imaging and face recognition.
The first type is simply connected closed surface like hippocampal or cortical surface
in medical research. The second type is simply connected open surface like human
face in face recognition or a patch of an internal organ in medical research.

In various situations of surface registration, different constraints like landmark-
matching and conformality-preserving are enforced to get desirable diffeomorphisms
[16, 11, 14]. A good diffeomorphism usually preserves local geometry well. However,
getting these diffeomorphisms is often a time-consuming process. An increasing num-
ber of constraints tend to cause an increasing number of distortions or misaligned
landmarks in the final map. To deal with these problems, it is desirable to adjust
the diffeomorphism in a certain region while keeping the outside region fixed. In the
rest of this paper, closed surface means simply-connected closed surfaces with genus
zero, open surface means simply-connected surface patch with smooth boundary, and
surface means an instance of one of these two types of surfaces.

In this paper, we propose to represent diffeomorphisms of both closed and open
surfaces using the Beltrami coefficient, which is an easily computable complex-valued
function defined on its domain. It measures the local non-conformal distortion of the
diffeomorphism at every point of the domain. Given the set of all diffeomorphisms of
a closed or open surface S fixing three pairs of corresponding points, there is a one-
to-one correspondence between them and the set of Beltrami coefficients on S with
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L∞-norm strictly less than 1. Each such diffeomorphism is the unique solution of the
Beltrami equation, which specifies the value of the Beltrami coefficient at every point
of the domain. On both types of surfaces, we show that it is possible to solve the
Beltrami equation exactly using the Beltrami holomorphic flow introduced in Section
3. In other words, we can obtain a diffeomorphism of a surface with any Beltrami
coefficient or distortion we specify.

Motivated by the above facts, we propose the use of Beltrami coefficient to finely
adjust the conformality and other properties of surface maps. This is achieved by
perturbing the original Beltrami coefficient and flowing the diffeomorphism to satisfy
the new Beltrami coefficient. Moreover, we can adjust the mapping properties locally
by changing the Beltrami coefficient in the region we are interested while fixing the
outside region. By damping the Beltrami coefficient outside the region and flowing
the diffeomorphism, we can preserve the shape of the image of the region under the
diffeomorphism while mapping the exterior of the region conformally to the target
surface. In this way, a precise diffeomorphism fixing a particular region can be ob-
tained with the degree of conformality fine-tuned by the Beltrami coefficient. This
approach provides a powerful tool to regulate surface diffeomorphisms.

Using this approach, we propose several applications for adjusting surface maps.
The first application is the restoration of surface diffeomorphisms from distorted non-
diffeomorphic maps. The second application is the restoration of conformality of
surface diffeomorphisms. The third application is the construction of conformal pa-
rameter from any simply connected surface patch. This application is also a novel
method of constructing the generalized Riemann maps from surfaces as in the Rie-
mann mapping theorem.

In Section 2, we present some previous work in this area. In Section 3, we intro-
duce the mathematical theories behind this work. Section 5 illustrates our proposed
methods in solving the above problems. Finally, we conclude our work and some
future directions in Section 6.

2. Previous Work. Computing diffeomorphisms between surfaces has been ex-
tensively studied by different research groups for shape analysis. Grenander et al.
[3] proposed a framework based on constructing diffeomorphisms between shapes to
perform computational inference on population and disease testing. Vaillant et al.
[13] proposed that diffeomorphisms matching landmarks points between surfaces be
computed before statistics is performed using a tangent space representation of dif-
feomorphisms.

On the other hand, conformal maps have been widely used since they preserve
local geometry of the surface well. This method is motivated by the generalized
Riemann mapping theorem, stating that every genus zero closed or open surface is
conformally equivalent to the Riemann sphere or a unit disk respectively. For cases in
2D, Symm [12] proposed computing conformal mappings by solving integral equations.
Levin et al. [9] proposed the use of the Bergman Kernel Method to compute conformal
mapping of simply-connected domains.

Conformal maps between Riemann surfaces are also widely studied. For genus
zero surfaces, Yau et al. [6] proposed a variational approach to compute the conformal
parameterization by minimizing harmonic energy. The method is applied in medical
research to map brain surfaces conformally onto a canonical domain before study is
made [5]. As for higher genus surfaces, they proposed the use of holomorphic 1-form
to conformally parameterize the surfaces onto 2D rectangles [7]. In order to deal with
the problem of aligning landmarks, they further proposed the idea of slit conformal
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parameterization [15]. They used the Ricci flow to conformally flow an old metric to
a new metric with a constant Gaussian curvature. The resulting map is a conformal
map that aligns landmarks to horizontal slits in the planar domain. Besides, Wang
et al [14] proposd a variational approach to locally distort the conformality of the
parameterization so as to better align landmarks. The resulting map is not conformal
but the landmark mismatch error is greatly reduced. However, as the number of
landmark lines increases, it becomes increasingly difficult to obtain well-behaved maps
that are free from distortions. Very often, a diffeomorphic map which is one-to-one
and onto cannot be obtained.

In this paper, we propose to solve this problem by solving the Beltrami equation.
It has been of great theoretical interest for a long time because of its deep connection
with geometry, especially quasiconformal geometry and Teichmüller theory [2]. Solv-
ing the Beltrami equation is also a more general problem than finding the Riemann
map, as the distortion of different area of the map can be specified. Daripa [1] pro-
posed two fast algorithms to solve the Beltrami equation in the complex plane and the
interior of a unit disk based on the fast evaluation of two integrals. He [8] proposed
an efficient discrete algorithm to solve Beltrami equations using circle packing, which
can also be used to find Riemann maps in 2D.

