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Abstract—We develop two new algorithms for tomographic measurements. Such a reconstruction procedure can be treated
reconstruction which incorporate the technique of Equally- as an ill-posed mathematical problem, and in general doesn't
Sloped Tomography (EST) and allow for the optimized and paye 5 ynique solution due to the lack of enough measurements

flexible implementation of regularization schemes, such as total d th f noise in the data. C i It
variation constraints, and the incorporation of arbitrary physical an € presence or noise In the data. Lonventonal tomo-

constraints. The founding structure of the developed algorithms is graphic reconstruction methods [4], such as the well-known
EST, a technique of tomographic acquisition and reconstruction filtered back projection (FBP), the algebraic reconstruction
first proposed by Miao et al. in 2005 [1] for performing tomo-  technique (ART) and the simultaneous algebraic reconstruc-
graphic image reconstructions from a limited number of noisy tion technique (SART), uses interpolations either in object

projections in an accurate manner by avoiding direct interpola- Fourier d - hich idablv introd . .
tions. EST has recently been successfully applied to coherent©f FOUNEr daomain, which unavoidably Introduces noise in

diffraction microscopy [2, 3, 4], electron microscopy [5] and the reconstructed images [4, 6]. A post-denoising procedure
computed tomography [6] for image enhancement and radiation may be applied to removing the noise in the reconstructed
dose reduction. However, the bottleneck of EST lies in its slow image, but also erases the fine features in the image and hence
speed due to its higher computation requirements. In this paper o4 ces the spatial resolution. In this paper, we develop novel

we formulate the EST approach as a constrained problem and . . , , . .
subsequently transform it into a series of linear problems, which 2/90rithms to find the ‘best’ possible solution to match the

can be accurately solved by the operator splitting method. Based €Xperimental measurements an physical constraints. Due to
on these mathematical formulations, we develop two iterative the incompleteness of experiential data and the presence of
algorithms for tomographic image reconstructions through EST, noise in the expediential measurement, there exists no per-
which incorporate Bregman and continuative regularization. Our et tomographic reconstruction. But, we utilize regularization
numerical experiment results indicate that the new tomographic . . . ) .
image reconstruction algorithms not only significantly reduce functionals to quantify the .quah.ty of the re.constructlon, and
the computational time, but also improve the image quality. We Search for the most regularized image that is concurrently and
anticipate that EST coupled with the novel iterative algorithms  strictly consistent with the experimental data and the physical
will find broad applications in X-ray tomography, electron mi-  constraints.
croscopy, coherent diffraction microscopy and other tomography The method presented here is built upon a novel data
fields. acquisition procedure and a direct Fourier-based iterative re-
Index Terms—equally-sloped tomography, operator splitting construction scheme, referred to as Equally-Sloped Tomog-
method, Bregman regularization, continuative regularization, raphy (EST) [1]. The EST method iterates back and forth
pseudo-polar Fourier transform. . ) . . .
between object and the Fourier domains where constraints
are enforced in both domains. The EST iterative algorithm
|. INTRODUCTION is based on a new form of the fast Fourier transform (FFT)

Tomography has made revolutionary impacts in a numbealled the pseudo-polar Fourier transform (PPFT) [10, 11],
of fields ranging from biology to medicine [4, 5, 6]. Whilein which the grid points in the Fourier domain are lying on
the applications of tomography are wide and diverse, titee equally-sloped lines instead of equally-angled lines. It has
problems associated with its mathematical and experimenfgen mathematically shown that PPFFT is algebraically exact,
implementation are similar. On the one hand, an accur@eometrically faithful and invertible [10].
image reconstruction is desired. On the other hand, the raThe EST method also uses another important scheme,
diation dose imparted to biological specimens and the pati@aled 'oversampling’, which was initially developed to solve
in computed tomography (CT) is a major concern [7, 8, 9jhe phase problem for non-crystallographic specimens [12,
It is hence a central problem to reconstruct a clean add, 14]. When a Fourier slice is sampled at a frequency
faithful image from a limited number of noisy projectionfiner than the Nyquist interval, the corresponding projection

in object domain is surrounded by mathematical zeros. If

Department of Mathematics and Department of Physics and Astrononiije Fourier slice calculated from the measured projections

UCLA, Los Angeles, CA 90095yfnao29@math.ucla.edu ) .
Department of Physics and Astronomy and Department of Radiation oncéit® oversampled, the 3D ObJeCt to be reconstructed should

ogy, UCLA, Los Angeles, CA 90095(ahimian@mednet.ucla.edu ) be surrounded with zeros. These mathematical zeros do not
Department of Mathematics, UCLA, Los Angeles, CA 9009%rovide extra information about the 3D object, but help to

(sjo@math.ucla.edu ) h lated inf . he E . i
Department of Physics and Astronomy and California Nano Systerftract the correlated information among the Fourier slices.

