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Abstract

Total Variation-based regularization, well established for image processing appli-

cations such as denoising, was recently introduced for Maximum Penalized Likelihood

Estimation (MPLE) as an effective way to estimate non-smooth probability densities.

While the estimates show promise for a variety of applications, the non-linearity of

the regularization leads to computational challenges, especially in multi-dimensions.

In this paper we present a numerical methodology, based upon the Split Bregman

L1 minimization technique, that overcomes these challenges, allowing for the fast and

accurate computation of 2D TV-based MPLE. We test the methodology with several

examples, including V-fold Cross Validation with large 2D data sets, and highlight the

application of TV-based MPLE to point process crime modeling.

Key words: Total Variation, Density Estimation, Split Bregman Minimization, Spatial

Point Process, Crime

1 Introduction

Maximum Penalized Likelihood Estimation (MPLE) provides a general framework for esti-

mating a probability density u(x) from point data, x1, ...,xN ∈ Rn, in which a regularized
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version of the log-likelihood function is maximized to determine the estimate:

u(x) = arg max
u(x)

{ N∑
i=1

log
(
u(xi)

)
− αR(u)

}
. (1)

While a variety of penalty functionals R(u) have appeared in the literature (for a review

of MPLE see Eggermont and LaRiccia, 2001), many standard methods of both MPLE and

non-MPLE type perform poorly when the underlying probability density of the data has

sharp gradients (Sardy and Tseng, 2006).

To improve estimates in the case of non-smooth densities, (Koenker and Mizera, 2006;

Sardy and Tseng, 2006) propose taking the penalty to be the Total Variation (TV) of the

density,

u(x) = arg max
u(x)

{ N∑
i=1

log
(
u(xi)

)
− α

∫
|∇u(x)|dx

}
. (2)

In (Sardy and Tseng, 2006), the estimate given by Equation (2) is shown to out perform

estimators such as the taut string (Davies and Kovac, 2004), logspline (Kooperberg and

Stone, 2002), and rectangular kernel with global bandwidth (Sheather and Jones, 1991) for

a variety of non-smooth target densities. However, the results in (Sardy and Tseng, 2006)

are for single variable probability densities and, in the multi-dimensional setting, the efficient

solution of the optimization problem on the right side of Equation (2) is nontrivial.

Similar types of optimization problems arise in image processing and a number of com-

putational methods have been developed for their solution. For example, the Rudin-Osher-

Fatemi (ROF) model,

u(x) = arg min
u(x)

{
µ

2

∫
(f(x)− u(x))2dx +

∫
|∇u(x)|dx

}
, (3)

constructs the denoised image u(x) from the noisy image f(x) (Rudin et al., 1992). Here the

noise is assumed to be Gaussian, though similar models can be constructed for other types
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of noise (Le et al., 2007). There is a large body of literature on techniques for solving (3)

and many of the techniques approach the problem by either solving a regularized form of (3)

directly, or by attacking the differentiable dual formulation of the problem, which requires

the enforcement of linear inequality constraints and may require the solution of non-linear

equations.

In this paper we present a novel computational method for the fast solution of (2) based

upon a Split Bregman method developed for image processing applications in (Goldstein

and Osher, 2008). The method is straight forward to implement and solves (2) quickly,

O(seconds) or less, for standard grid sizes in 2D. Thus computationally intensive parameter

selection techniques such as V-fold Cross Validation are feasible, even for larger values of V

when (2) must be solved hundreds or thousands of times. The organization of the paper is as

follows: In Section 2, we review the Split Bregman methodology as a general technique for

L1 minimization. In Section 3, we formulate the methodology for TV-based MPLE, using a

spatially discretized approximation in place of (2). In Section 4, we illustrate the efficiency

of the Split Bregman method, as well as the potential benefits of TV-based MPLE in the

context of crime modeling.

1.1 Notation

In our discussion of discrete optimization problems, we employ the following “vector norm”

notation to avoid cumbersome summation. Consider a grid function ui,j defined at grid

points (i, j) in some rectangular domain Ω. Here we assume for simplicity that Ω has grid

spacing ∆x = ∆y = 1. We shall use the following norm and inner product notations:

|u|1 =
∑

(i,j)∈Ω

|u(i,j)|, ‖u‖2
2 =

∑
(i,j)∈Ω

|u(i,j)|2
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We will also use “∇” to denote the first order discrete gradient operator and BV norms as

follows:

(∇u)i,j = (ui+1,j − ui,j, ui,j+1 − ui,j), |∇u|1 =
∑

(i,j)∈Ω

|(∇u)i,j|.