3. Mathematical Theories. In this section, we discuss the mathematical the-
ories related to orientation-preserving diffeomorphisms of the Riemann sphere and
the unit disk, which we denote by C and D respectively. The Riemann sphere can be
realized as the complex plane compactified by a point at infinity. These theories give
us basic tools to work with genus zero closed surfaces and surface patches as they are
conformally equivalent to C and D respectively.

3.1. The Beltrami Equation and Beltrami Coefficient. Let S1 and S2 be
two simply connected closed surfaces and f be an orientation-preserving diffeomor-
phism between them. By the uniformization theorem, S1 and S2 are conformally
equivalent to the Riemann sphere. Let ϕ1 : S1 → C and ϕ2 : S2 → C be their confor-
mal parameterizations. Then f̃ = ϕ2 ◦ f ◦ϕ−1

1 is an orientation-preserving diffeomor-
phism of C. Without loss of generality, we may assume that f̃ fixes 0, 1 and ∞. This
can be done by choosing three points a, b and c on S1 and adjusting ϕ1 and ϕ2 so
that they map a, b, c to 0, 1,∞ and f(a), f(b), f(c) to 0, 1,∞ respectively. To study
diffeomorphisms between simply connected closed surfaces, it suffices to understand
their corresponding diffeomorphisms of C fixing 0, 1 and ∞.

Let f be a complex-valued function on a domain in C with continuous partial
derivatives. f is said to be quasiconformal if it is orientation-preserving and satisfies
the Beltrami equation

∂f

∂z
= µ(z)

∂f

∂z
, (3.1)

where µ is some complex-valued Lebesgue measurable function satisfying sup |µ| < 1.
If we write f = u+ iv, where u and v are real-valued functions defined on C, then fz
and fz are defined as:

fz =
1
2

[ux + vy + (vx − uy)i]

fz =
1
2

[ux − vy + (uy + vx)i]
(3.2)
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Fig. 3.1. The unit circle with an upright cross and its image under the linear quasiconformal
map z 7→ 0.8(z + 0.25eπi/4z).

The Beltrami equation admits a geometrical interpretation locally. Around every
z0 ∈ C, we can write

f(z) ≈ f(z0) + T (z − z0)
= f(z0) +A [z − z0 + µ(z0)(z − z0)] ,

(3.3)

where T is the differential of f at z0 and A is a complex constant. Here, T : C → C
is the real-linear map defined as

T (w) = A(w + µw), (3.4)

where µ = µ(z0). It is easy to check that T is an orientation-preserving bijection if
an only if |µ| < 1. Therefore, a quasiconformal map induces an orientation-preserving
homeomorphism from its domain onto its image. Note that T is the composition of
the stretch map S(w) = w + µz and a conformal multiplication by A. Therefore all
of the distortion caused by T is expressed by the complex number µ, which is called
the complex dilation or the Beltrami coefficient. An illustration of the effect of µ
is shown in Figure 3.1. From the stretch map S, we can find the angle of maximal
magnification of T to be (arg µ)/2 with magnifying factor 1 + |µ|, and its angle of
maximal shrinking to be (argµ − π)/2 with shrinking factor 1 − |µ|. The distortion
or dilation of T is defined as:

K(T ) =
1 + |µ|
1− |µ|

. (3.5)

4. Representation of surface diffeomorphisms with Beltrami coefficients.
In order to adjust the properties of surface diffeomorphism, we firstly have to find an
effective way to represent them. The representation should be simple and capture the
properties of the surface diffeomorphism well. It turns out that Beltrami coefficient,
which is a complex-valued function defined on the surface, is a powerful and useful
tool for us to represent surface diffeomorphism. According to Quasiconformal Teich-
muller theory, given the set of all diffeomorphisms fixing three pairs of corresponding
points, there is a one-to-one correspondence between these diffeomorphisms and Bel-
trami coefficients with L∞-norm strictly less than 1. Each such diffeomorphism is the
unique solution of the Beltrami equation. Therefore, given a surface diffeomorphism
f : S1 → S2, we can get a representation of f by computing its associated Beltrami
coefficient µf = fz

fz
. Conversely, given a Beltrami coefficient µf that is associated to a

certain surface diffeomorphism f , we can reconstruct f by solving the Beltrami equa-
tion. In order to solve the Beltrami equation, we can use the Beltrami holomorphic
flow as described in the following subsections.
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4.1. Beltrami holomorphic flow on Genus zero Closed Surfaces. In the
last section, it is highlighted that studying orientation-preserving diffeomorphisms be-
tween simply connected closed surfaces is equivalent to studying orientation-preserving
diffeomorphisms of C fixing 0, 1 and ∞. In this section, we consider the theory of
such diffeomorphisms.