Institute, UCLA, Los Angeles, CA 90095niao@physics.ucla.edu ) By using PPFFT and its inversion, an algorithm is developed



Frequency Domain Real Domain
(Pseudo-polar Grid) (Cartesian Grid)

transform (i.e. PPFFT) was developed to relate the pseudo-

- e polar and the Cartesian grids [10, 16].
N St fl’f”/’/ The 2D ps_eudo—polqr Foqrier transform, denoted By
AN zef sl _ throughout this paper, is defined between sinx N array
T3 T4 7T PPRFT! in Cartesian grid and a pseudo-polar grid witN solid lines
H.A.A:j 'Q:j*;; “PPRFT with each havin@ N grid points, whereas each line represents
r"/‘; % SN a Fourier slice. A fast algorithm of such a transform has
P60 \\ already been developed and can be implemented with the same
i complexity order as the standard FFT[10]. The adjoint pseudo-

Fig. 1. Graphical relationship between the oversampled pseudopolar grid gn%lar Fo.u”er transform,' denoted WT th.rO.UQhOUt this Paper,

the corresponding Cartesian grid, where N = 8. Not all data at the pseu@@n b€ implemented with the same efficiency.

polar grid point are approachable, as we explained above. However, there are several substantial differences between
the PPFFT and the standard FFT. First of &l tself is not
orthogonal, i.e FF ' # FTF # Id. That is to say the adjoint

to iterate back and forth between Fourier and object domaifi@nsform is not equivalent with the inverse transform7af

In Fourier domain, the measured Fourier slices are updategcond, the total number of the grid points in the frequency
in each iteration. In object domain, a support is definédPmain is 4 times more than the number of the corresponding
to separate the object from its surrounding zeros, and t.%d pomts in the real domain, Whlph means that theltransform
voxels outside the support and the negative voxels inside {teelf is ‘redundant’. Therefore, an inverse transform is actually

support are set to zeros. The algorithm converges to a solutffifineéd and implemented by solving the corresponding least

which satisfies the experiential measurements and the physR@iare problem:

constraints the most. While the EST iterative algorithm makes F~Y(v) := argmin || Fu — v (1)

superior image reconstructions, the bottleneck of the algorithm u

is the speed of the inverse PPFFT which is more than one ortie{10] two numerical algorithms for the inversion ¢f are

slower than the forward PPFFT, and hence hinders its brodeveloped. Both of them have a much higher complexity

applications. than the forward transform itself. As a result, an efficient
In this paper, we present mathematical formulation for tireconstruction scheme should avoid using the inverse pseudo-

image reconstruction problem related to EST, and develpplar Fourier transform as much as possible.

two iterative algorithms without use of the inverse PPFFT. Here we mathematically formulate the problem discussed

By numerical experiments, we show that the new algorithnadove. Letu be the 2D image to be reconstructed in object

not only significantly reduce the computational time, budomain.Fu denotes the pseudo-polar Fourier transformu.of

also improve the quality of the reconstructed images. TheThe information we attained from the tomography data can

organization of the paper is as follows. In section Il we give lge expressed as:

theoretic account of the method and the iterative algorithms. In SFu = by ()

section 11l we provide the implementation of the algorithms.

Numerical results are present in section IV and the conclusi$fieres is a linear operator selecting the entry of approachable
in section V. frequency values antl, is an array in frequency domain that

contains the known frequency values. This is the ‘frequency

constraint’. On the other hand, since we impose the oversam-
[I. THEORY pling method, the surrounding region of the image is known
to be zero. Moreover, we might know some pixels in the
object region with certain intensity values in practice. we can