In some circumstances, we wish to consider grid functions that are vector-valued at each

pixel. For the sake of clarity, we shall use the “arrow” superscript to denote such vector-

valued quantities. For example, we may write ~d = ∇u to emphasize that the value of ~d at

each grid location is an ordered pair.

2 The Split Bregman Method: A General L1 Mini-

mization Technique

The Split Bregman method (Goldstein and Osher, 2008) is a technique for solving general

L1-regularized problems of the form

arg min
u

{
|Φu|1 +H(u)

}
, (4)

where u ∈ Rn, Φ : Rn → Rm is a linear operator, and H(·) : Rn → R is convex. For example,

choosing Φ = ∇ and H(u) = µ
2
‖u− f‖2

2 yields the ROF model.

This Split Bregman method has the advantage that it does not require regularization,

continuation, or the enforcement of inequality constraints (Goldstein and Osher, 2008). Fur-

thermore, the technique has been shown to be an extremely efficient solver for L1 regularized

denoising problems, as well as a large class of problems from compressed sensing.

The Split Bregman method works by “de-coupling” the L1 and L2 terms in (4), using a

splitting originally introduced in (Yin et al., 2009). When we introduce the auxiliary variable
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~d← ∇u, the problem (4) becomes

arg min
u

{
|~d|1 +H(u)

}
such that ~d = Φu. (5)

For example, if we choose Φ = ∇, where u is a two dimensional array, then ~d = (dx, dy) =

∇u. To solve this constrained problem, we convert it to an unconstrained problem using a

quadratic penalty function:

arg min
u,~d

{
|~d|1 +H(u) +

λ

2
‖~d− Φu‖2

2

}
. (6)

This formulation of the problem is advantageous because the unconstrained problem (6)

can be solved using a simple alternating minimization scheme (Goldstein and Osher, 2008;

Yin et al., 2009). The first step of this alternating scheme is to minimize with respect to

u. When H(·) is differentiable, this can usually be done directly by solving a system of

equations, or else an approximate solver (such as Gauss-Seidel) can be used to obtain an

approximate solution. We next minimize (6) with respect to ~d. This optimization problem

is element-wise decoupled, and the solution can be written explicitly as

~d∗ = shrink(Φu, 1/λ). (7)

where

shrink(~z, λ)i = max{‖zi‖2 − λ, 0}
~zi
‖zi‖2

.

Note that the quadratic penalty function in (6) only approximately enforces the constraint

~d = Φu. We wish to enforce this constraint exactly. A standard approach to this problem is

to use a continuation scheme: solve (6) with an increasing sequence of penalty parameters,

λ1 < λ2 < · · · < λn. Unfortunately, for large values of λ, minimization with respect to u in
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(6) because ill-conditioned, and also the alternating minimization scheme stalls.

To avoid these difficulties, the Split Bregman approach uses a fixed value for λ, and

enforces the constraint ~d = Φu using a Bregman iteration technique (Goldstein and Osher,

2008). For a detailed discussion of this approach, we refer the reader to the works (He et

al., 2006; Osher et al., 2005; Yin et al., 2008). An in-depth description of the application of

this technique to the Split Bregman method can be found in (Goldstein and Osher, 2008).

To apply Bregman iteration to problem (6), we add a vector, ~bk, inside of the quadratic

penalty function. We then solve a sequence of unconstrained problems defined by

(uk, ~dk) = arg min
u,~d

{
|~d|1 +H(u) +

λ

2
‖~d− Φu−~bk−1‖2

2

}
(8)

~bk = ~bk−1 + Φuk − ~dk. (9)

After the alternating minimization scheme approximately solves each unconstrained problem,

the Bregman vector is updated using the rule (9). This rule is the analog of the “adding

back the noise” technique, which has been used to enhance image denoising (Osher et al.,

2005). When the minimization (8) is (approximately) solved with one iteration of alternating

minimization, this scheme becomes:

uk = arg min
u

{
H(u) +

λ

2
‖~dk−1 − Φu−~bk−1‖2

2

}
(10)

~dk = shrink(Φuk − ~dk−1, 1/λ). (11)

~bk = ~bk−1 + Φuk − ~dk. (12)

In (Goldstein and Osher, 2008; Osher et al., 2005), it is shown that (under sufficient

assumptions) this algorithm converges in the sense that, as k →∞, we have ‖~d−Φu‖2 → 0

and ‖uk − u∗‖2 → 0 where u∗ is some solution to (4).
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3 Split Bregman in the context of TV-based MPLE