Suppose µ(z) is a measurable complex-valued function defined on C such that
sup |µ| = k < 1. It was shown by Bojarski [2] that there is a quasiconformal map f
satisfying the Beltrami equation. In fact, the following theorem asserts the existence
of normalized solutions to the Beltrami equation on C and the dependence of the
solution f on µ:

Theorem 4.1 (The Mapping Theorem). The equation (3.1) gives a one-to-one
correspondence between the set of quasiconformal homeomorphisms of C that fix the
points 0, 1, and ∞ and the set of measurable complex-valued functions µ on C for
which sup |µ| = k < 1. Furthermore, the normalized solution fµ to (3.1) depends
holomorphically on µ. Let {µ(t)} be a family of Beltrami coefficients depending on a
real or complex parameter t. Suppose also that µ(t) is differentiable at t = 0, that is,
µ(t) can be written in the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (4.1)

for z ∈ C, with suitable µ in the unit ball of L∞(C), ν, ε(t) ∈ L∞(C) such that
‖ (ε(t) ‖∞→ 0 as t→ 0. Then

fµ(t)(w) = fµ(w) + tḟµ[ν](w) + o(|t|) (4.2)

locally uniformly on C as t→ 0, for w ∈ C, and where

ḟ [ν](w) = −f
µ(w)(fµ(w)− 1)

π

∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy. (4.3)

This theorem motivates us to represent an orientation-preserving genus zero sur-
face diffeomorphism using its Beltrami coefficient and three-point correspondence.
Indeed, using equation (4.3), we can accurately flow a diffeomorphism between two
such surfaces to another diffeomorphism with a slightly perturbed µ. This gives us
a way to solve the Beltrami equation on C with an arbitrary Beltrami coefficient
satisfying the condition of the theorem. Starting from the identity map on C, we
can adjust the map iteratively using equation (4.3) with a slightly different µ until
we finally get the diffeomorphism with our desired µ. Moreover, in every iteration
of the flow, it is easy to require that sup |µ| < 1. By our previous discussion, this
automatically ensures that every intermediate and the final map in the process is
an orientation-preserving genus zero surface diffeomorphism. Besides reconstructing
genus zero surface diffeomorphisms, equation (4.3) also allows us to finely adjust the
conformality and other properties of genus zero surface maps.

Specifically, given two genus zero closed surface S1 and S2 respectively. We first
map them conformally onto the Riemann sphere. This can be done using various
approaches such as harmonic energy minimization. To reconstruct the diffeomorphism
associated with the prescribed Beltrami coefficient, we start with the identity map
from C to C. Using equation (4.3), we can adjust the Beltrami coefficient of the map
slight each iteration to get a diffeomorphism of C fixing 0, 1 and ∞. We continue
to iterate until the desired Beltrami coefficient is satisfied. In this way, the required
diffeomorphism from S1 to S2 can also be obtained via the composition maps.
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4.2. Beltrami holomorphic flow on Surface Patches. Let K1 and K2 be
two surface patches and f be an orientation-preserving diffeomorphism between them.
By the uniformization theorem, K1 and K2 are conformally equivalent to the unit
disk. Let ϕ1 : K1 → D and ϕ2 : K2 → D be their conformal parameterizations. Then
f̃ = ϕ2 ◦ f ◦ ϕ−1

1 is an orientation-preserving diffeomorphism of D. Without loss of
generality, we may assume that f̃ fixes 0 and 1. In what follows, we consider the
theory of orientation-preserving diffeomorphisms of D fixing 0 and 1, which helps us
to finely adjust maps between surface patches. In order to do so, we need to modify
equation (4.3) so that it works on the unit disk instead of the Riemann sphere.

Proposition 4.2. Let f : D → D be a diffeomorphism of the unit disk fixing 0
and 1, and satisfies the Beltrami equation fz = µfz with µ defined on D. Let f̃ be the
extension of f to C defined as

f̃(z) =

{
f(z), if |z| ≤ 1,

1

f(1/z)
, if |z| > 1.

(4.4)

Then f̃ satisfies the Beltrami equation

f̃z = µ̃f̃z (4.5)

on C, where the Beltrami coefficient µ̃ is defined as

µ̃(z) =

{
µ(z), if |z| ≤ 1,
z2

z2
µ(1/z), if |z| > 1.

(4.6)

Proof. First of all, we prove f̃ satisfies the Beltrami equation:

f̃z = µ̃f̃z

Clearly, f̃ satisfies equation (4.5) on D. Outside D, we consider f and f̃ as functions
in z and z.

Note that:

∂

∂z
f(z, z) =

∂

∂z
f(z, z)

we have:

∂f̃(z, z)

∂z
=

∂

∂z

1

f(1/z, 1/z)
= −f(1/z, 1/z)

−2 ∂

∂z
f(1/z, 1/z)

= −f(1/z, 1/z)
−2 ∂

∂z
f(1/z, 1/z) = −f(1/z, 1/z)

−2
(−1/z2)fz(1/z, 1/z)

= z
−2
f(1/z, 1/z)

−2
fz(1/z, 1/z).

Therefore

∂f̃(z, z)

∂z
=

∂

∂z

1

f(1/z, 1/z)
= −f(1/z, 1/z)

−2 ∂

∂z
f(1/z, 1/z)

= −f(1/z, 1/z)
−2 ∂

∂z
f(1/z, 1/z) = −f(1/z, 1/z)

−2
(−1/z2)fz(1/z, 1/z)

= z
−2
f(1/z, 1/z)

−2
fz(1/z, 1/z) = z

−2
f(1/z, 1/z)

−2
µ(1/z)fz(1/z, 1/z)
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Now,

fz(1/z, 1/z) = z
2
f(1/z, 1/z)

2 ∂f̃(z, z)

∂z
.