The EST projection data are ideally acquired at anglggfine the corresponding projection operatorSasand have
corresponding to the lines of the pseudo-polar grid, whigRe following ‘physical constraint’:

consists of concentric squares with a horizontal and a vertical

groups of lines, shown in Fig. I. The purpose of such an Sou = bo ©)
acquisition, in conjunction with the proposed algorithms, is

to provide a methodology to completely eliminate deleteriowghereb, contains the padded zero surrounding the image and
interpolations that that riddle conventional tomographic recother known object values. Comparing with condition (2), this
struction algorithms. In both groups of lines on the pseudgonstraint is more mathematically rigorous, and the unknowns
polar grid, the lines are aligned in a manner that the slop@su are indeed directly eliminated here, so we can use this
of the lines form an arithmetic sequence, i.e. the difference @®ndition to simplify the matrix involved in the system (2).
the slope between two consecutive lines is a constant (i.e. tHetice that (3) is equivalent with, = (I — So)u + by, Where
lines are equally-sloped), whereas in the standard polar gridis the identity matrix. Plug it into (2), then we have

the angle between two consecutive lines is a constant (i.e. the .

lines are equally-angled). The pseudo-polar grid was initially SFI = SoJu = b1+ 5Fbo “)
introduced by Mersereaget al. [15] for the purpose of image This system has a largely reduced rank comparing with (2). For
reconstruction. It was not until recently that a direct Fourieimplicity, we denote the equatidhiF (I —.Sy)u = by + SFby

A. Mathematical Formulation



as Au = b throughout this paper. find a solution of (6) by solving a small number of instances
Since both (3) and (4) are linear equations, a direct leastthe unconstrained problem (7). The first scheme is based on
square solution can in principle be obtained, but such tiae Bregman iterative regularization, which was introduced in
solution is not necessarily an optimal one due to the prd49] for the purpose of image denoising. The second scheme
ence of noise. In order to obtain a best possible solution,jsabased on the continuation method. The two methods share a
regularization functional is needed to quantify the quality cfimilar algorithmic structure and only differ in one line, even
the reconstructed image. In another word, we want to firidough they are developed from different motivations.
a solution that optimizes the regularization functional and

also satisfies equation (3) and (4). In this paper we use { Sorm like (6) or (7) has been widely discussed in recent
total variation norm to regularize the image, which is utilize

in the ROF del f th i ful denoisi eferences for different problems. For example, in [20] Gand
in the mogel, one ot the most successiu er‘O'S"(]-Jgal.point out the connection between the tomography recon-

models_ developed by Rudt al. [17]. Th's madel is widely struction with limited data and the total variation minimization
recognized to be able to remove the noise and other unwané%%:

p le artifacts whil h q : X blem with the measurement as linear constraints. In the
IN€ scale artiiacts while preserve sharp €cges In an IMage oy of compressed sensing the following optimization
minimizing the total variation norm, which is defined as

problem is discussed:

ullry = / |Vu(z)|dz (5) min |lul; st Au=1b (8)
Jo

We want to point out that the mathematical model that has

We want to point out that other regularization functional9here A is a measurement matrix. Here the regularization
may also be utilized here and can perform well under certdfm is thel; norm of the desired signal instead of the total
conditions. For example, the non-local means regularizatiyariation. Another example is the ROF model for deblurring
functional, developed by Buadez al. in [18], is proved to image that considers the following objective function:

give good performance when the image contains periodic or
repeating patterns. When replacing the regularization term, the

whole structure of the analysis demonstrated in this paRgere ¢ is the blurring operator. In both cases, several effi-
remains the same and the direct extension of the algorlttyi@nt algorithms have been developed, see e.g. [21, 22, 23, 24].
IS stra;?htffcilrwa_rd. . ¢ h . The Bregman iterative scheme has received considerable at-
'F‘ the fo OW'ng sections we focus on the constraineflyiion in these fields as well. For example, it was extended
optimization problem to wavelet-based denoising [25] and compressed sensing in
min ||lullry st Au=10b (6) MR imaging [26]. In [21] the Bregman iteration féy mini-
. ) ] mization problem is discussed, while an analogy for the total
where v is restricted in the subspade. : Sou = bo}, and yariational norm is covered briefly. In [21] and [22] a modi-

) A
mlnHU”TV+§HKU*b”§ ©)

only the unknown elements of are free to change. fied Bregman iteration called linearized Bregman iteration is
developed for; minimization problem. In a recent work [27]
B. Algorithm Structure and Related Works it was pointed out that the Bregman iterative regularization

The constrained problem (6) can in principle be transformé&@incides with the classical Uzaw_a method. The con.tinuation
into a linear program and then solved by conventional lineftethod has been used in these fields, for example, in [23].