For our purposes, we wish to solve a discretized problem of the form

arg min
u

{
|∇u|+ µh(u)

}
such that

∑
i,j

ui,j = 1 (13)

where h(u) = −
∑

i,j wi,jlog(ui,j). To apply the Split Bregman method, we begin by in-

troducing the auxiliary variable ~d ← ∇u, and adding the corresponding quadratic penalty

function as is done in (6). However, unlike the formulation (6), we have an additional equal-

ity constraint because the function u must integrate to unity. To eliminate this constraint,

we add an additional quadratic penalty function to get

arg min
u,~d

{
|~d|+ µh(u) +

λ

2
‖~d−∇u‖2

2 + γ(1−
∑
i,j

ui,j)
2

}
, (14)

where λ and γ are positive constants.

To enforce the equality constraints exactly, we add “Bregman vectors” inside of the

penalty functions. These vectors are updated after each unconstrained minimization problem

is (approximately) solved. The resulting formulation is

(uk, ~dk) = arg min
u,~d

{
|~d|+ µh(u) (15)

+
λ

2
‖~d−∇u−~bk−1‖2

2 + γ(1−
∑
i,j

ui,j − bk−1
1 )2

}
(16)

~bk = ~bk−1 + Φuk − ~dk (17)

bk1 = bk−1
1 +

∑
i,j

uki,j − 1 (18)

All that remains is to describe the solution of the unconstrained optimization problem

(15-16). Note that only an approximate solution needs to be computed at each step. We
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approximately solve this minimization problem using one iteration of the alternating scheme

described above. To minimize with respect to ~d, we use the explicit formula (7). To compute

an approximate minimizer with respect to u, we use one sweep of element-wise descent. To

derive the element-wise descent formula, we begin by computing the first variation of (15)

with respect to u. The resulting optimality condition for ui,j is

−µwi,j
ui,j

− λ∆ui,j + λ(∇T~bi,j −∇T ~di,j) + γ(
∑

ui,j + b1 − 1) = 0. (19)

This equation simplifies to a quadratic equation in ui,j, which can be written component-wise

as

(4λ+ γ)u2
i,j − αi,ju− µwi,j = 0 (20)

where,

αi,j = λ(uki+1,j + uki−1,j + uki,j+1 + uki,j−1) (21)

+ λ(dkx,i−1,j − dkx,i−1,j + dky,i,j−1 − dky,i,j) (22)

+ λ(bkx,i−1,j − bkx,i−1,j − bky,i,j−1 + bky,i,j) (23)

+ γ(1− b1 −
∑

(i′,j′) 6=(i,j)

ui′,j′). (24)

Element-wise minimization is performed by solving this equation at each grid point, and

then selecting the positive root. Note that the energy (15-16) is convex with respect to ui,j

for ui,j > 0. It follows that equation (20) will always have a unique non-negative root.

Minimization of (13) with Dirichlet boundary conditions is accomplished by applying the

element-wise minimization formula (20) only to interior grid points. To achieve Neumann

boundary conditions, we use a slight modification of (20). We first adopt the convention

that ui,j = di,j = bi,j = 0 whenever the point (i, j) does not lie in the grid domain. We also
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replace the coefficient (4λ+ γ) in equation (20) with the coefficient (βi,jλ+ γ) where βi,j is

the number of grid points in the set {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1)} that lie in the

grid domain.

The choice of parameters λ and γ has a significant impact on the convergence rate

of the algorithm. It is desirable to choose large values for these parameters in order to

strongly enforce the equality constraints. On the other hand, assigning large values to these

parameters may make the optimization problem (19) ill-conditioned, and slows down the

iterative solver. A simple rule for setting these parameters is derived by considering the

linearization of the equation (19):

(
µwi,j
u2
i,j

− λ∆)ui,j + γ(
∑

ui,j + b1 − 1) = λ(∇T ~di,j −∇T~bi,j). (25)

Note that the first term in the linearization, µwi,j/u
2
i,j, contributes only to the diagonal of

the system. To guarantee that the problem (19) remains well conditioned, we choose λ and

γ such that the sum of the magnitudes of the off-diagonal terms in the system (25) remains

comparable to this diagonal term. For an n × n problem, we expect elements of u to be

