
A FAST ALGORITHM FOR SPARSE RECONSTRUCTION BASED ON SHRINKAGE,

SUBSPACE OPTIMIZATION AND CONTINUATION

ZAIWEN WEN † , WOTAO YIN ‡ , DONALD GOLDFARB † , AND YIN ZHANG §

January, 2009

Abstract. We propose a fast algorithm for solving the ℓ1-regularized minimization problem min
x∈Rn µ‖x‖1 + ‖Ax − b‖2

2

for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages

that are performed repeatedly. In the first stage a first-order iterative method called “shrinkage” yields an estimate of the

subset of components of x likely to be nonzero in an optimal solution. Restricting the decision variables x to this subset and

fixing their signs at their current values reduces the ℓ1-norm ‖x‖1 to a linear function of x. The resulting subspace problem,

which involves the minimization of a smaller and smooth quadratic function, is solved in the second phase. Our code FPC AS

embeds this basic two-stage algorithm in a continuation (homotopy) approach by assigning a decreasing sequence of values to

µ. This code exhibits state-of-the-art performance both in terms of its speed and its ability to recover sparse signals. It can

even recover signals that are not as sparse as required by current compressive sensing theory.

Key words. ℓ1-minimization, basis pursuit, compressive sensing, subspace optimization, active set, continuation, shrinkage

AMS subject classifications. 49M29, 65K05, 90C25, 90C06

1. Introduction. Frequently, the dominant information in an image or signal is much “sparser” than

the image or signal itself under a proper representation. The fundamental principal of the emerging tech-

nology of compressive sensing (CS) is that a K-sparse signal x̄ ∈ R
n can be recovered from relatively few

incomplete measurements b = Ax̄ for a carefully chosen A ∈ R
m×n by solving the ℓ0-minimization problem

(1.1) min
x∈Rn

‖x‖0 subject to Ax = b,

where ‖x‖0 := |{i, xi 6= 0}|, K ≤ m ≤ n (often K ≪ m ≪ n). Moreover, Candes, Romberg and Tao

[12, 13, 14], Donoho [21] and their colleagues have shown that, under some reasonable conditions on x̄ and

A, the sparsest solution x̄ of problem (1.1) can be found by solving the basis pursuit (BP) problem

(1.2) min
x∈Rn

‖x‖1 subject to Ax = b.

For more information on compressive sensing, see [21, 55, 60, 61, 52, 41, 56, 38, 40, 39, 65].

Greedy algorithms have been proposed to recover the solution x̄ of problem (1.1) when the data satisfy

certain conditions, such as, the restricted isometry property [14]. These algorithms include Orthogonal

Matching Pursuit (OMP) [42, 54], Stagewise OMP (StOMP) [22], CoSaMP [45], Subspace Pursuit (SP) [16],

and many other variants. These algorithms, by and large, involve solving a sequence of subspace optimization

problems of the form

(1.3) min
x
‖ATxT − b‖

2
2, subject to xi = 0, ∀i 6∈ T,

†Department of Industrial Engineering and Operations Research, Columbia University, New York, 10027, U.S.A.
(zw2109@columbia.edu, goldfarb@columbia.edu). Research supported in part by NSF Grant DMS 06-06712, ONR Grants
N000140310514 and N00014-08-1-1118 and DOE Grants DE-FG01-92ER-25126 and DE-FG02-08ER58562.

‡Department of Computational and Applied Mathematics, Rice University, Texas, 77005, U.S.A. (wotao.yin@rice.edu).
Research supported in part by NSF CAREER Award DMS-07-48839 and ONR Grant N00014-08-1-1101.

§Department of Computational and Applied Mathematics, Rice University, Texas, 77005, U.S.A. (yzhang@rice.edu). Re-
search supported in part by NSF grants DMS-0405831 and DMS-0811188 and ONR grant N00014-08-1-1101.

1

where T is an index set of the components of x. Starting from T = ∅ and x = 0, OMP iteratively adds to

T the index of the largest component of the current gradient g(x) of ‖Ax − b‖22 and solves (1.3) to obtain

a new point x. StOMP adds those indices (usually more than one) at each iteration that correspond to the

components of g(x) whose magnitudes exceed a threshold. Rather than being a monotonically growing index

set as in OMP and StOMP, at each iteration of CoSaMP and SP the index set T is a union of the indices

of the K most significant components of the current point x and the K most significant components of the

gradient g(x).

Closely related to the convex optimization problem (1.2) is the ℓ1-regularized minimization problem

(1.4) min
x∈Rn

ψµ(x) := µ‖x‖1 + ‖Ax− b‖22,

where µ > 0. The theory for penalty functions implies that the solution of the quadratic penalty function

(1.4) goes to the solution of (1.2) as µ goes to zero. It has been shown in [66] that (1.2) is equivalent to

a ℓ1-regularized problem of the form (1.4) for a suitable choice of b (which is different from the b in (1.4)).

Furthermore, if the measurements are contaminated with noise ǫ, i.e., b = Ax̄+ ǫ, or x̄ is only approximately

sparse, namely, it contains a small number of components with magnitudes significantly larger than those of

the remaining components which are not necessarily zero, then problem (1.4) is a more appropriate model

than (1.2). Another related problem is the LASSO problem, i.e.,

(1.5) min
x∈Rn

‖Ax− b‖22 , s.t., ‖x‖1 ≤ t,

which is equivalent to (1.4) for an appropriate choice of the parameter t.

Problems (1.2), (1.4) and (1.5) are all convex optimization problems. Moreover, (1.2) can easily be

transformed into a linear programming (LP) problem and (1.4) and (1.5) can be transformed into quadratic

programming (QP) problems and these problems can be solved by standard LP and QP methods. However,

computational challenges arise from the following facts. First, real-world applications are invariably large-

scale. For example, the decision variable corresponding to a 1024×1024 image has over a million variables.

Second, A is generally dense. Third, real-time or near real-time processing is required in some applications.

Consequently, algorithms requiring matrix decompositions or factorizations are not practical. On the other

hand, the measurement matrices A that arise in applications often correspond to partial transform matrices

(e.g., discrete Fourier and cosine transforms), for which fast matrix-vector multiplications (e.g., FFT and

DCT) are available. Moreover, the sparsity of the solutions presents a unique opportunity for achieving

relatively fast convergence with a first-order method. These features make the development of efficient

optimization algorithms for compressive sensing applications an interesting research area. Examples of such

algorithms include, shrinkage-based algorithms [28, 48, 19, 3, 23, 24, 15, 34, 33, 63, 58, 49], the interior-point

algorithm ℓ1 ℓs [37], SPGL1 [59] for the LASSO problem, the spectral gradient projection method GPSR

[29] and the fixed-point continuation method FPC [34] for the ℓ1-regularized problem (1.4), and the gradient

method in [46] for minimizing the more general function J(x) +H(x), where J is non-smooth, H is smooth,

and both are convex.

In this paper, we propose a two-stage algorithm for compressive sensing based on solving problem (1.4)

by combining the good features of both greedy algorithms and convex optimization approaches. While the

greedy algorithms (OMP and its variants) take advantage of the sparsity structure via minimizing a sequence

of subspace problems (1.3), they require some prior information, like the cardinality K of the sparse solution.

In contrast, the convex optimization approaches mentioned in the previous paragraph do not require any prior

2

information, but do not fully use the sparsity of the solution. Hence, our basic idea is to use some iterations

of a convex optimization approach to generate the working set T for a subspace optimization problem similar

to (1.3). First, a first-order method based on shrinkage is applied to obtain an approximate solution of (1.4)

and identify a working set. Then a second-order method is applied to solve a smooth problem (subspace

optimization) defined by the working set starting from the approximate solution. These two operations are

then repeated until the solution satisfies approximate optimality conditions for problem (1.4). Embedding

the basic two-stage algorithm in a continuation (homotopy) approach by assigning a decreasing sequence of

values to µ, our algorithm exhibits state-of-the-art performance both in terms of its speed and its ability

to recover sparse signals. In fact it can even recover signals that are not as sparse as required by current

compressive sensing theory.

The purpose of shrinkage in our algorithm is two-fold, providing a good initial point and identifying

a new working set for subspace optimization. Although subspace optimization is used in GPSR [29] and

FPC [34], it is performed only once by these algorithms as a post-processing step (and referred to as de-

biasing). Our method is also significantly different from the greedy algorithms mentioned earlier in terms

of the formulation of the subspace optimization problem and the way the working set T for that problem is

chosen at each iteration using no prior information about the sparsity of the solution.

The rest of this paper is organized as follows. In section 2, we introduce an abstract framework for our

two-stage algorithm. In section 3, we discuss the shrinkage phase, a nonmontone line search method and

an exact line search method. In section 4, we state the formulation of the subspace optimization problem,

present criteria for starting the subspace optimization phase and discuss methods for choosing the active

set. Our continuation strategy is described in section 5 and the complete algorithm is presented in section

6. Finally, numerical results on an extensive collection of problems arising in compressive sensing, including

several very challenging “pathological” problems, are presented in section 7 to demonstrate the robustness

and efficiency of our algorithm.

2. Overview of the algorithm. Our primary goal is to obtain a solution of the ℓ0-minimization

problem (1.1) by solving the ℓ1-regularized problem (1.4) using an active set method. Active set methods

have been extensively studied in nonlinear programming. Compared with interior point methods, active set

methods are more robust and better able to take advantage of warm starts [47, 51]. Our active set algorithm

works as follows: a first-order method is used to define an active set, and then a second-order method is used

to explore a subspace problem based on this active set. These two operations are iterated until convergence

criteria are satisfied. Examples of other active set methods that follow this framework include those in which

gradient projection and conjugate gradient methods are combined to solve problems with bound constraints

or linear constraints [44, 7, 43, 8, 31] and those that combine linear and quadratic programming approaches

to solve general nonlinear programming problems [9, 10]. In our approach, shrinkage is used to identify an

active set in the first stage and a smooth subproblem, which is much easier to handle, is formulated and

solved in the second stage. We briefly describe the motivation underlying our approach and introduce an

abstract form of our algorithm in this section.

For convenience of notation let

f(x) := ‖Ax− b‖22 and g(x) := ∇f(x).

