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Abstract

Compressed sensing, an emerging multidisciplinary field
involving mathematics, probability, optimization, and sig-
nal processing, focuses on reconstructing an unknown sig-
nal from a very limited number of samples. Because infor-
mation such as boundaries of organs is very sparse in most
MR images, compressed sensing makes it possible to recon-
struct the same MR image from a very limited set of mea-
surements significantly reducing the MRI scan duration. In
order to do that however, one has to solve the difficult prob-
lem of minimizing nonsmooth functions on large data sets.
To handle this, we propose an efficient algorithm that jointly
minimizes the �1 norm, total variation, and a least squares
measure, one of the most powerful models for compressive
MR imaging. Our algorithm is based upon an iterative
operator-splitting framework. The calculations are accel-
erated by continuation and takes advantage of fast wavelet
and Fourier transforms enabling our code to process MR
images from actual real life applications. We show that
faithful MR images can be reconstructed from a subset that
represents a mere 20 percent of the complete set of mea-
surements.

1. Introduction

Imaging plays a very important role today in medical di-
agnosis. In particular, the use of Magnetic Resonance Imag-
ing (MRI) is crucial for understanding soft tissue changes
within the body in a non-invasive manner. Its use of non-
ionizing radio frequency emission for image acquisition is
considered safe for repeated use in a clinical setting. Con-
sequently, it has become a modality of choice for a variety
of medical practitioners, such as neuro-radiologists, cariol-
ogists and oncologists. Typically, energy from an RF pulse
is directed to a small section of the targeted anatomy at a
time. When this happens, the protons within that area are

forced to spin in a certain frequency and get aligned to the
direction of the magnet. On turning off the signal, the phys-
ical system goes back to its natural state and releases the
energy, which is consequently captured and sent for anal-
ysis. This is then repeated to acquire information for the
entire targeted region which is then subsequently analyzed.
This data acquired in the frequency domain (also called k-
space) is then inverted through the use of the Inverse Dis-
crete Fourier Transform to arrive at the required image of
the anatomy under consideration.

Given the Fourier transformation is a linear mapping, the
number of samples necessary to image an anatomical area
is directly proportional to its size. Further, given that the
frequency domain information is acquired in a primarily se-
quential manner (even though parallel imaging techniques
such as SENSE and GRAPPA are available) the time needed
for imaging is proportional to the size of the object scanned.
During scanning it is important to restrain the subject from
moving, otherwise motion artifacts can severely degrade the
quality of the acquired images. Even normal breathing can
be a problem. Hence, subjects are often either physically
restrained or sedated when large complex anatomical parts
such as the brain are imaged.

Clearly the adoption of MRI to new clinical applications
and even for accepted procedures can be enhanced by re-
ducing the time needed for imaging. From the above discus-
sion, that would mean acquiring fewer samples in the fre-
quency domain. It seems that this however, would directly
violate the long established Nyquist criterion: the amount
of acquisition must at least match the amount of informa-
tion needed for recovery, which means perfect reconstruc-
tion would not be possible, and hence the images acquired
will demonstrate the so called Gibbs aliasing. Compressed
sensing allows one to do this without the associated arti-
facts.
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1.1. Compressed Sensing

Compressed sensing [2, 9] is an interesting new area of
research which has gained enormous popularity of late due
to its ability to reconstruct perfect signals from a limited
number of samples by taking advantage of the sparse nature
of the signals in a transform domain. In the case of MR
images, being able to reconstruct images with high quality
with a subset of the samples from the k-space means spend-
ing less time in the magnet for the patient. This has big
consequences for the patient who is now more receptive to
the procedure, and for the care giver and owner of the clinic,
whose throughput can now be increased.

Compressed sensing for imaging in general is based
upon the fact that most images are compressible. Let the
vector ū represent an image. A compression algorithm such
as JPEG2000 compresses the image by finding some dictio-
nary Φ (e.g., Fourier or wavelet bases) such that Φū = x̄ is
(approximately) sparse, and saving the locations and values
of the nonzero entries of x̄. To recover ū, one simply uses
the same dictionary and lets ū = Φ−1x̄. For ease of nota-
tion, we let k = ‖x̄‖0 be the number of nonzeros in x̄ and
n denote the dimension of x̄.