programming solvers. However, such solvers are not ta”orEdTo solve the unconstrained pr0b|em (7), we use the forward-
for the matrix involved in the equality constraints that is largayackward operating splitting method in this paper, which was
scale and completely dense. For the same reason, methgds proposed by Lions and Mercier [28] and Passty [29] in

that involves the inversion of such kind of matrices are nqig7g. Subsequently this scheme and its modifications have
proper choices. In fact, this kind of problem is often solvegeen extensively studied by various groups (see [30] for

by regularization, that is, related references). In a recent paper [30], Combettes and
) A ) Wajs gave an extensive generalization of the forward-backward
min [|ufl7y + 5”‘4“ —blz @) operating splitting method and proved the convergence in a

We solve it inside the spadg: : Sou = by} but don't include relatively weak restriction on the objective function. More
Sou = by in the penalty term in (7) because this conditioﬁecemly a large number of methods substantially equivalent
effectively reduces the number of variablesiin to the operator splitting method have been developed to
The unconstrained convex optimization problem (7) is easi (Plve pro.blem(9_) thrqugh d|fferent. approaches such as .SOft

B resholding or linearization. They include (but are not limited

to solve than (6). Because (7) allows the constraint (4) to 2
relaxed, it can be used when the measurenheist contami- 10) [31, 32, 33, 34, 35]. The splitting method has been used
e'solve(8) as well, see, e.g. [36].

nated by encoding errors such as noise. However, when thEOr
are no encoding errors, one must assign a large value to heavilin section II-C we review the operator splitting method and
weigh the fidelity term in order for the equality constraint to bapply it to problem (7). We also discuss its connection with the
nearly satisfied. Indeed, one can easily show that the solutiterative method for equally sloped tomography introduced in
of (7) never exactly equals the solution of (6) except for trividb]. In section 1I-D we introduce the Bregman iterative method.
cases. In this paper we will address two iterative algorithms lio section II-E we present the continuation method.



C. Operator Splitting Method setting the negative part of to zero in each iteration, which
The operator splitting method was developed to solve tie€quivalent to adding an extra penalty term on the negative

optimization problem when the objective function is the suf@rt of u into H(u). We will return to this in section IIl.

of two convex functions. Consider two proper lower semiemark 1.

continuous convex functionald(v) and H(u) defined in _ _ _ . .

an Euclid space such thatH (u) is differentiable with a N [6] n iterative algorithm is presented for image recon-

Lipschitz continuous gradient, solving the optimization propstruction through equally-sloped tomography, which is very

lem min[J(u) + H(u)] is equivalent to findu such that similar to 1. After re-organization the algorithm in [6] can be

0 € dJ(u) + OH(u), where dJ denotes the sub-derivativeStated as follows:

.Of .J when J is not differentiable. quT > 0, !f I + T0J ._Algorithm 2 Algorithm in [6] after organization, using our
is invertible, then we have the following iterative f'XEd'pomhotations

algorithm: Initialize: u € {u: Sou = 0}. A = SF(I — So).
while “||Au — b|| not convergedo
v":(I—TZ?H)u” (10) UHU*(I*So)fil(AU7b)
1 u «— ROF /5 (v
ut = arg min 7./ (u) + 5”“ — "3 (11)  end while }249)

The step (10) is called the forward step and the step (11) is _ .

called the backward step. The algorithm convergds-ifroHF ~ Compared to algorithm 1, algorithm 3 sets= 1 and uses

is non-expensive [30]. F~1 instead of #'. This can be understood that algorithm
Equations (10) and (11) can be applied to the problem (3)tries to converge the same minimum by using a different

by letting J(u) = %HUHTV and H(u) = %||Au — b||2. Now descent strategy. However, as we discussed in section II-A,

the forward step (10) becomes the computational cost ofF ! is almost 20 times higher
. . o than that of #T. Our experimental results have shown that
vt =u" —7A (Au” —b) (12) this difference makes algorithm 1 significantly faster than

WhenJ(u) = }||ul|7v, the backward step (11) coincides witrAlgorithm 3.

a standard ROF denoising model [17]: . o
1 D. Bregman lterative Regularization
T n - . .
u'tt = argH}LlHXHUHTV + §Hu— v"|3 (13)  The Bregman iteration was introduced in the context of

image denoising by Osheet al. [19] and has recently

Due _to the popularity of the ROF model, a number of fa%t en extended to other applications. Instead of minimizing
algorithms have been developed to solve (13), e.g. the gray%