For x, y ∈ R
n, let x⊙ y denote the component-wise product of x and y, i.e., (x⊙ y)i = xiyi. Given y ∈ R

n

3

and ν ∈ R, shrinkage is defined as

S(y, ν) := sgn(y)⊙max {|y| − ν,0} ,(2.1)

which is the unique minimizer of the function ν‖x‖1 + 1
2‖x− y‖

2
2. Given a point xk, our iterative shrinkage

procedure generates a new point

(2.2) xk+1 := S
(
xk − λgk, µλ

)
,

where gk := g(xk) and λ > 0. The iteration (2.2) has been independently proposed by different groups of

researchers in various contexts [3, 19, 23, 24, 28, 34, 48]. One appealing feature, which has been proved

in [34], is that it yields the support and the signs of the optimal solution x∗ of (1.4) in a finite number of

iterations under suitable conditions; that is, there exists a number k̄ such that sgn(xk) ≡ sgn(x∗) (following

the convention sgn(0) = 0) for all k ≥ k̄. Convergence of (2.2) under suitable conditions on λ and the Hessian

∇2f has been studied in [15, 18, 34]. The local q-linear convergence proved in [34] depends on properties of

the reduced Hessian of f(x) restricted to the support of x∗. Various modifications and enhancements have

been applied to (2.2), which has also been generalized to certain other nonsmooth functions; see [25, 6, 29, 63].

The first stage of our approach is based on the iterative shrinkage scheme (2.2). Once a “good” approx-

imate solution xk of the ℓ1-regularized problem (1.4) is obtained from (2.2), the set of indices corresponding

to the zero and nearly zero components of xk (i.e., |xki | ≤ ξ
k, where ξk ∈ (0, 1)), is selected as a working set.

In the second stage, a subspace optimization problem is formed by fixing the components in this working

set to zero and approximating the ℓ1-norm ‖x‖1 by a smooth function. For several possibilities, see [26]. In

this paper, we simply use a linear approximation c⊤x, where the components of the fixed vector c are taken

as the signs of the components of xk since |xi| = sgn(xi)xi. Simple bound constraints can be imposed so

that cixi ≥ 0. The choice of a practical termination criteria to judge whether the solution obtained from

shrinkage is “good” enough is critical, since the estimate in [34] of the steps needed to identify the support

and the signs of the nonzero components of x∗ depends on the exact solution x∗ which is unknown. We will

present some effective rules and explain the motivation underlying them in Section 4.

Instead of solving problem (1.4) directly from scratch, we use a continuation (homotopy) procedure to

solve a sequence of problems {x∗µk
:= arg minx∈Rn ψµk

(x)}, where µ0 > µ1 > · · · > µ, using the solution

(or approximate solution) x∗µk−1
as the initial estimate of the solution to the next problem. It has been

shown empirically in [32] that using the basic shrinkage scheme (2.2) to obtain each x∗µk
in a continuation

strategy is far superior to applying the basic shrinkage scheme to (1.4) directly. Experiments in [59, 63]

have further confirmed the effectiveness of continuation. Therefore, we embed our two-stage algorithm in a

continuation procedure. Allowing the parameter to be chosen dynamically and incorporating a line search

in each shrinkage step results in the following abstract algorithm, Algorithm 1.

We note that shrinkage provides a strategy similar to those used by greedy algorithms to select the set T

based on information about x and the gradient g(x) in problem (1.4). This connection is most obvious if we

look at a shrinkage step right after greedy algorithms perform the subspace optimization step (1.3). Assume

that xk+ is generated by subspace optimization (1.3) with an index set T k. The optimality conditions for

(1.3) are A⊤
Tk(ATkxk+

Tk − b) = 0, which implies that the gradient gk+ = (0, gk+
T

k)⊤. Substituting gk+ and

4

Algorithm 1: An Abstract Active Set Algorithm

Initialization: Choose x0, µ0.
for k = 0, 1, · · · until convergence do

S1 Shrinkage phase: Select a parameter λk and compute a direction dk ← S(xk − λkgk, µkλ
k)− xk.

Do a line search to obtain a step size αk and set the new point xk+1 ← xk + αkd
k.

S2 if certain conditions are met then
Sub-optimization: Determine an active set based upon xk+1.
xk+1 ← the solution of the subspace optimization problem over the active set.

Compute µk+1

xk+ = (xk+
Tk ,0)⊤ into the shrinkage operator, we obtain

(2.3) xk+1 = S
(
xk+ − λgk+, µkλ

)
=

sgn(xk+i)max(|xk+i | − µkλ, 0), if i ∈ T k,

sgn(λgk+i)max(|λgk+i | − µkλ, 0), if i ∈ T
k
.

Hence, shrinkage selects indices corresponding to components xi in the previous working set T k whose

magnitudes are larger than the threshold µkλ and indices corresponding to components of the gradient in

the complement of T k whose magnitudes are larger than µkλ.

3. The shrinkage phase. We now describe the first stage of our algorithm. In the fixed point method

in [32], the parameter λ in (2.2) is fixed so that the fixed-point iteration is a contraction at every iteration.

Since a bad value of λ usually slows down the rate of convergence, we choose λ dynamically to improve

the performance of shrinkage. We also incorporate a line search scheme to guarantee global convergence.

The theoretical properties of our algorithm, including global convergence, R-linear convergence and the

identification of the active set after a finite number of steps are studied in a companion paper [62].

Our line search scheme is based on properties of the search direction determined by shrinkage (2.1) and

(2.2). Let dk := d(λk)(xk) denote this direction, i.e.,

(3.1) d(λ)(x) := x+ − x, x+ = S(x− λg, µλ),

for x ∈ R
n, µ > 0 and λ > 0. Since shrinkage (2.1) is the solution of the non-smooth unconstrained

minimization problem minx∈Rn ν‖x‖1 + 1
2‖x − y‖

2
2, and the latter is equivalent to the smooth constrained

problem

min
1

2
‖x− y‖22 + νξ, subject to (x, ξ) ∈ Ω := {(x, ξ) | ‖x‖1 ≤ ξ},

we can obtain from the optimality conditions for latter problem that

(3.2) (S(x, ν)− x)⊤(y − S(x, ν)) + ν(ξ − ‖S(x, ν)‖1) ≥ 0

for all x ∈ R
n and (y, ξ) ∈ Ω and ν > 0 [62]. Substituting x − λg for x, x for y and ‖x‖1 for ξ and setting

ν = µλ in (3.2), we obtain

(S(x− λg, µλ)− (x− λg))⊤(x− S(x− λg, µλ)) + µλ(‖x‖1 − ‖S(x− λg, µλ)‖1) ≥ 0,

5

which gives

(3.3) g⊤d+ µ(‖x+‖1 − ‖x‖1) ≤ −
1

λ
‖d‖22,

after rearranging terms. An alternative derivation of (3.3) is given in Lemma 2.1 in [57].

We can also reformulate (1.4) as

(3.4) min f(x) + µξ, subject to (x, ξ) ∈ Ω,

whose first-order optimality conditions for a stationary point x∗ are

(3.5) ∇f(x∗)(x− x∗) + µ(ξ − ‖x∗‖1) ≥ 0, for all (x, ξ) ∈ Ω,

since ξ∗ = ‖x∗‖1. Hence, dk is similar to a gradient projection direction for solving (3.4), and should

have many properties of the latter. In particular, it has been shown in [57, 62] that for any x∗ ∈ R
n and

0 < λ <∞,

(3.6) d(λ)(x∗) = 0

if and only if x∗ is a stationary point for (1.4).

Since in our method λ is not chosen to ensure contraction, a backtracking line search is necessary

to guarantee global convergence. Consequently, at each iteration, we compute the next point as xk+1 =

xk + αkd
k, where αk = ρh and 0 < ρ < 1 are constants and h is the smallest integer that satisfies the

Armijo-like condition

(3.7) ψµ(x
k + ρhdk) ≤ Ck + ρh∆k.

Here Ck is a reference value with respect to the previous values {ψ0
µ, · · · , ψ

k
µ}, and

(3.8) ∆k := (gk)⊤dk + µ‖xk+‖1 − µ‖x
k‖1 ≤ 0.

From (3.3) and the convexity of the ℓ1-norm, it is easy to show that there exists a (backtracking) step size

that satisfies (3.7) with Ck = ψµ(x
k). Such a line search method is monotone since ψµ(x

k+1) < ψµ(x
k).

Instead of using it, we use a nonmonotone line search method based on a strategy proposed in [67] (see

algorithm “NMLS” (Algorithm 2)). In this method, the reference value Ck in the Armijo-like condition

(3.7) is taken as a convex combination of the previous value of Ck−1 and the function value ψµ(x
k), and as

the iterations proceed the weight on Ck is increased. For further information on nonmonotone line search

methods, see [17, 30, 53].

In [62], we show that there exists a step size satisfying the Armijo-like condition (3.7) for Ck generated in

Algorithm “NMLS”. Therefore, every iteration of algorithm “NMLS” is well defined. From that algorithm,

we have

(3.9) ψµ(x
k+1) ≤ Ck ≤ Ck−1 ≤ · · · ≤ C0 = ψµ(x

0).

We also prove that Algorithm “NMLS” converges. Specifically, let L be the level set L := {x ∈ R
n : ψµ(x) ≤

6

Algorithm 2: Nonmonotone Line Search Algorithm (NMLS)

Initialization: Choose a starting guess x0, and parameters 0 < η < 1, 0 < ρ < 1, and
0 < λm < λM <∞. Set C0 = ψµ(x

0), Q0 = 1, and k = 0.
while “not converge” do

Computing a search direction: Choose a λm ≤ λk ≤ λM . Set dk = S(xk − λkgk, µλk)− xk.
Selecting a step size: Set xk+1 = xk + αkd

k, where αk = ρhk and hk is the smallest integer such
that αk satisfies the non-monotone Armijo-like condition (3.7).
Update: Set Qk+1 = ηQk + 1, Ck+1 = (ηQkCk + ψµ(x

k+1))/Qk+1. Set k ← k + 1

ψµ(x
0)} and L̃ be the set of points of x ∈ R

n whose distance to L is at most supk ‖d
k‖ <∞. Assuming that

f(x) is bounded from below on L̃ and ∇f is Lipschitz continuous on L̃, we prove that the sequence {xk} is

globally convergent in the sense that limk→∞‖d
k‖ = 0. It is also proved that the sequence {xk} is at least

R-linearly convergent under some mild assumptions.

We now specify a strategy, which is based on the Barzilai-Borwein method (BB) [2], for choosing the

parameter λk. The shrinkage iteration (2.2) first takes a gradient descent step with step size λk along the

negative gradient direction gk of the smooth function f(x), and then applies the shrink operator S(·, ·) to

accommodate the nonsmooth term ‖x‖1. Hence, it is natural to choose λk based on the function f(x) alone.

Let

sk−1 = xk − xk−1, yk−1 = gk − gk−1.

The BB step is defined so that it corresponds to premultiplying the negative gradient by a multiple of identity

that has a quasi-Newton property; specifically,

(3.10) λk,BB1 =
(sk−1)⊤sk−1

(sk−1)⊤yk−1
or λk,BB2 =

(sk−1)⊤yk−1

(yk−1)⊤yk−1
.