Thus, we have,

∂f̃(z, z)

∂z
= z
−2
f(1/z, 1/z)

−2
µ(1/z)fz(1/z, 1/z)

= z
−2
f(1/z, 1/z)

−2
µ(1/z)z

2
f(1/z, 1/z)

2 ∂f̃(z, z)

∂z

=
z2

z2
µ(1/z)

∂f̃(z, z)

∂z
= µ̃(z)

∂f̃(z, z)

∂z
.

Theorem 4.3. The normalized solution fµ depends holomorphically on µ. Let
{µ(t)} be a family of Beltrami coefficients depending on a real or complex parameter
t. Suppose also that µ(t) is differentiable at t = 0, that is, µ(t) can be written in the
form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (4.7)

for z ∈ D, with suitable µ in the unit ball of L∞(D), ν, ε(t) ∈ L∞(D) such that
‖ (ε(t) ‖∞→ 0 as t→ 0. Then:

fµ(t)(w) = fµ(w) + tḟµ[ν](w) + o(|t|) (4.8)

locally uniformly on C as t→ 0, for w ∈ C, and where

ḟ [ν](w) = −
fµ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy.

)
.

(4.9)

Proof. According to Quasiconformal Teichmuller Theory, there is an one-to-one
correspondence between the set of quasiconformal homeomorphisms of C fixing 3
points and the set of measurable complex-valued functions µ on D for which sup |µ| =
k < 1. If a diffeomorphism f on C satisfies equation (4.5), then 1/f(1/z) also satisfies
the same equation. By the uniqueness of the solution according to Theorem 4.1, we
must have f(z) = 1/f(1/z). On ∂D, z = 1/z. This implies f(z) = 1/f(z), and hence
|f(z)| = 1 on ∂D. Therefore, by restricting the solution of equation (4.5) on C fixing
0, 1 and∞ to D, we can get a diffeomorphism of D fixing 0 and 1. Equation (4.3) can
then be applied on D to get diffeomorphisms of D fixing 0 and 1 that satisfy different
Beltrami coefficients. It can also be used to adjust the conformality of diffeomorphisms
on D as we do on C in Section 4.1. To get the corresponding flow on D, we evaluate
the integral in equation (4.3). For simplicity, we consider f̃ = f

∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
C\D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy
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Now, outside the disk D,

ν(z) =
z2

z2
ν(1/z) and

∂f̃(z)

∂z
= z
−2
f(1/z, 1/z)

−2
fz(1/z, 1/z)

We have:

∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
C\D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
C\D

(z2/z2)ν(1/z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

(z2/z2)ν(z)((fµ)z(1/z))2

fµ(1/z)
−1

(fµ(1/z)
−1 − 1)(fµ(1/z)

−1 − fµ(w))

1

|z|4
dx dy

=

∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy

Substituting Equation 22 into Equation 4.3, we get an integral flow equation on
D which is given by

ḟ [ν](w) = −
fµ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

ν(z)((fµ)z(z))2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy.

)
.

This theorem gives us an extension of the Beltrami holomorphic flow to solve the
Beltrami equation on D with an arbitrary Beltrami coefficient. More generally, we
can use equation (4.3) to find the quasiconformal diffeomorphism between two open
surfaces with boundaries, that is associated with a prescribed Beltrami coefficient.
Specifically, given two open surfaces S1 and S2 respectively. We first map them con-
formally onto the unit disk D, using, for example, the discrete Yamabe flow method.
To reconstruct the diffeomorphism associated with the prescribed Beltrami coefficient,
we start with the identity map from D to D. Using equation (4.3), we can adjust the
Beltrami coefficient of the map slight each iteration to get a diffeomorphism of C
fixing 0, 1 and ∞. We continue to iterate until the desired Beltrami coefficient is
satisfied. Finally, the required diffeomorphism from S1 to S2 can also be obtained via
the composition maps.

5. Applications. In this section, we show that the theory behind quasiconfor-
mal diffeomorphisms of the Riemann sphere and unit disk can be used to adjust
surface maps in a fairly general setting. First, we show that our algorithm can be
used to reconstruct surface diffeomorphisms from the Beltrami coefficient. Using the
same formula, we illustrate how we can flow a surface map to satisfy desired Beltrami
coefficients. This includes applications in restoring local conformality. In particu-
lar, we derive a new method of constructing the generalized Riemann from a surface
patch to a disk. Such map is defined as a conformal map from a surface patch to a
disk fixing three points, which is guaranteed to exist by the uniformization theorem.
Furthermore, using the same flow, we are able to restore non-diffeomorphic surface
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maps to obtain diffeomorphisms. This is very useful because non-diffeomorphic maps
commonly occur in the construction of surface maps satisfying certain criteria, and
it is often a complicated process to avoid their occurrence. Our method can restore
surface diffeomorphisms without creating a large distortion to the surface map. In-
deed, we are able to distribute distortions evenly in our method. Hence the restored
diffeomorphisms still retain most of the desired properties of the original maps.