The entire process of compressed sensing consists of
three steps: encoding, sensing, and decoding. In the first
step, ū is encoded into a smaller vector b = Rū of a size
m < n by a linear transform R. Clearly, b contains less
information than ū, so it is a compression of ū. Since
ū = Φ−1x̄, b = Ax̄ (for A = RΦ−1) is also a compression
of x̄. In many applications of compressed sensing, the lin-
ear transform R is not calculated by a computer but obtained
by certain physical or digital means. In MRI, for example,
R represents a partial discrete Fourier transform, where it is
“partial” because Rū only gives the Fourier coefficients cor-
responding to an incomplete set of frequencies. Notice that
since ū is unknown during this step, R can only be chosen
independently (non-adaptively) of ū. In the second step, b
is acquired (by coils in an MRI scanner) and sent to a com-
puter. The third step is to recover x̄ (and thus, ū) from b.
Since x̄ is sparse, it can be found as the sparsest solution to
the underdetermined equations Ax = b unless there exists
another even sparser solution to these equations. This gives
rise to the �0-problem: minx{‖x‖0 : Ax = b}. However,
this problem is NP-hard [20], impractical for nearly all real
applications, so it is more realistic to solve a computation-
ally tractable alternative such as the �1-problem

min
x
{‖x‖1 : Ax = b}, (1)

which has also been known to yield sparse solutions under
some conditions (see [10, 11, 12] for explains). Ideally, we
would like to take the least possible number of measure-
ments, that is, m being equal to k. However, we must pay
a price for not knowing the locations of the nonzeros in x̄

(there are n choose k possibilities!) while still asking for
perfect reconstructions of most sparse x̄. It was shown in
[2, 23] that, when R is Gaussian random and partial Fourier
(as in the MRI case), (1) can recover x̄ (technically, with
a high probability) from b of a size m = O(k log(n/k))
and O(k log(n)4), respectively. These sample sizes m are
larger than k but still much smaller than n. Finally, once x̄
is recovered, ū becomes available through ū = Φ−1x̄.

When b is contaminated by noise, the constraint Ax = b
in (1) must be relaxed, resulting in either the problem

min
x
{‖x‖1 : ‖Ax− b‖22 ≤ σ2} (2)

or its Lagrangian version

min
x

µ‖x‖1 +
1
2
‖Ax− b‖22, (3)

where σ and µ are parameters. Problems (2) and (3) are
equivalent in the sense that solving one will determine the
parameter in the other such that both give the same solution
[21].

1.2. Compressed MR Imaging

For recovering MR images from undersampled Fourier
measurements b, one could solve (3) with

A = RΦ−1 (4)

for R being a partial Fourier transform and Φ being a
wavelet transform; however, to get the most out of b, we
also exploit the fact that MR images of organs are ex-
pected to demonstrate piecewise continuous behavior, i.e.
the different anatomical structures are supposed to show
uniform characteristics. Such a signal has a small total
variation [24], which is defined discretely as TV (u) :=∑

ij((∇1uij)2 + (∇2uij)2)1/2, where ∇1 and ∇2 denote
the forward finite difference operators on the first and sec-
ond coordinates, respectively. To capture this we consider
minimizing the total variation of u = Φ−1x in addition,
giving rise to the problem

min
x

F (x) := αTV (Φ−1x) + β‖x‖1 +
1
2
‖Ax− b‖22 (5)

where α and β are two positive parameters. This model
was previously used by He et al. [15] and Lustig et al. [18].
However, because TV (Φ−1x) and ‖x‖1 are both nons-
mooth in x, problem (5) is much more difficult to solve than
any of those with a single nonsmooth term such as (3) and
a total variation regularization problem. We emphasize that
in variational imaging, it is relatively easy to propose mod-
els than to solve them efficiently. For example, introducing
a fourth-order regularization term such as the one used in
[19] to the objective function in (5) will certainly improve



the quality of reconstructed images (enhancing the recovery
of small-scale details); however, the resulting problem is too
difficult to solve for real world MR images. Computation is
the bottleneck that made (5) impractical in the past, and they
still prevent models more complicated than (5) from being
proposed and tested. Our contribution in this paper is an ef-
ficient algorithm solving (5) on full-size MR images. This
algorithm can also be modified to solve similar models that
use different regularization functions.