To avoid the parameter λ being either too small or too large, we take

(3.11) λk = max{λm,min{λk,BB1, λM}} or λk = max{λm,min{λk,BB2, λM}},

where 0 < λm ≤ λM < ∞ are fixed parameters. We should point out that the idea of using the BB step

in compressive sensing has also appeared in [64, 35]. However, Algorithm “NMLS” only requires that λk be

bounded and other strategies could easily be adopted.

3.1. An exact line search. An exact line search is possible if ψµ(·) is a piecewise quadratic function.

We want to solve

min
α∈[0,1]

ψµ(x+ αd) := µ‖x+ αd‖1 +
1

2
‖A(x+ αd)− b‖22,(3.12)

= µ‖x+ αd‖1 +
1

2
c1α

2 + c2α+ c3,

where c1 = ‖Ad‖22, c2 = (Ad)⊤(Ax − b) and c3 = ‖Ax − b‖22. The break points of ψµ(x + αd) are {αi =

−xi/di, di 6= 0, i = 1, · · · , n}. Since α ∈ [0, 1], we select those αi ∈ [0, 1] and sort these points together with

7

0 and 1 as

(3.13) α(0) = 0 < α(1) < · · · < α(κ−1) < 1 = α(κ).

For each interval [α(l), α(l+1)] for l = 0, · · · , κ the function ψµ(x+ αd) is a smooth quadratic function of α.

Let the minimizer of the function determined by the interval [α(l), α(l+1)] be denoted by ᾱ(l). Then ᾱ(l) is

the optimal solution of (3.12) if ᾱ(l) ∈ [α(l), α(l+1)]. Hence, we only have to search each interval to obtain

the optimal solution of (3.12). This algorithm is outlined in Algorithm 3.

Algorithm 3: An exact line search algorithm for solving (3.12)

Initialization: Compute c1 = ‖Ad‖22, c2 = (Ad)⊤(Ax− b). Compute αi = −xi/di for di 6= 0 and sort
the αi such that (3.13) is satisfied.
for i = κ, · · · , 1 do

Compute xl = x+ α(i−1)d and xu = x+ α(i)d

Set Il = {i : xli ≤ 0 and xui ≤ 0} and Iu = {i : xli ≥ 0 and xui ≥ 0}
Compute ρ = µ(

∑
i∈Iu di −

∑
i∈Il di) and α = −(c2 + ρ)/c1.

if α(i−1) ≤ α ≤ α(i) then return α and exit the loop.

Return α = αi such that i = arg mini=1,··· ,κ ψµ(x+ αid).

In our algorithm, we perform an exact line search if the Armijo-like condition (3.7) is not satisfied with

a unit step size, but we still update the parameters Qk+1 and Ck+1 for the next iteration. Such a hybrid

method works well in practice.

4. The subspace optimization phase. We begin by introducing some notation. The active set is

denoted by A(x) and the inactive set (or support) is denoted by I(x), i.e.,

(4.1) A(x) := {i ∈ {1, · · · , n} | |xi| = 0} and I(x) := {i ∈ {1, · · · , n} | |xi| > 0}.

The active set is further subdivided into two sets

(4.2) A±(x) := {i ∈ A(x) | |gi(x)| < µ} and A0(x) := {i ∈ A(x) | |gi(x)| ≥ µ}.

If x∗ is an optimal solution of (1.4) and i ∈ A0(x
∗), then |gi(x

∗)| = µ. The problem (1.4) is said to be

degenerate at x∗ if A0(x
∗) 6= ∅. The components of x∗ in A0(x) are called degenerate while those in A±(x∗)

are called nondegenerate.

We now show that the iterative shrinkage scheme (2.2) essentially reduces to a gradient projection

method for solving a subspace minimization problem after sufficiently many iterations. Suppose that f(x)

is a twice differentiable convex function and the eigenvalues of its Hessian are uniformly bounded. Let X∗

be the set of optimal solutions of (1.4). It has been shown in [34] that there exists a vector

(4.3) g∗i

= −µ, max{xi : x ∈ X∗} > 0,

= +µ, min{xi : x ∈ X∗} < 0,

∈ [−µ, µ], otherwise,

8

such that g(x∗) ≡ g∗ for all x∗ ∈ X∗ and X∗ is included in the orthant

Ω∗ := {x ∈ R
n : −sgn+(g∗i)xi ≥ 0, i ∈ {1, · · · , n}},

where sgn+(t) = 1 if t ≥ 0 and sgn+(t) = −1, otherwise. Assume that xk is generated by the iterative

shrinkage scheme (2.2) with

(4.4) λk ∈ (0, 2/λmax),

where λmax := maximum eigenvalue of ∇2f(x) <∞. Then the support and the sign of the optimal solution

can be identified after a finite number of steps, i.e., xki = 0 for i ∈ A±(x∗) and sgn(xki −λ
kgk) = sgn(x∗i−λ

kg∗)

for i ∈ T := I(x∗) ∪ A0(x
∗) for k large enough [34]. Let Ω∗

T be the subset of Ω∗ with respect to the

index set T and PΩ∗

T
be the orthogonal projection onto Ω∗

T . Consequently, for k large enough, the iterative

shrinkage scheme (2.2) effectively works only on T and can be shown to equal the gradient projection method

xk+1
T = PΩ∗

T
(xkT − λ

k∇φµ(x
k
T)) for solving the subspace minimization problem

(4.5) min
x
φµ(x) := −(g∗T)⊤xT + f(x), subject to xT ∈ Ω∗

T , and xi = 0, ∀i ∈ A±(x∗).

Our subspace optimization approach is partially motivated by our belief that a second-order type method

might be faster than the iterative shrinkage scheme for solving (4.5). Although λk generated by Algorithm

“NMLS” might not satisfy (4.4), shrinkage is still able to identify the nondegenerate components A±(x∗)

after a finite number of steps under mild conditions [62]. When A(xk) is a good estimate of the true

active set A(x∗), we define subspace optimization as follows. Since |xi| = sgn(xi)xi, µsgn(x∗i) = −g∗i and

sgn(x∗i) = −sgn(g∗i) for i ∈ I(x∗), we approximate sgn(x∗i) by sgn(xki) and replace φµ(x) in (4.5) by a smooth

function

(4.6) ϕµ(x) := µ sgn(xkIk)⊤xIk + f(x).

We require that each xi either has the same sign as xki or is zero, i.e., x is required to be in the set

(4.7) Ω(xk) :=
{
x ∈ R

n : sgn(xki)xi ≥ 0, i ∈ I(xk) and xi = 0, i ∈ A(xk)
}
.

Therefore, our subspace optimization problem is

(4.8) minϕµ(x) s.t. x ∈ Ω(xk),

which can be solved by a limited-memory quasi-Newton method for problems with simple bound constraints

(L-BFGS-B) [68]. In our implementations, we also consider subspace optimization without the bound con-

straints, i.e.,

(4.9) min
x∈Rn

ϕµ(x), s.t. xi = 0,∀i ∈ A(xk).

This is essentially an unconstrained minimization problem which can be solved by a linear conjugate gradient

method or a limited-memory quasi-Newton method.

We switch to the subspace optimization phase if for some fixed constants δ > 0 and ǫf , ǫg ∈ (0, 1) either

9

one of the two conditions

λk−1‖gkI(xk)‖

‖d(λk−1)‖2
> δ and ‖(|g(xk)| − µ)I(xk)∪A0(xk)‖∞ ≤ ǫg max(‖xk‖, 1)(4.10)

|ψk−1
µ − ψkµ| ≤ ǫf max(|ψkµ|, |ψ

k−1
µ |, 1)(4.11)

is satisfied during the shrinkage phase. The justification for tests (4.10) and (4.11) is based on the convergence

properties of Algorithm “NMLS”. On the one hand, we want to start subspace optimization as soon as

possible; on the other hand, we want the active set that defines the subspace optimization problem to be

as accurate as possible. If there is at least one nonzero component in x∗, then ‖g∗I∗‖ ≥ µ since |g∗i | = µ for

i ∈ I∗ from the optimality conditions. Suppose the sequence {xk} generated by the first stage converges to an

optimal solution x∗ of (1.4); then g(xk) converges g(x∗) and ‖d(λk)(xk)‖2 converges to zero from (3.6). Hence,

the quantity λk−1‖gkI(xk)(x
k)‖/‖d(λk−1)(xk−1)‖2 converges to infinity and the first part of condition (4.10) will

be satisfied after a finite number of iterations. However, the quantity λk−1‖gkI(xk)(x
k)‖/‖d(λk−1)(xk−1)‖2

cannot tell us whether the current point xk is nearly optimal or not. Hence, we also check the second

condition in (4.10) in which ‖(|g(xk)|−µ)I(xk)∪A0(xk)‖∞ is a measure of optimality (see subsection 4.1). If it

happens that the shrinkage phase converges slowly and cannot make sufficient progress after a large number

of iterations, the relative change of the objective function value between two consecutive iterations usually

will be small. Hence, satisfaction of condition (4.11) indicates that Algorithm “NMLS” is stagnating.

Suppose subspace optimization starts from the point xk. Clearly, ϕµ(x
k) = ψµ(x

k) from the definition

of ϕµ(x). We denote the (approximate) solution of the subspace optimization problem (4.8) by xk+1. Since

subspace optimization will not cause a zero component in A(xk) to become nonzero and I(xk+1) ⊂ I(xk),

it follows that

ϕµ(x
k+1) := µsgn(xkIk)⊤xk+1

Ik + f(xk+1) ≡ µsgn(xk+1
Ik+1)

⊤xk+1
Ik + f(xk+1) =: ψµ(x

k+1).

Hence, if we use a decent method to solve (4.8), xk+1 will satisfy ϕµ(x
k+1) ≤ ϕµ(x

k), and we can guarantee

that there exists at least a sub-sequence generated by the abstract Algorithm 1 that converges. We terminate

subspace optimization if the norm of the projected gradient PΩk(∇ϕ(xk+1)) is small or the relative change

of the objective function value between two consecutive iterations is small.

If the active sets provided to two subspace optimizations are identical, we refer to this as a cycle. It is

hard to detect a cycle in practice unless we store all of the support sets that have been supplied to subspace

optimization. However, it is easy to check if there is a cycle between two consecutive subspace optimizations.

In such a case, we do not start a second subspace optimization and continue doing the iterative shrinkage.