5.1. Reconstruction of Genus Zero Surface Diffeomorphisms with Bel-
trami Coefficients. To describe a diffeomorphism of surfaces S1 and S2 using Bel-
trami equation for further adjustments, where S1 and S2 are two genus zero closed
surface. We first map them conformally onto the Riemann sphere. This can be done
using various approaches such as the Yamabe flow method [10]. With this map, the
Beltrami coefficient can be easily computed. To reconstruct the diffeomorphism, we
start with the identity map from C to C. Using Equation (4.3), we can adjust the Bel-
trami coefficient of the map slight each iteration to get a diffeomorphism of C fixing
0, 1 and ∞. We continue to iterate until the desired Beltrami coefficient is satisfied.
In this way, the required diffeomorphism from S1 to S2 is also obtained. In Figure
5.1, the diffeomorphism on C satisfying a required Beltrami coefficient is visualized as
a diffeomorphism on the unit sphere via the stereographic projection. Figure 5.1(a)
shows the value of the mesh of the sphere under the identity map, which is a regular
mesh. In this example, we set µ(x+ yi) = (0.5 + 0.5i)e−(x2+y2), and the modulus of
the Beltrami coefficient is visualized in Figure 5.1(b). After that, Equation (4.3) is
applied repetitively to get the desired diffeomorphism. The mapping of the original
mesh is shown in Figure 5.1(c). In all the figures, we visualize the area of the sphere
corresponding to the area around origin in C. The distortion of the diffeomorphism
is clearly seen in Figure 5.1(c).

5.2. Reconstruction of Diffeomorphisms on Surface Patches with Bel-
trami Coefficients. Using the flow for the unit disk (Equation (4.9)), we are also
able to construct diffeomorphisms with desired Beltrami coefficients on simply con-
nected surface patches. As shown in Figure 5.2, an inscribed square in a unit circle is
adjusted using the Beltrami holomorphic flow. The map is distorted by the flow but
its diffeomorphic property is maintained. This can be seen as interior of the unit disk
is moved to the interior, and boundary is moved to boundary.

5.3. Preservation of Local Conformality of Surface Maps. Let f : S1 →
S2 be a diffeomorphism between two surfaces with Beltrami coefficient µ. In order
to study two corresponding regions Ω ⊂ S1 and f(Ω) ⊂ S2 better, it is sometimes
desirable to make f as conformal as possible on Ω. Indeed, the conformality of the map
can be completely restored using the Beltrami holomorphic flow method. This is done
by first constructing a new Beltrami coefficient µ′ with µ′ = 0 on Ω and µ′ = µ outside
Σ, where Σ is a compact set containing Ω. Then we can flow the diffeomorphism using
the Beltrami holomorphic flow until the desired Beltrami coefficient is satisfied.

In Figure 5.3, we map a unit square nonconformally to a region on the plane under
a diffeomorphism. The nonconformality can be seen from its Beltrami coefficient,
which shows some variations on the whole surface. To restore the conformality in a
central region of the domain, we construct a new Beltrami coefficient which vanishes in
the central region according to the above discussion. After flowing the diffeomorphism
using the Beltrami holomorphic flow on C fixing 0, 1 and ∞, it is found that the red
grids in the central region are less distorted and looks closer to squares than the
original grids in the same region. This shows that our method effectively restores



10 Lui, Wong, Gu, Chan and Yau

(a) The image under the identity map
with µ = 0.

(b) The image under the distorted map with
nonzero µ.

(c) Comparison of the images under both
maps.

Fig. 5.1. The image of an inscribed square in a unit disk under the identity map and the map
after the Beltrami holomorphic flow.

conformality in the region we want.

5.4. Construction of Riemann Map of Surface Patches. It is a widely
accepted method to find conformal maps of cortical surfaces to study medical imag-
ing problems, as they are free of angular distortions and represent local geometry
well. Given a simply connected surface patch K, by the uniformization theorem, it is
conformally equivalent to the unit disk. Therefore, there exists a unique conformal dif-
feomorphism ϕ from K to D fixing three points. In this section, we propose a method
to construct the Riemann map of surface patches using the Beltrami holomorphic
flow.

To compute the Riemann map of a simply connected domain S, we firstly find
an arbitrary diffeomorphism f : D → S. We then look for a map G : D → D such
that the composition map f ◦ G : D → S is a conformal diffeomorphism. Suppose
the Beltrami coefficient of f is µf . We compute g as the quasiconformal map with
Beltrami coefficient µf using the Beltrami holomorphic flow. It can be proven that
f ◦ g−1 : D→ S is conformal and hence f ◦ g−1 : D→ S is a Riemann map of S. The
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(a) The image under the identity map
with µ = 0.

(b) The image under the distorted map
with nonzero µ.

(c) Comparison of the images under both
maps.

Fig. 5.2. The image of an inscribed square in a unit disk under the identity map and the map
after the Beltrami holomorphic flow. Note that the points on the boundary circle slides along the
boundary, instead of flowing across the boundary.

detail of the idea can be explained by the following proposition and theorem.