: : u) + H(u) where J(u) is a regularization term anéf (u)
cut based solver [37, 38]. In the following we will use is a fidelity term, the Bregman iterative method considers a

un Tt = ROF. /5 (v™) (14) series of minimization problems

to denote the procedure of solving (13). Note that both (12)""" = arg min J(u) — J(u*) = (0T (u*), u — u*) + H(u)
and (14) are automatically restricted in the spége Syu = (15)
0}. Putting them together, we obtain the following algorithnstarting withu® = 8J(u°) = 0, where D(u,v) = J(u) —
1 to solve (7). As described in section II-A, the algorithn/(v) — (9J(v),u — v) is called the Bregman distance [39].
can be easily generalized by replacing thé:) with other In [19] it is proved that if J(u) is convex andH (u) is
regularization functional, and the ROF solver in (14) with theonvex and differentiable, then the sequereé} given by
corresponding solver. iteration (15) monotonically decreases to the minimum of
H (u). Specifically, if H(u) = ||Au — b||3 and {u : Au = b}
Algorithm 1 Operator Splitting method for solving the un4s not empty, then{u*} converges toi € {u : Au = b}.
constrained problem (7) Moreover, 7 solves the constrained problem
Initialize: u € {u : Sou = bo}. .
while “||Au™ — b|| not converge™do et J(w) st Au=b (16)
veu—TAT(Au —b)
u — ROF, /) (v)
end while

where A is a linear operator and in our cade= SF (I —.S).

In other words, the iteration (15) tries to solve a constrained
optimization problem by solving a sequence of unconstrained
problems.

The computational complexity of the algorithm is low step (15) itself appears complicated, bukfifu) = 3| Au—

because# and 7' and the ROF solver can be implementeg)|2, (15) is equivalent to the following iterative procedure [19]
veryefficiently [10, 37]. ProjectionsS’ and S, are costless after simple algebraic manipulation:

elementary operators. N

In practice, however, there are other physical constraints u® = argmin J(u) + = || Au — b*||3 a7)
on u such as the non-negativity of the signal. This kind of b1 X v . 2
physical constraints can be implemented in our algorithm by b =b"+b— Au (18)




with initial setting® = b. This procedure has an intriguingincreasing the compromise parameterin (7). There is a
interpretation at first glance: in step (18) the residualu**!  theoretical result stating that when— oo, the solution of (7)

is ‘added back’ t*, while b* is used as the new ‘data’ in theconverges to the solution of (6). In practice, directly choosing
fidelity term in (17). Intuitively, this can be understood as wa very large) in (7) will make the problem difficult to solve.
want to keep extracting ‘good’ information from the residuahdeed, in this case the fidelity terd («) will converge too

in each iteration by adding the residual back to the data terfast and there is no room fof(u) to be minimized. Instead,
Numerical results show that this mechanism works very welke first start from a smallex and solve (6). After it converges,
On the other hand, one can see from (17) that in each iteratiarg increase\ and use the current as the new initial guess.
the unconstrained optimization keeps the same form as fhis leads to the following algorithm 4.

original one, which means we can still use algorithm 1 to

solve (17) in each step. This leads to algorithm 3. Algorithm 4 Using continuation method to solve the con-
_ _ _ _ _ strained problem (6)

Algorithm 3 Using Bregman iterative regularization to solve | iislize: w € {u: Sou=0}. DenoteA = SF(I — So)

the constrained problem (6) while “||Au — b|| not small enough (or other stop criteria)”
Initialize: u € {u : Spu = 0}. DenoteA = SF(I — Sy). do
while “||Au — b|| not small enough (or other stop criteria)” while “||Au — b|| not converge’do
do . veu—TAT(Au—b)
Start fromb = b u «— ROF, /) (v)
while “[| Au — b|| not convergedo end while
veu—TAT(Au —b) A=A+ AN
u + ROF, /5 (v) end while
end while
b—b+b— Au

One can easily see that algorithms 3 and 4 share a very

end while L
similar structure.

Remark 2. [1l. 1 MPLEMENTATION
In recent work [27] it was realized that the Bregman ... hm 3 can be easily implemented due to the concise

iterative regularization coincides with the classical Uzawgtructure. However, we need to address some details of the

method, which basically is a gradient ascent method that solves . : ; ; :
IMmplementation. There are two major considerations. First,

the duality of the primal constrained optimization problem. e want to have a qood performance and fast converaence
An introduction of this method can be found in a standar\g 9 P 9 '

optimization textbook, for example [40]. Let us consider theecond, we want to minimize the number of parameters that
X X We need to tune up in practice.
following constrained problem