4.1. Identification of the active set and measures of optimality. The efficiency of our active

set algorithm depends how fast and how well the active set is identified. Assume that the sequence {xk}

converges to x∗. Then there exists a finite number k̄ > 0 so that for all k > k̄, sgn(xki) = sgn(x∗i) for all

i ∈ I(x∗) and |xki | < ǫ for all i ∈ A(x∗), if 0 < ǫ < min{|x∗i |,∀i ∈ I(x
∗)}. The true nonzero components that

are not too small in magnitude can easily be identified. However, the true zero components may be nonzero

after many iterations in practice. Hence, the size of the subspace optimization problem which equals the size

of the support I(xk) can be quite large. One approach is to replace the active set A(xk) and the support

I(xk) by the sets

(4.12) A(xk, ξk) := {i ∈ {1, · · · , n} | |xki | ≤ ξk}, I(xk, ξk) := {i ∈ {1, · · · , n} | |xki | > ξk},

10

where ξk > 0.

The threshold ξk in (4.12) can be simply set to a number ξ̄m that is approximately equal to the machine

accuracy. We now present some criteria for checking optimality which can also be used to choose the value

of ξk. Let A(xk, ξk) be divided into two sets

(4.13) A±(xk, µ, ξk) := {i ∈ A(x, ξk) | |g
k
i | < µ} and A0(x

k, µ, ξk) := {i ∈ A(xk, ξk) | |g
k
i | ≥ µ}.

Then the value

(4.14) χ(xk, µ, ξk) := ‖(|gk| − µ)I(xk,ξk)∪A0(xk,µ,ξk)‖

is a measure of the violation of the first-order optimality conditions (4.3), since χ(x∗, µ, 0) = 0 follows

from the fact that |g∗i | = µ for i ∈ A0(x
∗, µ, 0). Suppose that x∗ satisfies (4.3). Then the complementary

conditions x∗i (|g∗i | − µ) = 0,∀i ∈ {1, · · · , n} also have to be satisfied. Hence,

(4.15) ζk = ‖xki · (|g
k
i | − µ)‖

provides a measure of the violation of the complementary conditions at the point xk.

To calculate ξk, we use an identification functions

(4.16) ρ(xk, ξk) :=
√
χ(xk, µ, ξk) + ζk

proposed in [27] for nonlinear programming that is based on the amount that the current iterate xk violates

the optimality conditions for (1.4). Specifically, we set the threshold ξk initially to ξ0 = ξ̄m, and then update

it as

(4.17) ξk+1 := min
(
max

(
η2ρ(x

k, ξk), ξ̄m
)
, ‖xk+1‖1/n

)
,

where 0 < η2 < 1. Note that, inequality ξk+1 ≥ ‖xk+1‖1/n ensure that I(xk+1, ξk+1) 6= ∅.

Since the cardinality of the estimate of the support |I(xk, ξk)| can be greater than m, we check if

|I(xk, ξk)| ≤ m before doing subspace optimization. If |I(xk, ξk)| > m, we set ξk to be |x(Π)| and recalculate

the set I(xk, ξk), where x(Π) is the component of xk with the Π-th largest magnitude and 1 ≤ Π ≤ m.

5. The continuation (homotopy) strategy. A continuation (homotopy) procedure sets up an easy

problem and gradually transforms it into the original one, creating a path of solutions that converges to the

solution of the original problem. Solving the intermediate problems usually is cheaper and this path often

provides a good initial point for solving the original problem. Hence, the performance of the basic iterative

shrinkage iteration (2.2) can be improved by this strategy. However, we only follow this path inexactly due

to the computational cost.

We now describe in detail our method for updating µk. First, we check whether the zero vector 0

satisfies the first-order optimality conditions (4.3) or not. If the inequality ‖g(0)‖∞ ≤ µ holds, the zero

vector is a stationary point. Otherwise, the initial µ0 is chosen to be γ1‖g(0)‖∞, where 0 < γ1 < 1. For

each intermediate value of µ, our algorithm needs only to compute x(µ) approximately before decreasing

µ. Specifically, at the end of iteration k, the next parameter µk+1 is set to a value smaller than µk if for

11

ǫx ∈ (0, 1) the point xk satisfies the scaled condition

(5.1) χ(xk, µk, ξk) ≤ ǫx max(‖xk‖2, 1)

which implies that xk is a good estimate of the solution of the problem minx∈Rn ψµk
(x). If xk is a solution

to the subspace optimization problem, we update µk+1 even if the condition (5.1) does not hold. A heuristic

strategy for this update is to set

µk+1 = γ1‖gA(xk,µk,ξk)‖∞,

since by (4.3) the norm ‖gA(xk)‖∞ converges to a number less than or equal to µ as xk converges to a

stationary point x∗. A fixed fractional reduction of µk is also enforced to make sure that continuation will

terminate after a finite number of steps. Since the parameter should not be less than µ, we use in our

algorithm the updating formula

(5.2) µk+1 = max(γ1 min(‖gA(xk,µk,ξk)‖∞, µk), µ).

6. The complete algorithm and default parameter values. The complete pseudo-code for our

algorithm FPC AS (fixed-point continuation active set) is presented in Algorithm 4 below. FPC AS uses

around a dozen parameters, the values of only a few of which are critical to its convergence and performance.

The threshold ξ̄m = 10−10 is used to calculate ξk in (4.12). The index for the hard truncation is Π = m/2.

It is generally fine to use these default values for ξ̄m and Π for most CS problems. However, in order to

improve the performance of FPC AS on relatively easy CS problems, one can let ξ̄m be as large as one

thousandth of the smallest magnitude of the nonzero entries of the solution and Π be slightly more than the

number of nonzeros in the solution if the quantities or their approximate values are known. The values of

parameters related to the activation of subspace optimization are also critical to the performance of FPC AS.

We found that FPC AS is generally efficient with the values δ = 10 and γ2 = 10. The factor to reduce the

weight µk in continuation is γ1 = 0.1. The following parameter values are important but less critical. The

parameter values for the nonmonotone line search, η = 0.85 and σ = 10−3, are taken from [67]. The maximal

and minimal values of the step size for shrinkage are set to λm = 10−4 and λM = 103, respectively. The

termination rules are χ(xk+1, µ, ξk) ≤ ǫ or χ(xk+1, µ, ξk) ≤ ǫx max(‖xk+1‖, 1). The second inequality is

especially useful when the magnitude of the solution is large. Default values for ǫ, ǫx, ǫg are 10−6, 10−12

and 10−6, respectively, for noiseless data. We also terminate FPC AS if the relative change of the objective

function value between two consecutive iterations corresponding to the final µ is smaller than ǫf = 10−20.

7. Numerical Results. In order to demonstrate the effectiveness of the active-set algorithm FPC AS

(version 1.1), we tested it on three different sets of problems and compared it with the state-of-the-art codes

FPC (version 2.0) [34], spg bp in the software package SPGL1 (version 1.5) [4], and CPLEX [36] with a

MATLAB interface [1].

In subsection 7.1, we compare FPC AS to FPC, spg bp, and CPLEX for solving the basis pursuit problem

(1.2) on a set of “pathological” problems with large dynamic ranges. We note that we are able to solve these

problems using CPLEX because they are “small”. Three CPLEX solvers are tested; they include the primal

simplex method cplex pp, the dual simplex method cplex dp, and the barrier method cplex ip, all of which

were applied to a linear programming formulation of (1.2). In subsection 7.2, FPC AS is compared to spg bp

on various types of synthetic compressive sensing problems. FPC and CPLEX are not included in this

12

Algorithm 4: FPC AS Algorithm

Initialization: Set µ > 0. Choose x0 and set parameters 0 < λm < λM <∞, 0 < σ < 1, ξ̄m > 0,
ǫ, ǫx, ǫf , ǫg > 0, δ > 1, 0 < η < 1, 0 < γ1 < 1, γ2 > 1, 1 ≤ Π ≤ m. Set Isp = ∅. Set µ0 = γ1‖g(0)‖∞.
Set C0 = ψµ(x

0), Q0 = 1, and ξ0 = ξ̄m.
for k = 0, 1, · · · do

begin

S1 Compute a step size for shrinkage: Set λk = max
{
λm,min

{
(sk−1)⊤sk−1

(sk−1)⊤yk−1 , λM

}}

S2 Compute a search direction by shrinkage: Set xk+1 = S(xk − λkgk, µkλ
k) and dk = xk+1 − xk.

S3 Do a line search: Compute ∆k = (gk)⊤dk + µk(‖xk+1‖1 − ‖xk‖1) and set αk = 1.
if ψµk

(xk+) > Ck + σαk∆
k then

Compute αk = arg minα∈[0,1] µk‖x
k + αdk‖1 + f(xk + αdk) or select αk satisfying the

non-monotone Armijo conditions (3.7).
Set xk+1 = xk + αkd

k

Set Qk+1 = ηQk + 1, Ck+1 = (ηQkCk + ψµ(x
k+1))/Qk+1.

S4 Compute measures of optimality:

Calculate the sets I(xk+1, ξk) and A(xk+1, ξk) by (4.12). Update the threshold ξk+1 by
(4.17).

S5 if χ(xk+1, µ, ξk) ≤ ǫ or χ(xk+1, µ, ξk) ≤ ǫx max(‖xk+1‖, 1) then return the solution
S6 Check rules for doing subspace optimization:

if Isp = I(xk+1, ξk) then
set do sub = ”false”

else if
λk‖gk+1

I(xk+1,ξk)
‖

‖dλk‖2
> δ and χ(xk+1, µk, ξk) ≤ ǫg max(‖xk+1‖, 1) then

set do sub = ”true”. Set δ = γ2δ.

else if
|ψk+1

µk
−ψk

µk
|

max(|ψk
µk

|,|ψk+1
µk

|,1)
≤ ǫf then set do sub = ”true”.

else set do sub = ”false”.
end

S7 Do Sub-optimization:

if “do-sub” = “true” then
if |I(xk+1, ξk)| > m then do hard truncation:

Set ξk = |xk+1
(Π) | and recalculate the set I(xk+1, ξk), where xk+1

(Π) is the component with

the Π-th largest magnitude of xk+1.
Set Isp = I(xk+1, ξk).
Solve the subspace optimization problem (4.9) or (4.8) to obtain a solution xk+1.
if χ(xk+1, µ, ξk) ≤ ǫ or χ(xk+1, µ, ξk) ≤ ǫx max(‖xk+1‖, 1) then return the solution

S8 Do continuation:

if (χ(xk+1, µk, ξk) ≤ ǫx max(‖xk+1‖, 1) or “do-sub” = “true”) and µk > µ then
Compute µk+1 = max(γ1 min(‖gA(xk+1,ξk)‖∞, µk), µ). Set δ = δ0.