Proposition 5.1. Let µ, σ and τ be Beltrami coefficients of quasiconformal
maps fµ, fσ and fτ with fτ = fσ ◦ (fµ)−1. Then

τ =
(
σ − µ
1− µσ

1
θ

)
◦ (fµ)−1, (5.1)

where θ = p
p and p = ∂

∂z f
µ(z). In particular, if fσ is the identity, that is, if σ = 0,

then

τ = −(µ
p

p
) ◦ (fµ)−1. (5.2)

Proof. Let T and T1 be two complex linear maps defined by the equations

w = T (z) = A(z + µz) = Az +Bz

w1 = T1(z) = A1(z + µ1z) = A1z +B1z.
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(a) The Beltrami coefficient of the origi-
nal diffeomorphism

(b) The original diffeomorphism

(c) The desired Beltrami coefficient of
the new diffeomorphism

(d) The adjusted diffeomorphism

Fig. 5.3. A non-conformal diffeomorphic map of the unit square and the new map with restored
conformality in the central region

We are interested in the Beltrami coefficient of w = T ◦ (T1)−1(w1) as a function of
w1. From (5.3), we have

A1w1 −B1w1 = z(|A1|2 − |B1|2)

Therefore we can write w as

w = T ◦ (T1)
−1

(w1) =

(
AA1 − BB1

|A1|2 − |B1|2

){
w1 +

BA1 − AB1

AA1 − BB1
w1

}
.

Using the equations µ = B/A and µ1 = B1/A1, the Beltrami coefficient of T ◦ (T1)−1

is equal to (
µ− µ1

1− µ1µ

)
1

θ1
,

where θ1 = A1/A1.

Theorem 5.2. Let S be an open surface with boundary. Suppose f : D → S
be any arbitrary diffeomorphism from the unit disk to the surface S. Let µ be the
Beltrami coefficient of f . Let g : D → D be the quasiconformal map with Beltrami
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coefficient µ. Then the map f ◦ g−1 : D→ S is a Riemann (conformal) map from D
to the surface S.

Proof. Suppose ft = fµ(t) ◦ (fµ)−1, where fµ(t) and fµ are the quasiconformal
map with Beltrami coefficient µ(t) and µ respectively. Then the Beltrami coefficient
λ(t) of ft is given by:

λt = (
µ(t)− µ
1− µµ

(fµ)z
(fµ)z

) ◦ (fµ)−1 (5.3)

Let fµ(t) = g and so µ(t) = µ. We have λt = ( µ−µ1−µµ
(fµ)z

(fµ)z
) ◦ (fµ)−1 = 0

Since λt = 0, it means the composition map ft = fµ(t) ◦ (fµ)−1 = f ◦ g−1 is
conformal.

As an application, we test our method on finding the Riemann map from a surface
patch of a human face to the unit disk. Figure 5.4(a) and 5.4(c) shows an arbitrary
diffeomorphism constructed from the unit disk to the face. For easy identification
of conformality, we mark the unit disk with perpendicular grid lines. It is clearly
seen that the grid lines lose their perpendicularity in Figure 5.4(c) as the map is not
conformal. Then the above discussed method is used to find the Beltrami coefficient
of the map. Using the Beltrami holomorphic flow method, we find a diffeomorphism
of D with the same Beltrami coefficient and the map is shown in Figure 5.4(b) using
the perpendicular grid lines in Figure 5.4(a). At this point, the Riemann map of
the face can be obtained and is illustrated by the corresponding grid lines in Figure
5.4(b) and 5.4(c). For a clearer illustration of the conformality of the Riemann map,
we use the grid lines in Figure 5.4(a) and the same map is shown in Figure 5.4(d).
The conformality is clearly seen from the perpendicular grid lines on the face. This
shows that our method is also useful on 3D surface patches.

5.5. Local Adjustment of Surface Diffeomorphisms. When adjusting the
surface diffeomorphism, it is often preferable to tune properties of the surface map
locally while retaining the original information outside the local region. With Beltrami
holomorphic flow, we can locally adjust the Beltrami coefficient while keeping the
Beltrami coefficient unchanged outside the local region. Since the Beltrami coefficient
is unchanged outside the local region, it can be proven that we can reconstruct the
original map at that region exactly. The detail can be explained with the following
theorem.

Theorem 5.3. Let S be a genus zero closed surface. Suppose fµ : S → S2 ∼= C
with Beltrami coefficient µ. Let Ω ⊆ S be a simply-connected domain of S such
that fµ(Ω) = D ⊆ C. Suppose µ̃ : S → C is another Beltrami coefficient satisfying
µ̃|Ω = µ|Ω. That is, µ̃ is a local adjustment of µ fixing Ω. Then:

fµ|Ω = φΩ ◦ f µ̃|Ω

where φΩ : f µ̃(Ω) → D is the Riemann map of fµ(Ω). In other words, by adjusting
the Beltrami coefficient while fixing it on Ω, one can reconstruct the original surface
map on Ω exactly.

Proof. Denote f µ̃(Ω) = Ω′. Since fµ : Ω → D and f µ̃ : Ω → Ω′ have the same
Beltrami coefficient, f µ̃ ◦ fµ−1 : D→ Ω′ is conformal according to Theorem 5.2. Let
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(a) The canonical domain for our face
surface.

(b) The mapping from the unit disk to
the face.

(c) The diffeomorphism of the unit disk
with the same Beltrami coefficient as the
map from the disk to the face.

(d) The representation of the final diffeo-
morphism using the original grid on the
unit disk

Fig. 5.4. Finding the Riemann map from a face to the unit disk

a1, a2, a3 be three points in Ω and let φΩ : Ω′ → D be a conformal map such that
φΩ(f µ̃(ai)) = fµ(ai). Then, φΩ ◦ f µ̃ ◦ fµ−1 : D→ D is a conformal map fixing three
points. And so it must be the identity map. As a result, fµ|Ω = φΩ ◦ f µ̃|Ω.