minJ(u) St Au=b (19) .
u A. Precondition
The duality of the problem isnax, L(v) where As a well known fact, the efficiency of a gradient descent
L(v) := min J(u) + (v, Au — b) (20) method for quadratic function depends heavily on the condi-
“ tion number of the matrix involved in the function, which, in
Therefore, a natural gradient ascentfoon L(v) leads to the our case, isA = SF(I — Sp). Although the condition number
following algorithm of this matrix is not easy to estimate, we can intuitively see that
X L i it is related to the condition number &f. Unlike the standard
u” = argminy J(u) + (v*, Au = b) (21) Cartesian Fourier transform, the condition numbesois not
VM =" £ TOL(0F) = 0" + 7(Au” —b) equal to 1. As described in [10], the condition numberFois

much greater than 1 because the pseudo-polar grid points have

B o = _ 1 2 . .
By setingr = 1 and J.(u) J(u) + 3 ”Au”2.’ the iteration different intensity and weights in the frequency domain. To fix
(21) is essentially equivalent to (17). The difference between . L
= . . Is problem, we use a preconditionef, which is chosen such
J(u) and J(u) is not important because the solution of (6 h

satisfiesAu = b, and the extra tern} || Aul|3 is a constant at the condition nu.mber ofl"MA is much smaller than
’ 2 " AT Aor at least the eigenvalues af M A are well-clustered.
) ) Therefore, instead of considering (u) = | Au — b||3, we
E. Continuation Method considerH (u) = ||Au—b||2, = (Au—b)T M(Au—b) in our
This method is canonical in the context of equality coralgorithm. Here we use the diagonal preconditionérestab-
strained optimization, which was first proposed by Courant lished by the principal of density compensation, where each
1943. It can be found in a standard textbook such as [4E]ement of M is defined by the area of the sample square of
in which it is called the quadratic penalty method. The maitlhe corresponding pseudo-polar grid in the frequency domain.
idea of this method is to solve the constrained problem (Bhis preconditioner has been used in [10] when calculating
by a sequence of unconstrained problem (7), while graduathe inverse ofF through the preconditioned conjugate gradient



method. Sinced = SF(I —Sp) andSTMS = MS whenM iteratively ‘squeeze’ information from the measurements. Too
is diagonal, the corresponding line in algorithm 3 becomesmany outer iterations will introduce high noise into the image,

n n especially when the measurements contain significant noise.

vt =" —TATM(Au =) (22)  since the details and artifacts are brought back to the image

which can be implemented efficiently. gradually, under certain environments we can also let users
judge the quality of images after each outer iterative step and

B. Step Size terminate the outer iteration at a proper time.

’ On the other hand, as we want the final image to be faithful
To make sure that the operator splitting iterative algorithiiy the measured data, i.e. equation (4) is strictly satisfied, we
(10) and (11) converges, the step sizen (10) should be apply a post ‘legitimation’ procedure by correcting the mea-
chosen such that — 79H is contractive [30]. In our case sured Fourier coefficients of the image in frequency domain.

where H(u) = (Au — b) T M (Au — b), this means that Since the image has converged to a less noisy state during
T T the previous steps, this final step will not bring back a lot of

I =r A" M(Aur =) =(uz=r A M(Auz=b))| < ||U1(_2"é2)“ noise (although the image may be degraded if the data itself

which leads to the following universal condition en is noisy).
2 .
- E. Overall Algorithm
0<7< o (ATIIA) (24) g

o - N ) Combining all things together, we can obtain algorithm 5
However, this is just a sufficient condition for fixed In iy which we insert physical positivity constraints anand
practice, to accelerate the convergence iofu), we may jmprove the performance as discussed in section I1-C. We also
choose different- in each step such thdi (u) is decreased \yant 1o point out that this algorithm can be easily extended
fastest. Indeed, we can use a standard line search SChemStheplacing the ROF solver with other schemes that can
select the optimized. Since the direction of each step is give'Pegularize images in a certain manner, or by adding other

explicitly and H is a quadratic function, _the optimal has a physical constraints if we have the prior knowledge.
closed form that can be calculated precisely as follows

AT M(Au — b)||2  Algorithm 5 Final iterative algorithm for solving the con-
7 = argmin H (u—7A" M (Au—b)) = ||J4|1ATM((Au — b))”|22 strained problem (6)

(2531 Initialize: u € {u: Spu = 0}. DenoteA = SF(I — Sy).