Set Ck+1 = ψµ(x
k+1), Qk+1 = 1.

else Set µk+1 = µk.

comparison because they take too long to solve all problems. In subsection 7.3, FPC AS is compared to

spg bp and FPC on the problem of recovering real medical images. It is important to point out that these

comparisons are not meant to be a rigorous assessment of the performance of the solvers tested, as this would

require very careful handling of subtle details such as parameter tuning and comparable termination criteria,

and would be outside the scope of this paper. In addition, a comparison can quickly be out of date since

the solvers are continuously improved. The purpose of these comparisons is to demonstrate that FPC AS is

a practical solver for compressive sensing problems.

13

Our comparison used three different versions of FPC AS: FPC AS CG – the default version that uses

the linear conjugate gradient method (CG) to solve the unconstrained subspace optimization problem (4.9),

FPC AS LB – which uses the limited-memory quasi-Newton method (L-BFGS) to solve (4.9), FPC AS BD –

which uses L-BFGS-B [68] through the MATLAB wrapper [50] to solve the bound constrained subspace

optimization problem (4.8). The default storage number, an important parameter of L-BFGS and L-BFGS-

B, is set to 5 and the maximum number of iterations for each call is 50. Other critical parameters of all

solvers are reported in each subsection because they vary with the type of problem. We note however, that

all of our numerical results for FPC AS were obtained with all parameters set at their default values except

for µ, ǫ and ǫx. The main parts of FPC AS , FPC, and spg bp were written in MATLAB, and all tests

described in this section were performed on a Dell Precision 670 workstation with an Intel Xeon 3.4GHZ

CPU and 6GB of RAM running Linux (2.6.9) and MATLAB 7.3.0.

We measured performance by CPU time, relative error, the ℓ1-norm of the recovered solution, the ℓ2-

norm of the residual, the number of matrix-vector products, as well as the difference between the number of

nonzeros in the recovered and exact solutions. In the tables in this section, “CPU” denotes CPU seconds,

“rel.err” denotes the relative error between the recovered solution x and the exact sparsest solution x̄, i.e.,

rel.err = ‖x−x̄‖
‖x̄‖ , ‖x‖1 denotes the ℓ1-norm of the recovered solution x, ‖r‖2 := ‖Ax− b‖ denotes the l2-norm

of the residual, and nMat denotes the total number matrix-vector products involving A or A⊤. We also use

“nnzx” to denote the number of nonzeros in x which we estimate (as in [5]) by the minimum cardinality of

a subset of the components of x that account for 99.5% of ‖x‖1, i.e.,

(7.1) nnzx := min

{
|Ω| :

∑

i∈Ω

|xi| > 0.995‖x‖1

}
= min

{
k :

k∑

i=0

|x(i)| ≥ 0.995‖x‖1

}

where x(i) is the i-th largest element of x in magnitude, i.e., |x(1)| ≥ · · · ≥ |x(n)|. This measure is used

because solvers often return solutions with the tiny but nonzero entries that can be regarded as zero. In

order to compare the supports of x and x̄, we first remove tiny entries of x by setting all of its entries with a

magnitude smaller than 0.1|x̄m| to zero, where x̄m is the smallest entry of x̄ in magnitude, and then compute

the quantities “sgn”, “miss” and “over”, where “sgn”:= |{i, xix̄i < 0}| denotes the number of corresponding

entries of x and x̄ that are both nonzero but have opposite signs, “miss” := |{i, xi = 0, x̄i 6= 0}| denotes

the number of zero entries in x with a corresponding nonzero entry in x̄, and “over”:= |{i, xi 6= 0, x̄i = 0}|

denotes the number of nonzero entries in x with a corresponding zero entry in x̄. If x matches x̄ in term of

support and sign, the values of “sgn”, “miss” and “over” should all be zero.

7.1. Recoverability for some “pathological” problems. In order to demonstrate the robustness of

FPC AS we tested it on a set of small-scale, “pathological” problems. Only the performance of FPC AS CG

is reported because FPC AS LB and FPC AS BD performed similarly. The first test set includes four prob-

lems CaltechTest1, CaltechTest2, CaltechTest3 and CaltechTest4 [11], which are “pathological” because the

magnitudes of the nonzero entries of the exact solutions x̄ lie in a large range, i.e., the largest magnitudes

are significantly larger than the smallest magnitudes. The characteristics of these problems are summarized

in Table 7.1, in which the last column gives the distinct orders of magnitudes Oi of the nonzeros entries in

x̄, as well as the number of elements Ni of x that are of order of magnitude Oi in the form of (Oi, Ni) pairs.

For example, for the problem CaltechTest3, “(10−1, 31), (10−6, 1)” means that there are thirty-one entries

in x̄ with a magnitude of 10−1 and one entry with a magnitude of 10−6. Such “pathological” problems

are exaggerations of a large number of realistic problems in which the signals have both large and small

14

Table 7.1

Problem information

Problem n m K (magnitude, num. of elements on this level)
CaltechTest1 512 128 38 (105, 33), (1, 5)
CaltechTest2 512 128 37 (105, 32), (1, 5)
CaltechTest3 512 128 32 (10−1, 31), (10−6, 1)
CaltechTest4 512 102 26 (104, 13), (1, 12), (10−2, 1)

Ameth6Xmeth2K150 1024 512 150 (1, 150)
Ameth6Xmeth2K151 1024 512 151 (1, 151)

Fig. 7.1. Recovered solutions of “Ameth6Xmeth2K150”

0 200 400 600 800 1000 1200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n
lo

g−
sc

ca
le

Level: 1.0e−03

x on T

x on Tc

x*

(a) FPC AS CG

0 200 400 600 800 1000 1200
10

−3

10
−2

10
−1

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n
lo

g−
sc

ca
le

Level: 1.0e−03

x on T

x on Tc

x*

(b) FPC

0 200 400 600 800 1000 1200

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n
lo

g−
sc

ca
le

Level: 1.0e−03

x on T

x on Tc

x*

(c) spg bp

entries. The second test set includes two problems Ameth6Xmeth2K150 and Ameth6Xmeth2K151. Prob-

lem “Ameth6Xmeth2K150” is obtained by fixing the first nonzero component of the signal x̄ in problem

“Ameth6Xmeth2K151” to zero. These two problems are difficult because the numbers of nonzero elements

in their solutions are around the limit of where the l0-minimization problem (1.1) is equivalent to the basis

pursuit problem (1.2). The coefficient matrix A here is the partial discrete cosine transform (DCT) matrix

whose m rows were chosen randomly from the n× n DCT matrix.

We compared the results from FPC AS CG with the results from the solver FPC and the solver spg bp. We

set the termination criteria sufficiently small for each solver. Specifically, we set the parameters xtol = 10−10,

gtol = 10−8 and mxitr = 2 ∗ 104 for FPC, the parameters bpTol = 10−10, optTol = 10−10, decTol = 10−10

and iteration = 104 for spg bp and the parameters µ = 10−10, ǫ = 10−12 and ǫx = 10−16 for FPC AS CG.

All other parameters of each solver were set to their default values. The termination criteria are not directly

comparable due to the different formulations of the problems used by the solvers, but we believe that on

average the chosen criteria for FPC AS CG is tighter than those of the other two solvers.

A summary of the computational results for all of the six problems is presented in Table 7.2. From

that table, the superiority of FPC AS CG is obvious on this set of problems. For the first five problems, the

solutions of the basis pursuit problem (1.2) are the same as the sparsest signal x̄ if we trust the solutions

obtained by CPLEX. It is interesting that FPC AS CG is faster than the three variants of CPLEX on all of

the first five problems with all four codes achieving comparable accuracy. This is most obvious on problem

“Ameth6Xmeth2K150”, on which FPC AS CG exhibited an approximately 30-fold improvement in terms

of CPU time over the fastest variant cplex dp of CPLEX. FPC AS CG also performs significantly better

than FPC and spg bp in terms of both CPU time and the total number of matrix-vector products on these

problems. Both FPC and spg bp failed to identify the sparsest solution of “Ameth6Xmeth2K150” and the

corresponding recovered solutions are depicted in Figure 7.1. Adjusting other parameters of FPC and spg bp

might give better results, but that is outside the scope of this paper.

15

Table 7.2

Computational results for the difficult problems. The matrices A are constructed explicitly by the command “dctmtx” of
MATLAB for all of the solvers.

Problem solver CPU(sec.) rel.err ‖x‖1 ‖r‖2 nMat nnzx (sgn,miss,over)
CaltechTest1 FPC AS CG 0.105 5.04e-12 3.300e+06 1.67e-09 441 33 (0, 0, 0)

FPC 12.048 3.09e-06 3.300e+06 1.78e-01 40001 33 (0, 0, 18)
spg bp 11.552 3.34e-06 3.300e+06 3.63e-03 29733 33 (0, 0, 29)

cplex pp 0.245 5.10e-12 3.300e+06 8.87e-10 33 (0, 0, 0)
cplex dp 0.302 5.52e-12 3.300e+06 1.04e-08 33 (0, 0, 0)
cplex ip 0.778 5.18e-12 3.300e+06 5.34e-09 33 (0, 0, 0)

CaltechTest2 FPC AS CG 0.102 7.44e-14 3.200e+06 1.75e-09 322 32 (0, 0, 0)
FPC 12.204 8.57e-08 3.200e+06 9.56e-03 40001 32 (0, 0, 0)

spg bp 11.227 8.47e-10 3.200e+06 3.71e-06 29238 32 (0, 0, 0)
cplex pp 0.258 1.91e-13 3.200e+06 7.05e-10 32 (0, 0, 0)
cplex dp 0.245 2.27e-13 3.200e+06 4.68e-09 32 (0, 0, 0)
cplex ip 0.857 3.79e-13 3.200e+06 6.95e-10 32 (0, 0, 0)

CaltechTest3 FPC AS CG 0.067 1.51e-09 6.200e+00 1.26e-09 249 31 (0, 0, 0)
FPC 11.471 3.54e-05 6.200e+00 9.18e-06 40001 31 (0, 1, 46)

spg bp 6.685 4.31e-09 6.200e+00 9.99e-11 17346 31 (0, 0, 0)
cplex pp 0.217 4.56e-09 6.200e+00 1.21e-13 31 (0, 0, 0)
cplex dp 0.175 4.56e-09 6.200e+00 1.45e-13 31 (0, 0, 0)
cplex ip 0.547 4.56e-09 6.200e+00 1.47e-13 31 (0, 0, 0)