Finally, we briefly review some recent methods for com-
pressed MR imaging to conclude this introduction. [18] is a
comprehensive paper that review the steps and requirements
of compressed MR imaging. It exploits the sparsity of MR
images in a spatial frequency domain (e.g., by a wavelet
transform) and uses �1-minimization (1) to recover the im-
age. The methods by Jung et al. [16] and Ye et al. [26]
solve a minimization problem involving the �p-quasinorm,
for p < 1, using the algorithm FOCUSS [22]. Minimizing
an �p-quasinorm for 0 ≤ p < 1 may achieve a higher com-
pression ratio [6, 7] than p = 1 but since the objective func-
tion is nonconvex, the �p-algorithms, including FOCUSS
[22] and the recent ones by Candès et al. [3] and by Char-
trand and Yin [7], do not always give global minima and are
also slower. Similarly, Trzasko et al. [25] used the homo-
topic nonconvex �0-minimization. Block et al. [1] used total
variation as a constraint, and the work by He et al. [15] and
Chang et al. [5] is based on solving (5) by PDE methods,
the speeds of which are not impressive. We were not able
to reproduce these algorithms and compare them with ours
by the time this paper was submitted; however, the reader
can easily judge the efficiency of a method by its achieved
compression ratio (the lower the better), its maximal input
image size, and its speed, which are usually reported in each
of the papers/reports.

2. The Main Algorithm

We first derive the optimality conditions of (5), based
upon which we then propose a fixed-point iteration.

2.1. Optimality Conditions

For ease of notation, we let u ∈ R
n1×n2 denote a 2D

MR image of n1 × n2 pixels, L = (∇1,∇2) : R
n1×n2 →

R
n1×n2 × R

n1×n2 denote the discrete finite difference op-
erators along the first and second coordinates subject to
appropriate boundary conditions, its suboperator Liju =
(∇1uij ,∇2uij), f(·) = ‖ · ‖2 : R

2 → R such that
TV (u) =

∑
ij f(Lij(u)), g(·) = ‖·‖1, h(·) = 1

2‖A ·−b‖22,
and Ψ = Φ−1, which equals Φ∗, the adjoint operator of Φ,
for any orthonormal transform Φ. Using the notation, (5)
can be rewritten as

min
x

E(x) = α
∑
ij

f(L(Ψx)ij) + βg(x) + h(x). (6)

Since all terms are convex in (6) and α, β > 0, the objective
function is convex; hence, the first-order optimality condi-
tion of (6) is

0 ∈ ∂E(x∗),

where ∂E(x∗) is the subdifferential (i.e., the set of subgra-
dients) of E(·) at x∗. We can apply the general property:

y ∈ ∂f(x)⇔ x ∈ ∂f∗(y), (7)

for a convex function f and its convex conjugate

f∗(y) := sup
x
{〈y, x〉 − f(x)} (8)

and get the equivalent condition: x∗ is optimal if and only
if there exists an auxiliary variable y∗ = (y∗

ij), where yij ∈
R

2, such that

0 ∈ αΦ
∑
ij

L∗
ijy

∗
ij + β∂g(x∗) +∇xh(x∗),(9)

LijΨx∗ ∈ ∂f∗(y∗
ij), (10)

where L∗
ij is the adjoint operator of Lij . The reader does

not need to be familiar with convex conjugate because f∗

can be eliminated as we show below.
Although it is not easy to directly solve the equations

(9)-(10), we can apply the operator splitting method [17] to
them with two scalars τ1, τ2 > 0, obtaining:

(9) ⇔ 0 ∈ τ1β∂g(x∗) + x∗ − s, (11)

s = x∗ − τ1(αΦ
∑
ij

L∗
ijy

∗
ij +∇xh(x∗)),(12)

where ∇xh(x∗) = A∗(Ax∗ − b) = ΦR∗(RΨx∗ − b) and

(10) ⇔ 0 ∈ τ2∂f∗(y∗
ij) + y∗

ij − tij , (13)

tij = y∗
ij + τ2LijΨx∗. (14)

Now, all (11)-(14) are easy to compute! Given x∗ and y∗,
(12) and (14) compute s and t, respectively, in a straightfor-
ward way. On the other hand, given s and t, (11) and (13)
uniquely determine x∗ and y∗, respectively, because (11) is
the optimality condition of the strictly convex problem

min
x

τ1β‖x‖1 +
1
2
‖x− s‖22, (15)

and (13) is equivalent to (again, due to (7))

0 ∈ τ2y
∗
ij + ∂f(y∗

ij − tij) (16)

and thus is the optimality condition of

min
y

τ2

2
‖yij‖22 + ‖yij − tij‖2. (17)



Both (15) and (17) have closed-form solutions (proved in
Theorem 2.1 below) to yield x∗ and y∗, respectively:

x∗(s) = sign(s)max{0, |s| − τ1β} (18)

y∗
ij(tij) = min{ 1

τ2
, ‖tij‖2} tij

‖tij‖2 , (19)

where all operations in (18) are done component-wise, and
0/0 is defined to be 0 in (19) .