Numerical results have shown that this choiceroin each while “||Au — ]| not small enough (or other stop criteria)”
iteration gives very good convergence rate. do
Start fromb = b
while “||Au — b|| not converge'do
. . 7 [|AT M (Au — 0)|3/||AAT M (Au — b)|3,
For the Bregman iterative method, parametdn the ROF v u—TAT M(Au — b)
solver is not a crucial factor because after the Bregman u — ROF, /5 (v)

iteration the solution converges to the constrained problem

C. Parameter)\

U<—u
(6), in theory the choice of should not make difference. end whilg
In practice we suggest a small initial. Numerical results beb4+b—Auor A — A+ A\

also indicate that it is not a sensitive parameter. For thegnd while
continuation method a small initial should be chosen to make
the image regularized enough at the very beginning. In each
outer iteration\ is increased byA\. This increment is not a
sensitive factor as shown from the numerical experiments.

IV. NUMERICAL EXPERIMENTS

There are two factors that influence the quality of the
o reconstructed image and the radiation dose: the number of
D. Stop Criteria projections and the fluence of the illumination particles. The
In algorithms 3 and 4 there are two levels of iterations, eafbrmer determines how many measurements, i.e. linear con-
of which needs an appropriate stop criterion. For the innstraints on the image, and the latter determines the magnitude
loop, i.e. the forward-backward operator splitting iteration, thef noise in the measurements. In the following we compare our
iteration can be terminated when the relative decreagé(aff algorithms with the conventional FBP approach as a function
is smaller than a certain threshold, or after a fixed number of projections and fluence. We show that our algorithms per-
iterations. For the outer loop, very few iterations are needddrm far better than FBP even using fewer projections and less
Numerical experiments show that generally 2-3 iterations cflnence. In another word, our method can lead to great dose
give good performance, which is consistent with the observaduction without reducing the quality of the reconstructed
tions in [19] and [36] where different algorithms with similaimages.
structure are studied. We can also set a threshold of the residudllo quantify the quality of image reconstruction of our algo-
H (u) to automatically terminate the iteration. As discussed nithms for complex objects, we present numerical simulations
sections II-D and II-E, the purpose of the outer loop is ton slice 82 of the Zubal anthropomorphic head phantom [42],



(a) (b)

Fig. 2. (a) Slice 82 of the Zubal head phantom with assigned linea
attenuation coefficients. (b) Zoom-in view of the phantom showing fine
features.

shown in Fig. 2(a). The values that were assigned to th
organs represent x-ray attenuation coefficients correspondi
to a TASMIP x-ray spectra calculated for 120 kvp and 2m
resulting in a mean flux weighted energy of 56.4 kev. Figure
2(b) shows a zoom-in view the phantom indicating the fine
features for a comparison purpose. In the numerical simul
tions we calculated 360, 90, 60, 45 projections, respectivel
and added Poisson noise to the projections with a fluend
of 7.0 x 10°m~2. The reconstructed images by FBP, the
EST iterative method given in[6] (i.e. EST iterative), the EST
Bregman iterative method (i.e. EST Bregman) and the EST  (m)

continuation method (i.e. EST continuation) are shown in Fig Image reconstructions with a fluence 6 x 105. First column

4. The arrows indicate the fine features that disappear in Fi (e)'(l) (m)gFBP reconstructions from 360, 90, 60 and 45 projections,

3(i) and (m), but clearly visible in the EST reCOﬂStrUCtlOnﬁaspectlvely Second column (b),(f),(j),(n): EST iterative reconstructions from

from the same number of projections (Figs. 3(j), (k), (1), (n}360. 90, 60 and 45 projections, respectively. Third column (c),(g).(k),(0): EST
(0) and (p)) continuation reconstructions from 360, 90, 60 and 45 projections, respectively.
Last column (d),(h),(l),(p): EST Bregman reconstructions from 360, 90, 60

To quantify the reconstructions, we utilize the Fouriesind 45 projections, respectively.

Ring Correlation (FRC) to measure the correlation of the

reconstructed images to the original phantom as a function

of spatial frequency [8]. The FRC across 'rings’ in Fourier . Z”“i"f‘ﬁ"i"““"".”ﬂ"},"fTf:“’5 - , E”.bi"if‘;"iffi°2‘i;”ff'f'”;;°i7“°5““’2
domain is defined as Saad } R
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wherek is the radial parameter in Fourier domailk the

Correlation of Fourier Coeficients

Correlatl

frequency interval size of the rings, and the subscripts referto™ = “sufafequensy’ T et
the reconstructed image and the original phantom, respectively. @) ()