CaltechTest4 FPC AS CG 0.131 5.75e-13 1.300e+05 3.51e-09 498 13 (0, 0, 0)
FPC 11.255 1.60e-07 1.300e+05 1.11e-03 40001 13 (0, 0, 0)

spg bp 8.330 3.77e-12 1.300e+05 3.81e-10 22824 13 (0, 0, 0)
cplex pp 0.141 1.24e-13 1.300e+05 3.28e-11 13 (0, 0, 0)
cplex dp 0.182 2.82e-13 1.300e+05 3.13e-11 13 (0, 0, 0)
cplex ip 0.548 2.64e-13 1.300e+05 3.96e-11 13 (0, 0, 0)

Ameth6Xmeth2K150 FPC AS CG 0.362 7.25e-10 1.500e+02 2.26e-09 448 150 (0, 0, 0)
FPC 60.765 4.84e-01 1.414e+02 3.42e-01 40001 424 (0, 1, 170)

spg bp 50.670 4.29e-01 1.500e+02 5.34e-03 29346 452 (0, 0, 167)
cplex pp 19.815 1.02e-12 1.500e+02 1.30e-12 150 (0, 0, 0)
cplex dp 11.053 9.70e-13 1.500e+02 1.41e-12 150 (0, 0, 0)
cplex ip 22.062 2.73e-12 1.500e+02 3.62e-12 150 (0, 0, 0)

Ameth6Xmeth2K151 FPC AS CG 0.377 7.45e-10 1.510e+02 2.27e-09 446 151 (0, 0, 0)
FPC 61.872 4.77e-01 1.487e+02 8.74e-02 40001 451 (0, 1, 181)

spg bp 52.293 4.86e-01 1.508e+02 4.68e-03 29704 461 (0, 1, 190)
cplex pp 19.536 4.85e-01 1.509e+02 9.40e-14 460 (0, 1, 189)
cplex dp 11.828 4.85e-01 1.509e+02 9.40e-14 460 (0, 1, 189)
cplex ip 23.398 4.85e-01 1.509e+02 9.40e-14 460 (0, 1, 189)

The solutions obtained by CPLEX in Table 7.2 show that the solution of the basis pursuit version

(1.2) of problem “Ameth6Xmeth2K151” is not sparse. The minimum objective function value obtained by

all CPLEX variants was 150.9 implying that the minimal objective value of (1.2) is 150.9. This is pretty

close to but not equal to the cardinality 151 of the sparse solution x̄. Hence the equivalence between (1.1)

and (1.2) does not hold for this example. This partly explains why it is difficult to recover the solution to

“Ameth6Xmeth2K150” since there is only one element in the original signals x̄ of these two examples that is

different. However, FPC AS CG is able to find the sparse solution successfully because of the hard truncation

that is applied before subspace optimization if the iterate is not sparse. Since FPC AS CG will eventually fail

to recover a sparse solution if the exact minimum of the l0-minimization problem is not sparse, we investigate

the recoverability success of FPC AS CG and cplex pp with respect to Gaussian sparse signals and zero-one

sparse signals, by using a partial DCT matrix with n = 256 and m = 128. Figure 7.2 depicts the empirical

frequency of exact reconstruction. The numerical values on the x-axis denote the sparsity level K, while

the numerical values on the y-axis represent the reconstruction rate, i.e., the fraction of 500 instances that

are recovered with a relative error less than 10−2. From the figure, we observe that for Gaussian signals,

FPC AS CG was able to continue recovering sparse signals even after the equivalence between the ℓ0- and

ℓ1-minimization problems started to break down as cplex started to find non-sparse solutions. We will further

16

Fig. 7.2. Reconstruction rate (500 replications): m = 128, n = 256

10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

F
re

qu
en

cc
y

of
 E

xa
ct

 R
ec

on
st

ru
ct

io
n

cplex_pp
FPC_AS

(a) Gaussian signals: FPC AS CG is able to recover the
sparse solution until K ≥ 41, while the comparison
with cplex pp indicates that the equivalence between
the ℓ0 and ℓ1 minimization problems begins to break
down when K ≥ 35.

10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

F
re

qu
en

cc
y

of
 E

xa
ct

 R
ec

on
st

ru
ct

io
n

cplex_pp
FPC_AS

(b) zero-one signals: both FPC AS CG and cplex pp

start to fail to reconstruct the signal when K ≥ 29.

explain this phenomenon in Remark 7.1.

Remark 7.1. The solution of the ℓ1-regularized problem (1.4) should be close to the minimizer of the BP

problem (1.2) if µ is small enough from the theory of penalty functions. However, due to the hard truncation

in Step S7 of Algorithm 4, FPC AS can return a different solution than a minimizer of (1.2) when the

latter is not sufficiently sparse, as is demonstrated by the last problem in Table 7.2. We introduced this hard

truncation heuristic based on two observations from our experiments. First, this strategy can make FPC AS

run significantly faster on problems with sparse solutions. Second, it frequently enhances the algorithm’s

ability in recovering sparse signals even after the equivalence between ℓ0- and ℓ1-optimizations no longer

holds, as is demonstrated by Figure 7.2(a).

7.2. Quality of Compressed Sensing Reconstruction. In this subsection, we evaluate the suit-

ability of FPC AS for compressive sensing on some randomly generated problems. Given the dimension of

the signal n, the number of observations m and the number of nonzeros K, we generated a random matrix

A and a random vector x̄ as follows. First, the type of matrix A was chosen from:

Type 1: Gaussian matrix whose elements are generated from i.i.d normal distributions N (0, 1);

Type 2: Orthogonalized Gaussian matrix whose rows were orthogonalized using a QR decomposition;

Type 3: Bernoulli matrix whose elements are generated from +/− 1 distribution;

Type 4: Hadamard matrix H which is a matrix of 1’s and -1’s whose columns are orthogonal;

Type 5: Partial discrete cosine transform matrix.

We randomly selected m rows from these matrices to construct the matrix A. To avoid potential numerical

issues, we scaled the matrix A constructed from matrices of types 1, 3 and 4 by the largest eigenvalue of

AA⊤. To generate the signal x̄, we first generated the support by randomly selecting K indices between 1

and n, and then assigned a value to xi for each i in the support by one of the following eleven methods:

Type 1: a normally distributed random variable (Gaussian signal);

Type 2: a uniformly distributed random variable in (-1,1);

Type 3: one (zero-one signal);

Type 4: the sign of a normally distributed random variable;

17

Table 7.3

Robustness results for the exact data

Solver nMat (≤ 103) ‖r‖2 (≤ 10−6) rel.err (≤ 10−8)
num. per. num. per. num. per.

FPC AS CG 329 99.70 330 100.00 329 99.70
FPC AS LB 328 99.39 330 100.00 329 99.70
FPC AS BD 295 89.39 330 100.00 327 99.09

spg bp 171 51.82 320 96.97 264 80.00

Type 5,6,7,8: Type 1, 2, 3, 4 scaled by 105, respectively

Type 9: Type 4 but half of the elements in the support are scaled by 105;

Type 10: a signal x with power-law decaying entries (also known as compressible sparse signals) whose

components satisfy |xi| ≤ cx · i
−p, where we take cx = 105 and p = 1.5.

Type 11: a signal x with exponentially decaying entries whose components satisfy |xi| ≤ cx · e
−pi, where

we take cx = 1 and p = 0.005.

Finally, the observation b was computed as b = Ax̄. The matrices of types 1, 2, 3 and 4 were stored explicitly

and we tested signals with three different sizes n = 210, 211, 212. The matrices of type 5 were stored implicitly

and we tested signals with three different sizes n = 210, 212, 215. Given n, we set the number of observations

m = n/2 and the number of nonzeros K = round(ρm) for ρ = 0.2 and 0.3. The above procedure gave us a

total of 330 problems.

Since spg bp has been proved to be robust in many different applications [5], we continue to compare

FPC AS with spg bp in this subsection. We set the parameters bpTol = 10−8, optTol = 10−8 and decTol =

10−8 for spg bp and the parameters µ = 10−10, ǫ = 10−12 and ǫx = 10−16 for the three variants of FPC AS.

All other parameters of each solver were set to their default values.

We present several statistics on robustness of these solvers in the Table 7.3. In the second column, we

present the number (num.) and percentage (per.) of the problems that were solved within 1000 matrix-vector

products by each solver. We present the number and percentage of problems for which the norms of the

computed residual were less than 10−6 and the relative errors between the solution x and the exact sparsest

solution x̄ were less than 10−8, in the third and fourth column, respectively. The active-set algorithms

required less matrix-vector products to achieve a higher reconstruction rate than spg bp on average.

We now illustrate the numerical results using the performance profiles as proposed in [20]. These profiles

provide a way to graphically present the comparison of the quantities tp,s, such as the number of iterations

or required CPU time, obtained for each problem p and each solver s. Define rp,s to be the ratio between

the quantity tp,s obtained on problem p by solver s over the lowest such quantity obtained by any of the

solvers on problem p, i.e.,

rp,s :=
tp,s

min{tp,s : 1 ≤ s ≤ ns}
.

Whenever solver s fails to solve problem p, the ratio rp,s is set to infinity or some sufficiently large number.

Then

πs(τ) :=
number of problems where log2(rp,s) ≤ τ

total number of problems
, τ ≥ 0,

is the fraction of the test problems that were solved by solver s within a factor 2τ ≥ 1 of the performance

obtained by the best solver. The performance plots present πs for each solver s as a function of τ .

18

Table 7.4

Robustness results for the noisy data

Solver nMat (≤ 103) ‖r‖2 (≤ 10−4) rel.err (≤ 10−2)
num. per. num. per. num. per.

FPC AS CG 327 99.09 283 85.76 278 84.24
FPC AS LB 309 93.64 301 91.21 278 84.24
FPC AS BD 291 88.18 309 93.64 280 84.85

spg bp 193 58.48 194 58.79 246 74.55

A performance plot for the CPU time is presented in Figure 7.3(a). All three variants of the active-

set algorithm appear to be faster than spg bp. A performance plot for the total number of matrix-vector

products involving A or A⊤ is presented in 7.3(b). The variant FPC AS CG requires overall fewer matrix-

vector products for the given test set. Figure 7.3(c) presents a performance plot for the ℓ1-norm ‖x‖1 achieved

by each solver. It shows that the objective function values obtained by all four solvers are essentially identical.

Figure 7.3(d) compares the l2-norms of the residual ‖r‖2 obtained by the solvers. Figure 7.3(e) presents a

comparison of the ratio of the number of nonzero components recovered over the number of the nonzero

components in the sparsest solution. Here, as in Figure 7.3(c), there appears to be no discernable difference

between these solvers. The relative error between the recovered solution and the exact solution is depicted in

Figure 7.3(f). On this measure, FPC AS CG and FPC AS BD seem to perform better than the other solvers.