5.6. Restoration of Diffeomorphisms of Surface Maps. In shape analysis,
it is a common approach to compare shapes by computing diffeomorphisms between
two surfaces satisfying certain properties, such as landmark-matching and harmonic
energy minimizing. However, it is not true that every such map is diffeomorphic.
It can also be complicated to implement measures to prevent surface overlapping.
Moreover, there is no canonical way to restore non-diffeomorphic surface maps for
each specific problem. To overcome this problem, we propose a natural and canonical
approach to restore general surface diffeomorphisms using the Beltrami holomorphic
flow.

Given a surjective map f : S1 → S2 of two simply connected closed surfaces or
surface patches and its corresponding complex map f̃ : K → K, where K is C or
D. Let µ be the Beltrami coefficient of f̃ . If |µ| < 1 everywhere on D, then it
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can be shown that f must be an orientation-preserving diffeomorphism. If f is not
diffeomorphic, then around some region, |µ| must be bigger than or equal to 1. To
restore the diffeomorphic property of f̃ , we propose to damp the value of µ at regions
where |µ| > 1, while at the same time keep µ smooth. By constructing a new Beltrami
coefficient satisfying these properties, we reconstruct the map using the map using
the Beltrami holomorphic flow to get a diffeomorphism.

Specifically, we have:
Theorem 5.4. Suppose f : S1 → S2 be a surface map between two Riemann

surfaces, which is not diffeomporphic on Ω ⊆ S1. Then the coefficient µf = fz
fz

on Ω
has a supreme norm sup||µf ||∞ ≥ 1. Also, let µ̃ be a smooth approximation of µf
such that sup|| µ̃|Ω||∞ < 1. Then f µ̃ is a smooth diffeomorphic approximation of f .

Proof. It can be verified easily that the Jacobian J = |fz|2−|fz|2 = (1−|µf |2)|fz|2.
Suppose sup||µf ||∞ < 1. Then, J > 0 everywhere. By inverse function theorem,
f : S1 → S2 is a diffeomorphism which is a contradiction. Similarly, if we damp µf to
µ̃ such that sup|| µ̃|Ω||∞ < 1. Then, the quasiconformal map f µ̃ has Jacobian J > 0
everywhere and so it is a diffeomorphism by inverse function theorem.

Figure 5.5 shows how we can apply this method to restore surface diffeomorphism.
In Figure 5.5(A), a non-diffeomorphic map from a grid to a face surface is visualized. It
corresponds to a unit square portion of a map from C to C, which is shown in Figure
5.5(B). Its non-diffeomorphic property is clearly shown in the plot of its Beltrami
coefficient in Figure 5.5(C), where the modulus of the Beltrami coefficient can be as
large as 7. To correct this map, we construct a new Beltrami coefficient using the
method described above, which is shown in Figure 5.5(D). Using Beltrami holomorphic
flow, we obtain a diffeomorphic map from C to C, where the value it takes on a unit
square is shown in Figure 5.5(E). Mapping the map back on the face surface, we get
a diffeomorphic surface map as shown in Figure 5.5(F).

5.7. Construction of Landmark-Matching Surface Diffeomorphisms. As
discussed above, the construction of meaningful surface diffeomorphisms that preserve
landmarks is not a trivial task. Often, complicated measures have to be implemented
to avoid overlapping of surface maps while satisfying several desired properties. To
solve this problem, the Beltrami holomorphic flow provides a method of constructing
landmark-matching surface maps by directly specifying appropriate Beltrami coeffi-
cients. Since the map is diffeomorphic and orientation-preserving if and only if the
modulus of the Beltrami coefficient is everywhere strictly less than 1, this approach
automatically makes the resulting maps diffeomorphic, thus avoiding the need to cor-
rect the surface maps afterwards.

The first question one needs to ask is how to find the correct Beltrami coefficient
that represents the landmark matching surface diffeomorphism. After the Beltrami
coefficient µ that represents the landmark matching diffeomorphism is defined, we
can further adjust µ so that the diffeomorphism may satisfy other properties such
as conformality, etc. A smooth diffeomorphism can then be obtained by Beltrami
holomorphic flow. The appropriate Beltrami coefficient can be constructed according
to the landmark curves. The correctness of this method is seen in the following
theorem.

Theorem 5.5. Let α : [0, sα] → C be a vertical line in C and β = (β1 + iβ2) :
[0, sβ ] → C be another landmark curve such that: α(t) corresponds to β(t), α(0) =
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Fig. 5.5. Restoration of surfaces diffeomorphisms by damp the Beltrami coefficient.

β(0) and α(sα) = β(sβ). Let ε > 0 and Ωε = {x ∈ C | x = α(t) ± δ, δ ∈ R, δ < ε}.
Consider the parameterization of Ωε defined by: φ(s, t) = α(t)+s. Let Ω be a domain
enclosing Ωε. Define µ(φ(s, t)) by:

µ ◦ φ =
A+ iB

C + iB

where:
A = [− (ε−s)3

2ε3 (2 + β′2(t))− 3(ε−s)2
ε3 (β1(t)− s)];

B = [ (ε−s)3
2ε3 (1 + β′1(t))− 3(ε−s)2

ε3 (β2(t)− s)] and;

C = [1 + (ε−s)3
2ε3 (β′2(t)− 2)− 3(ε−s)2

ε3 (β1(t)− s)].
Suppose µ̃ is a smooth extension such that µ̃|C\Ωε = ~0. Then the quasiconformal map
f µ̃ with Beltrami coefficient µ̃ has properties that: (i) f µ̃(α(t)) = β(t).