Therefore we propose to solve (11)-(14) (hence, the orig-
inal problem (6)) using the fixed-point iterations:

Step a. s(k+1) ← (12) for (x∗, y∗) = (x(k), y(k)),
Step b. t(k+1) ← (14) for (x∗, y∗) = (x(k), y(k)),
Step c. x(k+1) ← (18) for s = s(k),

Step d. y(k+1) ← (19) for t = t(k),

for k = 0, 1, . . . , starting from a set of initial points
x(0), y(0), s(0), t(0).

2.2. Per-Iteration Computation

First, we justify Steps c and d.

Theorem 2.1. The solutions of problems (15) and (17) are
given uniquely by (18) and (19), respectively.

Proof. First, it has been well known (see [4], for exam-
ple) that the unique solution of (15) is soft-thresholding or
shrinkage:

x∗(s) =




s− τ1β, s > τ1β,

0, −τ1β ≤ s ≤ τ1β,

s + τ1β, s < −τ1β,

(20)

which is precisely (18).
Second, we prove that (19) uniquely solves (17) by

showing that, in each of the two cases: ‖tij‖2 ≤ 1/τ2 and
‖tij‖2 > 1/τ2, (19) uniquely satisfies the first-order opti-
mality condition of (17):

0 ∈ τ2y
∗
ij + ∂‖y∗

ij − tij‖2. (21)

where

∂‖z‖2 =

{
{z/‖z‖2}, z 
= 0,

{w : ‖w‖2 ≤ 1}, z = 0.
(22)

If ‖tij‖2 ≤ 1/τ2, then simple calculations give ‖y∗
ij −

tij‖2 = 0; hence, y∗
ij = tij , which is given by (19). If

‖tij‖2 > 1/τ2, then y∗
ij = tij does not satisfy (21), so

‖y∗
ij − tij‖2 
= 0; this, together with (21), yields y∗

ij =
tij/(τ2‖tij‖2), which is also given by (19).

Clearly, (18) and (19) can be computed in times linear in
the size of x, i.e., in O(n1 × n2). Therefore Steps c and d
are very cheap to compute.

Next, let us study the computation of Steps a and b. All
finite difference operators Lij and their adjoint L∗

ij can be
applied in a total of O(n1 × n2) time, so they are cheaper
than the wavelet transform Φ and Fourier transform R, as
well as their inverse transforms, which have typically su-
perlinear complexities. In view of (12) and (14), both steps
involve the computation Ψx(k) so only one such computa-
tion is needed. In addition, only one Φ is needed in (12)
since the last two terms in (12) can be combined. There-
fore, the total amount of computation in Steps (12) and (14)
for each k is dominated by one forward and one inverse
transforms for wavelet and Fourier transforms each.

In our implementation, we store s(k), t(k), x(k), and y(k)

in memory for current k. However, neither R nor Φ is ex-
plicitly expressed; all matrix-vector multiplications involv-
ing them are computed by MATLAB’s implementation of
the corresponding fast transforms. Therefore, our code only
requires a few times as much memory as the MR image it-
self.

2.3. Convergence and a Continuation Strategy

The 4-step iterations are based on splitting the terms in
the optimality conditions (9) and (10) into two parts, the
forward one (Steps a and b) and the backward one (Steps c
and d), each of which is very easy to compute. After em-
bedding our variables and operators into appropriate spaces
(for some technical reasons), one can apply the results of
Combettes and Wajs [8] to show that x(k) generated by the
iterations converge to a global solution as long as the step
sizes τ1 and τ2 are small enough.

Note the objective function of (6) is convex but not
strictly convex. In rare cases, (6) has more than one so-
lution. When this happens, which one of the solutions is
the limit of x(k) depends on the initial point. Also, we can
avoid computing the theoretical upper bounds of τ1 and τ2,
which are used in Combettes and Wajs’s proof of conver-
gence, by employing a line search strategy, i.e., choosing τ1

and τ2 adaptively to ensure enough descent in the objective
at each iteration.

Further, the convergence of the 4-step iterations can be
significantly accelerated by adopting a continuation strat-
egy introduced by Hale et al. [13] for the simpler problem
(3). They applied a splitting-based algorithm, which they
call FPC, to (3) and let the penalty parameter β vary with k,
starting from an initial large value and gradually decreasing
to the given value. They showed that (3) is easier to solve
with a larger β, and their continuation algorithm is faster
because an approximate solution of (3) corresponding to a
large β serves as a good starting point for the problem cor-
responding to the next and smaller β.