Since real problems usually are corrupted by noise, we tested the recoverability of each solver on the

same data set after adding Gaussian noise. Specifically, we let

b = A(x̄+ ǫ1) + ǫ2,

where ǫ1 and ǫ2 are vectors whose elements are i.i.d distributed as N(0, σ2
1) and N(0, σ2

2), respectively. Here

σ1 = 10−3 and σ2 = 10−3. In this test, we required less accurate solutions of problem (1.4) due to the noise.

We set the parameters bpTol = 10−4, optTol = 10−4 and decTol = 10−4 for spg bp and the parameters

µ = 10−10, ǫ = 10−6 and ǫx = 10−12 for the three variants of FPC AS. Our computational results are

summarized in Table 7.4 which displays similar patterns to Table 7.3. We present the performance profiles

in Figure 7.4 which show that the active-set family took less CPU time and fewer matrix-vector products to

obtain smaller residuals and relative errors. In particular, FPC AS BD seems to be the most robust in the

sense that it obtained solutions with the smallest relative error.

Finally, we present some statistics on the performance of the three FPC AS variants. For each problem,

let “nSubOpt” denote the number of sub-optimizations and “nCont” denote the number of continuations

called by the active-set algorithm. The mean and standard deviation of “nSubOpt” and “nCont” over all of

the randomly generated problems are reported in the second and third columns of Table 7.5, respectively.

The average number of continuations is approximately 4 and 6 in the exact case and in the noisy case,

respectively, for all variants. The average number of subspace optimizations is greater than the average

number of continuations. The percentages of the matrix-vector products spent on various tasks in the

shrinkage and subspace optimization stages, are also presented. The mean and standard deviation of these

percentages for the two stages are reported in the fourth and fifth columns of Table 7.5, respectively. It is

obvious that most of the matrix-vector products are spent on solving subspace optimization in the exact

case. Since the solutions of problems with noisy data may not be sparse, a highly accurate solution of the

ℓ1-regularized problem might not be better than an approximate solution with a low accuracy. Hence, how

to choose a proper termination rule is an important issue.

19

Fig. 7.3. Performance profiles for exact data

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

cpu

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(a) cpu

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nMat

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(b) nMat

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nrmx

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(c) ‖x‖1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nrmr

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(d) ‖r‖2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nnzx

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(e) nnzx

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

relerr

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(f) rel.err

We conclude this subsection with some comments and observations, based on Figures 7.3 and 7.4, Tables

7.2, 7.3, 7.4 and 7.5.

1. The three variants of FPC AS performed very robustly and efficiently on the set of randomly gen-

erated compressive sensing problems described in this paper. FPC AS CG was the fastest variant in

terms of CPU time and matrix-vector products while FPC AS BD was more robust than FPC AS CG

in terms of relative errors. This shows that restricting the signs of the solution in the subspace op-

timization problem by adding the bound constraints in (4.8) might be helpful.

20

Fig. 7.4. Performance profile for noisy data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

cpu

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(a) cpu

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nMat

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(b) nMat

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nrmx

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(c) ‖x‖1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nrmr

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(d) ‖r‖2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

nnzx

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(e) nnzx

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

relerr

FPC_AS_CG
FPC_AS_LB
FPC_AS_BD
spg_bp

(f) rel.err

2. The conjugate gradient method (CG) can be less efficient if the columns selected from the matrix A

in the subspace optimization problem are or almost are linearly dependent. This kind of potentially

ill-conditioned system might cause trouble to the CG method. (We should point out that the function

“PCG” in MATLAB (version 2008a or earlier) computes two matrix-vector products at each iteration

while only one of such product is needed. This bug has been corrected in our implementation of

“CG”.)

3. The iterative shrinkage scheme is able to identify the signs of the components of x fairly quickly for

21

Table 7.5

Statistics of the variants of FPC AS

Exact data
Solver nSubOpt nCont nMat in Shrinkage (per.) nMat in Sub-Opt (per.)

mean std. mean std. mean std. mean std.
FPC AS CG 3.66 2.12 3.37 2.08 0.39 0.06 0.61 0.07
FPC AS LB 3.98 2.53 3.57 2.17 0.38 0.08 0.61 0.08
FPC AS BD 4.95 3.71 3.83 2.15 0.36 0.12 0.64 0.13

Noisy data
Solver nSubOpt nCont nMat in Shrinkage (per.) nMat in Sub-Opt (per.)

mean std. mean std. mean std. mean std.
FPC AS CG 6.49 4.40 6.19 1.83 0.57 0.12 0.43 0.12
FPC AS LB 7.93 8.43 6.34 1.91 0.59 0.12 0.41 0.13
FPC AS BD 6.16 4.28 5.85 1.57 0.37 0.10 0.63 0.10

a fixed µk but it can take a lot of iterations to recover their magnitudes. On the contrary, subspace

optimization depends on a good active set and is able to recover the magnitude of the xi fairly well

by applying second-order methods. Our active-set algorithms combines the good features of these

two different schemes.

4. From our limited numerical experience, FPC AS performs better than the fixed-point solver FPC

[33]. It also performs better than some other solvers like the projected gradient solver GPSR [29]

and the interior-point algorithm ℓ1 ℓs [37] on the test problems in this paper. A comparison with

greedy algorithms would also be very interesting. We did not include these comparisons to keep the

length of the paper within bounds.

7.3. Realistic Examples. In this subsection, we demonstrate the efficiency of FPC AS CG for solving

the l1-regularized problem on six images: a Shepp-Logan phantom available through the Matlab Image

Processing Toolbox, and five medical images (three MRI’s and two CT scans) in the public domain. These

signals have relatively sparse representations in Haar wavelets; that is, there exists an x∗ ∈ R
n such that

z = Wx∗ for a true signal z ∈ R
n, where W ∈ R

n×n is the Haar wavelet basis and x∗ is approximately sparse.

The measurements are constructed as b = Āz, where Ā ∈ R
m×n is the partial discrete cosine transformation

and the number of observations m = τn with τ = m/n = 0.25, 0.50, 0.75. We then obtain approximate

wavelet coefficients x of z by solving the ℓ1-regularized problem (1.4) with A = ĀW and µ = 10−3. Finally,

we complete the recovery by computing ẑ = Wx. We compared FPC AS with FPC and spg bp. Since x∗ is

not really sparse and is corrupted by noise, we use a relative large termination criteria. We use the default

parameters for FPC and the parameters bpTol = 10−3, optTol = 10−3 and decTol = 10−3 for spg bp. For

FPC AS CG, we set the tolerances ǫ = 10−3, ǫx = 10−6 and the maximal iteration number for subspace

optimization to 10. The reconstruction results are summarized in Table 7.6. In this table, the relative error

is that between the true image z and the recovered image ẑ. FPC AS CG is considerably faster than FPC

and spg bp in terms of CPU time and the number of matrix-vector products to achieve comparable relative

errors except on “phantom” with τ = 0.75 (although it is still faster). The reconstructed images obtained

by FPC AS CG are depicted in Figure 7.5. In each row of Figure 7.5, the first image is the original image

with a caption stating its resolution. The second, third and fourth are recovered images with respect to

τ = 0.25, 0.5, 0.75, respectively, together with a caption stating the relative errors between the true image z

and the recovered image ẑ.

8. Conclusions. A two stage active-set algorithm with continuation for the ℓ1-norm regularized op-

timization is presented and tested. It starts with an easier problem and strategically applies a decreasing

22

Table 7.6

Statistics of recovering medical images

Problem FPC spg bp FPC AS CG

τ CPU nMat rel.err CPU nMat rel.err CPU nMat rel.err
ct thighs 0.25 45.78 403 5.7e-02 70.49 433 6.4e-02 16.30 130 5.9e-02
ct thighs 0.50 31.34 263 9.8e-03 71.21 394 1.0e-02 15.63 120 1.0e-02
ct thighs 0.75 17.60 147 3.2e-03 39.14 210 3.0e-03 11.28 81 3.9e-03
ct thorax 0.25 50.80 451 7.2e-02 79.86 494 7.5e-02 18.28 142 7.1e-02
ct thorax 0.50 37.06 315 1.9e-02 70.75 391 1.9e-02 16.63 126 2.0e-02
ct thorax 0.75 23.55 195 6.0e-03 60.98 325 6.2e-03 16.08 116 7.3e-03

mri abdomen 0.25 10.36 531 1.9e-01 18.64 606 2.1e-01 2.77 146 1.9e-01
mri abdomen 0.50 8.28 417 9.7e-02 17.93 519 9.7e-02 2.26 124 9.0e-02
mri abdomen 0.75 4.80 233 3.9e-02 11.74 322 4.0e-02 2.07 110 4.5e-02

mri brain 0.25 46.98 417 7.3e-02 98.50 606 7.8e-02 17.46 136 7.1e-02
mri brain 0.50 38.02 325 2.8e-02 72.28 400 3.0e-02 14.87 116 3.0e-02
mri brain 0.75 21.18 175 7.9e-03 65.19 336 8.3e-03 18.81 141 7.8e-03
mri pelvis 0.25 11.88 613 1.5e-01 15.26 501 1.5e-01 2.52 138 1.4e-01
mri pelvis 0.50 7.22 379 7.3e-02 10.94 327 7.4e-02 2.58 134 7.5e-02
mri pelvis 0.75 4.01 205 2.7e-02 9.14 258 3.1e-02 2.33 112 4.8e-02
phantom 0.25 3.47 799 3.6e-01 4.41 586 3.8e-01 1.04 136 3.6e-01
phantom 0.50 2.23 569 1.5e-01 3.72 506 1.6e-01 0.62 126 1.6e-01
phantom 0.75 1.06 259 2.7e-03 1.46 236 2.4e-03 0.58 116 4.1e-03

sequence of weights µk to the ℓ1-norm term in the objective to gradually transform this easier problem to the

given, more difficult problem with the prescribed regularization weight µ. Shrinkage is performed iteratively

until the support of the current point becomes a good estimate to the support of the solution corresponding

to the current weight. This estimate is used to define a subset of the solution domain over which a smaller

subspace optimization problem is solved to yield a relatively accurate point. Usually, after only a small

number of subproblems, a solution of high accuracy can be obtained. At each iteration of shrinkage in the

first stage, a search direction is generated along with an automatically adjusting step-size parameter λ, and

either an exact or an inexact line search is carried out to guarantee global convergence. In the second stage,

the subspace optimization problem has a simple objective and may include bound constraints to restrict the

signs of decision variables. The numerical results presented in section 7 demonstrate the effectiveness of the

algorithm for solving compressive sensing problems of varying difficulties.

In [62], we present a convergence analysis for the algorithm.