O(n−2) (because they sum to unity). We therefore expect the magnitude of the leftmost,

diagonal term in the linear system (25) to be O(n4µ). The second term in (25), −λ∆u, makes

an O(λ) contribution of the off-diagonal terms, and so we must choose λ = O(µn4). The

third term involves a summation over all values of u, and makes an O(γn2) contribution to

the off diagonal terms, and so we must choose γ = O(µn2). Empirically, we have found that

choosing λ = 2µn4, and γ = 2µn2 works well.
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4 Results

We first test the Split Bregman method using the Weighted Uniform target density plotted in

Figure 1. The target density f(x), x ∈ [0, 1]×[0, 1], takes on three values, f = 2.6060 (square

region), f = .7818 (outer region), and f = 0 (circular region), and has jump discontinuities

Figure 1: Contour plot of 2D target density.

across the boundaries separating the three regions.

We discretize the 2D spatial region using a 128× 128 resolution and estimate the target

density using 10-fold Cross Validation (Sardy and Tseng, 2006) for sample sizes of 1000,

4000, and 16000 points. Letting ukSB denote the Split Bregman estimate of f at step k, we

iterate the Split Bregman method until the stopping criteria,

‖uk+1
SB − u

k
SB‖2 + ‖bk+1 − bk‖2 + ‖bk+1

1 − bk1||2 ≤ tol, (26)

is reached. During Cross Validation, we use the strictly positive approximate estimate,

uεSB = (1 − ε)uSB + ε, where ε is a small constant. The reason for this adjustment is that

uSB takes on zero values in the circular region and we find that a small number of isolated

points near the boundary of the region dominate the log-likelihood function and result in

over-smoothed estimates. In this example we take ε = 10−12 and find the over-smoothing to

be greatly reduced.
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In Table 1, we list the Mean Integrated Square Error (MISE), E
[ ∫ (

f(x)−uεSB(x)
)2
dx
]
,

along with the average runtime per sample to complete Cross Validation and the average

runtime of the Split Bregman method. Using a simple bisection method to find the optimal

value of the smoothing parameter, the Cross Validation typically requires around 25 param-

eter values to be evaluated. Since we use 10-fold Cross Validation, 10 Split Bregman calls are

required per parameter value, however Cross Validation only takes 1-2 minutes per sample

due to the efficiency of the Split Bregman method. Because the grid size is fixed, we actually

observe a decrease in the runtime for larger sample sizes due to improved conditioning in the

element-wise descent step given by Equation (20). For all examples the parameter estimation

routines are implemented in MATLAB and the Split Bregman routine is implemented in C

(and called from MATLAB).

Table 1: Computational Results for the Split Bregman Method

# of points MISE ± SE Avg. Runtime / CV Avg. Runtime / SB
1000 0.140± 0.004 113.86 sec 0.45 sec
4000 0.103± 0.003 63.98 sec 0.26 sec
16000 0.057± 0.001 58.47 sec 0.23 sec

We point out that using a fast method such as Split Bregman is essential if Cross Valida-

tion is to be feasible. For example, a classical optimization method such as gradient descent

(Rudin et al., 1992) with the regularization |∇u| ←
√

(∇u)2 + β2 (Acar and Vogel, 1994) is

appealing for the minimization of (2), as it is straight forward to implement. However, we

find that the minimization requires several minutes using such an approach and thus Cross

Validation, where (2) needs to be solved hundreds of times, would take hours or days.

In Figure 2, we compare contour plots of the Split Bregman method and fixed bandwidth

Gaussian kernel smoothing applied to sample sizes of 1000, 4000, and 16000 points from the

target density. Even for low point counts, the Split Bregman method is able to resolve the
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sharp gradients of the target density, whereas the kernel estimate (also obtained through

10-fold CV) over-smoothes in these regions. We note that the Split Bregman estimate is

moderately noisy for low point counts, but this is due in part to the parameter selection

process (for instance, we can obtain better qualitative results for lower point counts if the

parameter is selected by hand and eye). As the number of points in the sample increases,

the noise disappears from the Split Bregman estimates and the method is able to capture

both the sharp gradients and the flat regions quite well.

Figure 2: Left Column: Sample sizes of 1000, 4000, and 16000 points from the target density.
Middle Column: Contour plots of the Split Bregman estimate obtained through 10-fold CV. Right
Column: Contour plots of the Gaussian kernel estimate obtained through 10-fold CV.
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TV-based MPLE and Crime Modeling

Next we highlight an application of the Split-Bregman method using residential burglary

data collected by the Los Angeles Police Department for the years 2004-2005 within an

18km × 18km region of the San Fernando Valley in Los Angeles (see Figure 3). The data

consists of the spatial location where the crime occurred (geocoded from the residential

address) as well as a time window in which the crime occurred (typically a several hour

window, for instance the time a victim was at work and the house was unoccupied).