2.4. Extensions to Higher-Dimensional Spaces

Although the underlying images are assumed to be two
dimensional in the discussions above, it is straightforward
to extend the theories and methods to images in three or
higher dimensions. Specifically, one only needs to replace
L, R, and Φ by to the higher-dimensional versions of the
finite difference, Fourier transform, and wavelet transform
operators.

3. Numerical Experiments

3.1. Selection of Sampling Matrix

In compressed MR imaging, the sampling matrix A is
given by A = RΦ−1, where Φ is the wavelet transform and
R is a partial Fourier transform. Assume that an MR im-
age has n pixels. In our algorithm, R consists of m rows
of the n × n matrix corresponding to the full 2D discrete
Fourier transform, where m � n. (Recall that neither A
nor R is stored in memory.) The m selected rows specify
the selected frequencies at which the measurements in b are
collected. The smaller the m, the lesser the amount of time
required for an MR scanner to acquire b. The sampling ra-
tio is defined to be m/n. In MR imaging, one has certain
freedom to select the rows (however, practical constraints
may affect the selections but they are out of the scope of
this paper), and we select the rows in our experiments in
the following manner. In the k-space, we chose to sample
more points near the bottom left and bottom right corners,
fewer points near the center. Because of the symmetry of
the 2D Fourier transform, we mask the upper half space.
Following these guidelines, we randomly created sampling
matrices. Figure 1 highlights the positions of the selected
frequencies (in one of the several experiments) in the k-
space. We found that this kind of selection allowed us to
recover MR images from a much smaller number of sam-
ples than a uniformly random selection. In practice, the set
of frequencies as well as the sampling speed, in an MRI
scan are constrained by physical and physiological limits
[18], so our sampling strategy is idealized.

3.2. Experiment Setup

We developed our 2D code, which we call TVCMRI (To-
tal Variation �1 Compressed MR Imaging), in MATLAB
based upon the code FPC [14] by Hale et al., and applied
it on 2D real MR images.

All of our experiments were carried out in MATLAB
v7.3 on a laptop with a 1.66GHz Intel Core Duo T2300E
processor and 2GB memory.

We let the (final) regularization parameters ᾱ = 1×10−3

and β̄ = 3.5 × 10−2 in the underlying model (5) while,
for the continuation procedure in the code, we chose the
initial regularization parameters α0 = ᾱ/(η3

α) and β0 =

Figure 1. The positions of samplings (highlighted in white) with
sampling ratio 21%.

max{ηβ‖AT b‖∞, β̄} where the rate of reduction in α and
β are ηα = 0.25 and ηβ = 0.25, respectively. The maximal
allowed number of iterations for each value of α and β was
set to 200.

For each original MR image ū ∈ R
n of n pixels, the

observation data b was synthesized as

b = Aū + n, (23)

where n is Gaussian white noise generated by
σ × randn(m, 1) in MATLAB, and A ∈ R

m×n is
the sampling matrix. A and b were given to our code as
data, and u was the unknown.

3.3. Recovered MR Images

We tested our code on three different 2D MR images:
a 210 × 210 brain image, a 220 × 220 chest image, and a
924× 208 full body image. The noise level σ is set to 0.01
in all the test problems. The original and recovered images
are shown in Figures 2-4. The relative errors,

rerr =
‖u− ū‖2
‖ū‖2 , (24)

signal to noise ratios (SNRs) and running times are given in
Table 1, where ū and u are original and recovered images,
respectively.

The algorithm is very efficient in recovering the images.
For the brain and chest images, TVCMRI can usually re-
cover the image within around 10 seconds. Even for the big
full body image, the algorithm still can recover the image
within 30 seconds. Although the input images have differ-
ent levels of complexity, the recovery qualities are consis-
tent across these images. Specifically, for each of them, a



(a) (b)

(c) (d)

Figure 2. (a) is the original Brain image. (b), (c) and (d) are the
recovered images at the sampling ratios of 38.65%, 21.67% and
8.66%, respectively.