Proof. Consider the parameterization of Ωε defined by:

φ(s, t) = α(t) + s

[Here, we identify (s, t) with φ(s, t).]
Clearly, f maps α(t) to β(t). Also,

∂f

∂s
= (1, 0)− (

(ε− s)3

ε3
+

3(β1(t)− s)(ε− s)2

ε3
,

3(β2(t)− s)(ε− s)2

ε3
)

∂f

∂t
= (0, 1) + (

β′1(t)(ε− s)3

ε3
,

(β′2(t)− 1)(ε− s)3

ε3
)
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Thus,

∂f

∂z
=

1

2
(
∂f

∂s
− i

∂f

∂t
)

= [1 +
(ε− s)3

2ε3
(β
′
2(t)− 2) +

3(ε− s)2

ε3
(β1(t)− s)]

− i[
(ε− s)3(β′1(t) + 1)

2ε3
+

3(ε− s)2(β2(t)− s)
ε3

]

∂f

∂z
=

1

2
(
∂f

∂s
+ i

∂f

∂t
)

= [−
(ε− s)3

2ε3
(β
′
2(t) + 2) +

3(ε− s)2

ε3
(β1(t)− s)]

+ i[
(ε− s)3(β′1(t) + 1)

2ε3
+

3(ε− s)2(β2(t)− s)
ε3

]

Define µ : Ωε → C by:

µ(φ(s, t)) =
∂f

∂z
/
∂f

∂z
=

[− (ε−s)3

2ε3
(2 + β′2(t))− 3(ε−s)2

ε3
(β1(t)− s)] + i[

(ε−s)3

2ε3
(1 + β′1(t))− 3(ε−s)2

ε3
(β2(t)− s)]

[1 +
(ε−s)3

2ε3
(β′2(t)− 2)− 3(ε−s)2

ε3
(β1(t)− s)] + i[

(ε−s)3
2ε3

(β′1(t) + 1)− 3(ε−s)2
ε3

(β2(t)− s)]

Note that µ = 0 on ∂Ωε. We can smoothly extend µ to µ̃ : C → C by setting
µ̃ = 0 outside Ωε. The quasiconformal map f µ̃ with Beltrami coefficient µ̃ can be
computed by Beltrami holomorphic flow and has the property that f µ̃(α(t)) = β(t).

Note that the landmark curve α is not necessarily a vertical line. For a general
curve, we can initially map the parameter domain with an arbitrary diffeomorphism
such that it maps the curve to a vertical line. Alternatively, by considering a narrow
band of the general curve, we can obtain the expression of µ as in the above proof.
Figure 5.6 shows the process in a which landmark-matching diffeomorphism is con-
structed on the plane. Figure 5.6(A) and Figure 5.6(B) show two surfaces S1 and S2

respectively. They are parameterized onto the complex plane and the surface diffeo-
morphism between them can be constructed using the composition map. However,
the landmarks on both figures are not being mapped consistently (See blue curve
on S1 and red curve on S2). With a suitable Beltrami coefficient (as shown in Fig-
ure 5.6(E)), a landmark-matching diffeomorphism can be constructed using Beltrami
holomorphic flow as shown in Figure 5.6(D), where landmark curves are mapped ex-
actly (see blue curve on S2). In Figure 5.7, we show that our method can be applied
to match multiple landmarks accurately as well.

6. Conclusion. In this work, we propose the novel ideal of representing surface
diffeomorphisms by Beltrami coefficients. We demonstrate how we can reconstruct
surface diffeomorphisms fixing three points using the Beltrami holomorphic flow on
simply connected closed surfaces and surface patches. This allows us to make fine
adjustments to surface maps, including the restoration of the conformality of surface
maps, the construction of Riemann map from arbitrary simply connected closed sur-
faces, the restoration of surface diffeomorphisms, and the construction of landmark-
matching diffeomorphisms. This shows that the Beltrami holomorphic flow method
can provide us with various powerful applications, and is general enough to handle
a large class of surface maps, including non-conformal maps and maps that are not
even diffeomorphic.
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Fig. 5.6. The procedure for constructing a landmark-matching diffeomorphism on the plane.
(A) and (B) show two surfaces S1 and S2 respectively. They are parameterized onto the complex
plane and surface diffeomorphism between them can be constructed using the composition map.
Landmarks are not mapped consistently (See blue curve on S1 and red curve on S2). With a suitable
Beltrami coefficient (as shown in (E)), a landmark matching diffeomorphism can be constructed
using Beltrami holomorphic flow as shown in (D). Landmark curves are mapped exactly (see blue
curve on S2)
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Fig. 5.7. The procedure for constructing a diffeomorphism on the plane matching multiple
landmarks. (A) and (B) show two surfaces S1 and S2 respectively. They are parameterized onto the
complex plane and surface diffeomorphism between them can be constructed using the composition
map. Landmarks are not mapped consistently (See blue curve on S1 and red curve on S2). With
a suitable Beltrami coefficient (as shown in (D)), a landmark matching diffeomorphism can be
constructed using Beltrami holomorphic flow as shown in (E). Landmark curves are mapped exactly
(see blue curve on S2)

.
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