Acknowledgements. We want to thank Shiqian Ma, Lifeng Chen and Stephen Becker for their helpful

discussions and comments. We want to thank Elaine T. Hale for providing us the code for accessing the

medical images in subsection 7.3.

REFERENCES

[1] M. Baotic and M. Kvasnica, Cplexint - matlab interface for the cplex solver, 2006.

[2] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), pp. 141–148.

[3] J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, A ℓ1-unified variational framework for image restoration,

European Conference on Computer Vision, Prague, Lecture Notes in Computer Sciences 3024, (2004), pp. 1–13.

[4] E. v. Berg and M. P. Friedlander, SPGL1: A solver for large-scale sparse reconstruction, June 2007.

http://www.cs.ubc.ca/labs/scl/spgl1.

[5] E. v. Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, Tech. Rep. TR-2008-01,

Department of Computer Science, University of British Columbia, January 2008. To appear in SIAM J. Sci. Comp.

[6] J. Bioucas-Dias and M. Figueiredo, Two-step algorithms for linear inverse problems with non-quadratic regularization,

IEEE International Conference on Image Processing ICIP’ 2007, San Antonio, TX, (2007).

[7] J. V. Burke and J. J. Moré, On the identification of active constraints, SIAM J. Numer. Anal., 25 (1988), pp. 1197–1211.

23

Fig. 7.5. Medical image recovery by FPC AS CG. In each row, (a) is the original image with a caption stating its resolution,
and (b), (c) and (d) are the recovered images for τ = 0.25, 0.5, 0.75, respectively, together with a caption stating the relative
errors between the true image z and the recovered image ẑ.

(a) 512 x 512 (b) 5.9e-02 (c) 1.0e-02 (d) 3.9e-03

(e) 512 x 512 (f) 7.1e-02 (g) 2.0e-02 (h) 7.3e-03

(i) 256 x 256 (j) 1.9e-01 (k) 9.0e-02 (l) 4.5e-02

(m) 512 x 512 (n) 7.1e-02 (o) 3.0e-02 (p) 7.8e-03

(q) 256 x 256 (r) 1.4e-01 (s) 7.5e-02 (t) 4.8e-02

(u) 128 x 128 (v) 3.6e-01 (w) 1.6e-01 (x) 4.1e-03

[8] , Exposing constraints, SIAM J. Optim., 4 (1994), pp. 573–595.

[9] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, An algorithm for nonlinear optimization using linear

programming and equality constrained subproblems, Math. Program., 100 (2004), pp. 27–48.

[10] , On the convergence of successive linear-quadratic programming algorithms, SIAM J. Optim., 16 (2005), pp. 471–

489 (electronic).

[11] E. Candes and S. Becker, Some test problems for compressed sensing. private communication, 2008.

[12] E. Candès and J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions, Foundations

of Computational Mathematics, 6 (2006), pp. 227–254.

[13] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete

24

frequency information, IEEE Transactions on Information Theory, 52 (2006), pp. 489–509.

[14] E. Candès and T. Tao, Near optimal signal recovery from random projections: universal encoding strategies, IEEE

Transactions on Information Theory, 52 (2004), pp. 5406–5425.

[15] P. L. Combettes and J.-C. Pesquet, Proximal thresholding algorithm for minimization over orthonormal bases, To

appear in SIAM Journal on Optimization, (2007).

[16] W. Dai and M. Olgica, Subspace pursuit for compressive sensing: Closing the gap between performance and complexity,

tech. rep., Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 2008.

[17] Y. H. Dai, On the nonmonotone line search, J. Optim. Theory Appl., 112 (2002), pp. 315–330.

[18] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a

sparsity constraint, Communications in Pure and Applied Mathematics, 57 (2004), pp. 1413–1457.

[19] C. De Mol and M. Defrise, A note on wavelet-based inversion algorithms, Contemporary Mathematics, 313 (2002),

pp. 85–96.

[20] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002),

pp. 201–213.

[21] D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), pp. 1289–1306.

[22] D. Donoho, Y. Tsaig, I. Drori, and J.-C. Starck, Sparse solution of underdetermined linear equations by stagewise

orthogonal matching pursuit, Submitted to IEEE Transactions on Information Theory, (2006).

[23] M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Transactions on Information

Theory, 52 (2006), pp. 5559–5569.

[24] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, A wide-angle view at iterated shrinkage algorithms, SPIE (Wavelet

XII), San-Diego CA, August 26-29, 2007., (2007).

[25] M. Elad, B. Matalon, and M. Zibulevsky, Coordinate and subspace optimization methods for linear least squares with

non-quadratic regularization, Journal on Applied and Computational Harmonic Analysis, (2006).

[26] M. Elad, B. Matalon, and M. Zibulevsky, Coordinate and subspace optimization methods for linear least squares with

non-quadratic regularization, Appl. Comput. Harmon. Anal., 23 (2007), pp. 346–367.

[27] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identification of active constraints, SIAM J. Optim., 9

(1999), pp. 14–32 (electronic).

[28] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Transactions on Image

Processing, 12 (2003), pp. 906–916.

[29] M. Figueiredo, R. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: application to compressed

sensing and other inverse problems, To appear in the IEEE Journal of Selected Topics in Signal Processing: Special

Issue on Convex Optimization Methods for Signal Processing, (2007).

[30] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM J. Numer.

Anal., 23 (1986), pp. 707–716.

[31] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization, SIAM J. Optim., 17 (2006),

pp. 526–557 (electronic).

[32] E. Hale, W. Yin, and Y. Zhang, A fixed-point continuation method for ℓ1-regularization with application to compressed

sensing, Rice University CAAM Technical Report TR07-07, (2007).

[33] , FPC: A fixed-point continuation method for ℓ1-regularization, http: // www. caam. rice. edu/ ~ optimization/ l1 ,

(2007).

[34] E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for ℓ1-minimization: methodology and convergence,

Submitted to SIAM Journal on Optimization, (2007).

[35] E. T. Hale, W. Yin, and Y. Zhang, the barzilai-borwein method for l1-minimization. private communication, 2007.

[36] Ilog, Inc., Ilog cplex 10.0. http://www.ilog.com, 2006.

[37] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, A method for large-scale ℓ1-regularized least squares prob-

lems with applications in signal processing and statistics, http: // www. stanford. edu/ ~ boyd/ l1_ ls. html , (2007).

[38] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk, Analog-to-

information conversion via random demodulation, in Proceedings of the IEEE Dallas Circuits and Systems Workshop

(DCAS), Dallas, Texas, 2006.

[39] J. Laska, S. Kirolos, M. Duarte, T. Ragheb, R. Baraniuk, and Y. Massoud, Theory and implementation of an

analog-to-information converter using random demodulation, in Proceedings of the IEEE International Symposium

on Circuites and Systems (ISCAS), New Orleans, Louisiana, 2007.

[40] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss, Random sampling for analog-

to-information conversion of wideband signals, in Proceedings of the IEEE Dallas Circuits and Systems Workshop,

25

Dallas, Texas, 2006.

[41] M. Lustig, D. Donoho, and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging,

Magnetic Resonance in Medicine, in press (2007).

[42] S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Process-

ing, 41 (1993), pp. 3397–3415.

[43] J. J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems, Numer. Math., 55

(1989), pp. 377–400.

[44] , On the solution of large quadratic programming problems with bound constraints, SIAM J. Optim., 1 (1991),

pp. 93–113.

[45] D. Needell and J. A. Tropp, Cosamp: Iterative signal recovery from incomplete and inaccurate samples, Applied and

Computational Harmonic Analysis, (2008).

[46] Y. Nesterov, Gradient methods for minimizing composite objective function, www.optimization-online.org, CORE

Discussion Paper 2007/76, (2007).

[47] J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research and Financial Engineer-

ing, Springer, New York, second ed., 2006.

[48] R. Nowak and M. Figueiredo, Fast wavelet-based image deconvolution using the EM algorithm, Proceedings of the 35th

Asilomar Conference on Signals, Systems, and Computers, Monterey, CA, (2001).

[49] S. Osher, Y. Mao, B. Dong, and w. Yin, Fast linearized bregman iteration for compressive sensing and sparse denoising.

To appear in Communications in Mathematical Sciences.

[50] L. Stewart, Matlab lbfgs wrapper, 2005. http://www.cs.toronto.edu/ liam/software.shtml.

[51] W. Sun and Y.-X. Yuan, Optimization theory and methods, vol. 1 of Springer Optimization and Its Applications, Springer,

New York, 2006. Nonlinear programming.

[52] D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk, A new

compressive imaging camera architecture using optical-domain compression, in Proceedings of Computational Imaging

IV at SPIE Electronic Image, San Jose, California, 2006.

[53] P. L. Toint, An assessment of nonmonotone linesearch techniques for unconstrained optimization, SIAM J. Sci. Comput.,

17 (1996), pp. 725–739.

[54] J. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information Theory, 50

(2006), pp. 2231–2342.

[55] , Just relax: Convex programming methods for identifying sparse signals, IEEE Transactions on Information Theory,

51 (2006), pp. 1030–1051.

[56] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk, Random filters for compressive sampling and recon-

struction, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

Toulouse, France, 2006.

[57] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, tech. rep., Depart-

ment of Mathematics, University of Washington, 2006.

[58] P. Tseng and S. Yun, A block-coordinate gradient descent method for linearly constrained nonsmooth separable opti-

mization, Preprint, (2008).

[59] E. Van den Berg and M. P. Friedlander, SPGL1: A MATLAB solver for large-scale sparse reconstruction, http:

// www. cs. ubc. ca/ labs/ scl/ index. php/ main/ spgl1 , (2007).

[60] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, An architecture

for compressive imaging, in Proceedings of the International Conference on Image Processing (ICIP), Atlanta, Georgia,

2006.

[61] , Compressive imaging for video representation and coding, in Proceedings of Picture Coding Symposium (PCS),

Beijing, China, 2006.

[62] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, On the convergence of an active set method for l1 minimization, tech.

rep., Dept of IEOR, Columbia University, 2008.

[63] S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approximation, Submitted, (2008).

[64] S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approximation, Acoustics, Speech and

Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, (2008), pp. 3373–3376.

[65] J. Yang, Y. Zhang, and W. Yin, A fast tvl1-l2 minimization algorithm for signal reconstruction from partial fourier

data, tech. rep. Rice CAAM Tech Report TR08-27.

[66] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for ℓ1-minimization with applications

to compressed sensing, SIAM Journal on Imaging Sciences, 1 (2008), pp. 143–168.

26

[67] H. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization,

SIAM J. Optim., 14 (2004), pp. 1043–1056 (electronic).

[68] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-

constrained optimization, ACM Trans. Math. Software, 23 (1997), pp. 550–560.

27