AFRC value of 1 represents 100% correlation while a value of Zubal reconstrucuon with fluence 7 x 10% m™2 Zubal reconstruction with fluence 7 x 10° m2
0 represents 0% correlation; the spatial frequency defined by’ a— Gt-:.f.aiuq i "f RESE S F1Te,

the 0.5 value of the FRC curve, representing 50% correlatiog.. “: Too, Rrerx gl L e el
between reconstructed image and the original phantom ‘ﬁs“ : i ** e
commonly taken as a numerical value of the resolution. F|g§ Lo ° '

ures 4(a), (b), (c) and (d) show the FRC values of the FBP, ESE' 555 oo
iterative, EST continuation and EST Bregman reconstructlons § ESTterative 60 projections

* EST Continuation 60 projections ',

|| = - FBP 45 projections
o EST iterative 45 projections
%21 # EST Continuation 45 projections o

Correlation of Fourier Coeficients

from 360, 90, 60 and 45 prOJeCt|0nS reSpeCtlvely S ;Egggé?;gj"eg%g;oleclions 0o :Egggg%gpmr;ne&ijﬁrsojections °
According to FIgS 3 and 4, the quallty of reconstructed °~ = % spatalfrequency’ © ™" “spatial Frequency
images with the EST methods is significantly better than FBP. (©) (d)

As Fig. 4 shows, with the same number of projections, the EST o _ _ ,

thods outperform FBP in all spatial frequencies, indicati i 4. Quantitative FRC comparisons of the reconstructions (Fig. 3) by the
me p p q M8Ur method from (a) 360 projections, (b) 90 projections, (c) 60 projections
higher resolution and correlation for the EST reconstructionghd (d) 45 projections, respectively.
The differences between the three EST methods are relatively



small when the number of projections is large, but becomes V. CONCLUSION

large when the number of projections is reduced. Furthermore .
when there is a limited number of projections, the EST We show that the EST reconstruction can be represented as

Bregman reconstruction shows more fine features that the E&Fonstrained problem (6), and develop an iterative approach
iterative reconstruction, as shown in Figs. 3 (n), (0) and (F}P find the solution by so!vmg a sequence of gnponstramed
The improvement is mainly due to the outer iterative looprobléms (7). We establish the operator splitting method
in the EST Bregman and continuation algorithms, which cdf efficiently and accurately solve (7). Based on these
obtain fine features from noisy data more efficiently. As impoffiathematical developments, we propose two new iterative
tantly, by replacingF~! with F T, the computational time in algorithms for image reconstruction through EST,. whlgh

each iteration is reduced by approximately 70%, and the tof{f called the EST Bregman and the EST continuation
number of iterations is reduced by approximately 50% due §g0rithms. Compared to the traditional FBP, ART and SART,

the more efficient convergence strategy. Therefore, even wiflf Neéw image reconstruction algorithms avoid any direct
the extra outer iterative loop in the new algorithms, the overdfltérpolations and search for the most regularized image that
computation time is significantly reduced, shown in Tab. IS consistent with the experimental measurements and the
Although the new algorithms still require more computatioﬁhys'cal constraints. Compared to the EST iterative a_Igont_hm
power than FBP, they can in principle be implemented #gPOrted in [6], the EST Bregman and the EST continuation
clinical CT scanners by parallel computing and fast FFT bas@@orithms not only improve the image quality, but also

processors such as graphical processing units (GPUs) [43]§ignificantly reduce the computational time. Our numerical

According to Figs. 3 (a), (p) and 4(d), the EST Bregma%xperlment results suggest that EST coupled with the novel

reconstruction from 45 projections is as good as the Féﬁratlve algorithm significantly reduce the required radiation

. S se for achieving a desired resolution. We expect the new
reconstruction from 360 projections. We also performed dosF . X
algorithms can be broadly applied to X-ray tomography,

reduction numerical experiments by reducing the fluence. FIg; ciron  Microsco coherent diffraction microscony and
5 shows the FBP, EST iterative, EST continuation and E§%E ~OpY, Py
oaher tomographic fields.

Bregman reconstructions from 360 and 45 projections with

fluenge 0f3.5 x 10%, respectlvely. The E.ST !Sregman reconAcknowledgements.This work was supported UC Discovery
struction from 45 projections (Fig. 3(h)) is still comparable t%rant # IT107-10166, in conjunction with TomoSoft

the FBP reconstruction from 360 projections (Fig. 3(a)). ThFechnoIogies

significant dose reduction of the EST method is mainly due to '

the fact that it doesn't interpolate the missing projections from

the measurements, but directly searches for the "best” image

from the acquired measurements by using advanced iterative
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