(a) (b)

(c) (d)

Figure 3. (a) is the original Chest image. (b), (c) and (d) are the
recovered images at the sampling ratios of 38.50%, 21.58% and
8.73%, respectively.

sampling ratio of 38% is always sufficient for reconstruct-
ing a faithful image; 21% yields clean images without sig-
nificant artifacts; yet a very low sampling ratio of 8.7% still
gives acceptable results with obvious artifacts. These re-
sults can certainly be improved if we allow more number
of iterations in our code. Moreover, slight under-sampling
causes minor artifacts but the reconstruction still doesn’t
fail; this is not the case in classical compressed sensing for
sparse signals, where insufficient number of measurements
often yield completely incorrect results.

(a) (b) (c) (d)

Figure 4. (a) is the original MR Full body image. (b), (c) and
(d) are the recovered images at the sampling ratios of 38.38%,
21.49%, and 8.32%, respectively.

Image Samp.Ratio Rel.Err. SNR Time(sec)
Brain 38.65% 0.0795 18.74 4.64

210× 210 21.67% 0.2200 9.90 6.88
8.66% 0.4479 3.73 8.97

Chest 38.50% 0.0573 21.19 6.67
220× 220 21.58% 0.1537 12.63 8.64

8.73% 0.3134 6.44 11.47
Full body 38.38% 0.0503 24.12 25.58
924× 208 21.49% 0.1513 14.55 19.41

8.32% 0.4182 5.72 22.55
Table 1. Numerical results for different MR images with different
sampling ratios.

3.4. Comparison of recoveries with and without to-
tal variation

In this subsection, we demonstrate the advantage of us-
ing the total variation in the model (5). We used the FPC
code [14] to solve (3) on the same images that we tested
with TVCMRI.

We recorded the relative errors and signal to noise ratios
(SNRs), which show differences in performance. Figures
5 and 6 give the relative errors and SNRs, respectively, of
the recovered brain MR images by TVCMRI (blue curves)
and FPC (green curves) from the measures at a sequence of
different sampling ratios. From Figure 5 we can see that
the relative errors of the recovered images from TVCMRI,
which solves (5), are much smaller than those from FPC,
which solves (3). In terms of SNR, TVCMRI is also signif-
icantly better than FPC. This indicates that model (5) per-
forms better for recovering MR images from undersampled
images than (3).
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Figure 5. The comparison of relative errors by TVCMRI and FPC
with different sampling ratios.
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Figure 6. The comparison of signal noise ratios by TVCMRI and
FPC with different sampling ratios.

The model (5) gave cleaner images than (3). In Figures 7
and 8 we compare the images produced by these two mod-
els, and we also record the relative errors and signal to noise
ratios in Table 2. At the sufficient sampling ratio of 38%,
both models give faithful images though the ones from FPC
have slightly less contrast. However, the difference in im-
age quality becomes larger and visually obvious at a lower
sampling ratio of 21%. The advantage of using total varia-
tion is obvious.

4. Conclusion

In this paper, based on the compressed sensing theory,
we use a joint total variation and �1 minimization model to
recover MR images from a small number of measurements,

(a) (b)

(c) (d)

Figure 7. TVCMRI versus FPC. (a): TVCMRI result at m/n =
38.66%; (b): TVCMRI result at m/n = 21.67%; (c) FPC result
at m/n = 38.66%; (d): FPC result at m/n = 21.67%.

(a) (b)

(c) (d)

Figure 8. TVCMRI versus FPC. (a): TVCMRI result at m/n =
38.50%; (b): TVCMRI result at m/n = 21.58%; (c) FPC result
at m/n = 38.50%; (d): FPC result at m/n = 21.58%.

Image Method Samp.Ratio Rel.Err. SNR
Brain TVCMRI 38.66% 0.0795 18.74

210× 210 FPC 38.66% 0.1457 13.56
TVCMRI 21.67% 0.2200 9.90
FPC 21.67% 0.3491 6.36

Chest TVCMRI 38.50% 0.0573 21.19
220× 220 FPC 38.50% 0.1278 14.58

TVCMRI 21.58% 0.1537 12.63
FPC 21.58% 0.2505 8.32

Table 2. Numerical results for different MR images with different
sampling ratios.

for which we developed an efficient algorithm. The numer-



ical experiments on the real MR images show that this al-
gorithm can give a faithful recovery in less than a minute
even when the sampling ratio is relatively small. By com-
paring the relative errors and SNRs of the recovered images
by this total variation model and one without the total vari-
ation term, we show the usage of total variation is critical
for restoring MR image from compressed measurements.
Our algorithm can still be accelerated by incorporating op-
timization techniques such as smoothing and more efficient
line search. Further, we believe that the algorithm presented
in this paper for compressed sensing can be extended to
other interesting imaging and vision applications.
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