Figure 3: Spatial distribution of residential burglaries occurring during 2004 in an 18km× 18km
region of the San Fernando Valley in Los Angeles.

Criminological research suggests that victims of personal or property crimes are more

likely to be victimized in the near future (see Farrell and Pease, 2001; Short et al., 2008)

and in the case of residential burglary, evidence indicates that this elevated risk spreads to

neighboring houses as well (Johnson et al., 2007). One explanation of this phenomenon is

that burglars will often return to the same house, or a neighboring house, shortly after a

burglary and commit another offense.

In (Mohler et al., 2008), a 2D self-exciting point process N(t, x, y) is used to model this
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type of behavior, where the conditional intensity of N is given by:

λ(t, x, y) = µ(x, y) +

∫ t

t0

∫
x′

∫
y′
ν(t− t′, x− x′, y − y′)dN(t′, x′, y′), (27)

The first term µ represents the intensity of background events, independent of previous

events, and the second term models the intensity of offspring events triggered by either the

background events or other offspring.

One method for estimating µ, described in (Peng et al., 2005), is to split the time interval

of the data in to two intervals and maximize the log-likelihood function over the more recent

data while constructing the density from the older data. We apply this methodology to the

burglary data, fitting µ to the data from 2004 and maximizing the log-likihood function over

the 2005 data in order to choose an optimal smoothing parameter. Similar to the previous

example, we take ε = 10−3 in order to prevent a small number of isolated points from

dominating the likelihood function. We point out that µ is typically estimated concurrently

with the kernel ν, however for simplicity we take ν = 0 in this example. In Figure 4,

we display contour plots of the Split Bregman estimate of the density of burglaries and a

Gaussian kernel estimate for comparison.

Similar types of self-exciting models are used in seismology to describe the distribution of

earthquake aftershocks (Ogata, 1998) and standard methods for estimating the background

intensity µ include spline, kernel smoothing, and Voronoi estimation (Ogata and Katsura,

1988; Silverman, 1986; Okabe et al., 2000). In the case of crime, however, sharp gradients in µ

need to be accounted for due to the specific structure of cities. For example, in Figure 3 sharp

boundaries exist between residential areas (where the points are distributed), commercial

areas (upper middle region), and public parks (lower middle and bottom regions). While a

method such as kernel smoothing may provide a good fit according to a measure like the

Akaike Information Criterion, if events are distributed in unrealistic regions then forecasts
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Figure 4: On the left, a contour plot of the Split Bregman estimate of the spatial density of
residential burglaries on a logarithmic scale. On the right, a contour plot of a Gaussian kernel
estimate of the spatial density of residential burglaries on a logarithmic scale.

based on the method may be met with skepticism by police and other practitioners. Thus we

believe TV-based MPLE may be a good alternative to standard methods for the purpose of

point process crime modeling, as it can be seen in Figure 4 that the method is able to resolve

the sharp boundaries in the crime data, while away from the boundaries under-smoothing is

kept relatively low. The Gaussian kernel estimate, by comparison, over-smooths the density

into the middle and lower regions where crime cannot occur.

5 Concluding Remarks

We presented an efficient computational methodology for Maximum Penalized Likelihood

Estimation when the penalty is chosen as the Total Variation of the estimate, with applica-

tions to the estimation of non-smooth 2D probability densities. The method allows for the

fast approximation of TV-based MPLE on standard 2D grids, even for large sample sizes

and computationally intensive parameter selection procedures.

In the future it may be of interest to consider other regularizations for MPLE along the

lines of the Total Variation penalty. A number of extensions to (3) have been proposed in the
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image processing literature, for example choosing the smoothing parameter to be spatially

dependent. Whereas variable bandwidth kernel estimates can improve upon fixed bandwidth

estimates, this may also be the case for TV-based MPLE.

Other classical statistical problems, such as multivariate regression, may also be ap-

proached using techniques similar to those developed in this paper. In cases where a given

data set exhibits sharp peaks or jump discontinuities, Maximum Penalized Likelihood Re-

gression with a Total Variation penalty may out perform standard regression techniques.

Lastly, we believe that TV-based MPLE will find wide application in the point process

modeling of crime. Further studies in this area will focus on the incorporation of background

intensity estimates obtained through TV-based MPLE into the self-exciting point process

framework.
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