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Development and Optimization of Regularized
Tomographic Reconstruction Algorithms Utilizing

Equally-Sloped Tomography
Yu Mao Benjamin P. Fahimian Stanley J. Osher Jianwei Miao

Abstract—We develop two new algorithms for tomographic
reconstruction which incorporate the technique of Equally-
Sloped Tomography (EST) and allow for the optimized and
flexible implementation of regularization schemes, such as total
variation constraints, and the incorporation of arbitrary physical
constraints. The founding structure of the developed algorithms is
EST, a technique of tomographic acquisition and reconstruction
first proposed by Miao et al. in 2005 [1] for performing tomo-
graphic image reconstructions from a limited number of noisy
projections in an accurate manner by avoiding direct interpola-
tions. EST has recently been successfully applied to coherent
diffraction microscopy [2, 3, 4], electron microscopy [5] and
computed tomography [6] for image enhancement and radiation
dose reduction. However, the bottleneck of EST lies in its slow
speed due to its higher computation requirements. In this paper
we formulate the EST approach as a constrained problem and
subsequently transform it into a series of linear problems, which
can be accurately solved by the operator splitting method. Based
on these mathematical formulations, we develop two iterative
algorithms for tomographic image reconstructions through EST,
which incorporate Bregman and continuative regularization. Our
numerical experiment results indicate that the new tomographic
image reconstruction algorithms not only significantly reduce
the computational time, but also improve the image quality. We
anticipate that EST coupled with the novel iterative algorithms
will find broad applications in X-ray tomography, electron mi-
croscopy, coherent diffraction microscopy and other tomography
fields.

Index Terms—equally-sloped tomography, operator splitting
method, Bregman regularization, continuative regularization,
pseudo-polar Fourier transform.

I. I NTRODUCTION

Tomography has made revolutionary impacts in a number
of fields ranging from biology to medicine [4, 5, 6]. While
the applications of tomography are wide and diverse, the
problems associated with its mathematical and experimental
implementation are similar. On the one hand, an accurate
image reconstruction is desired. On the other hand, the ra-
diation dose imparted to biological specimens and the patient
in computed tomography (CT) is a major concern [7, 8, 9].
It is hence a central problem to reconstruct a clean and
faithful image from a limited number of noisy projection
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measurements. Such a reconstruction procedure can be treated
as an ill-posed mathematical problem, and in general doesn’t
have a unique solution due to the lack of enough measurements
and the presence of noise in the data. Conventional tomo-
graphic reconstruction methods [4], such as the well-known
filtered back projection (FBP), the algebraic reconstruction
technique (ART) and the simultaneous algebraic reconstruc-
tion technique (SART), uses interpolations either in object
or Fourier domain, which unavoidably introduces noise in
the reconstructed images [4, 6]. A post-denoising procedure
may be applied to removing the noise in the reconstructed
image, but also erases the fine features in the image and hence
reduces the spatial resolution. In this paper, we develop novel
algorithms to find the ’best’ possible solution to match the
experimental measurements an physical constraints. Due to
the incompleteness of experiential data and the presence of
noise in the expediential measurement, there exists no per-
fect tomographic reconstruction. But, we utilize regularization
functionals to quantify the quality of the reconstruction, and
search for the most regularized image that is concurrently and
strictly consistent with the experimental data and the physical
constraints.

The method presented here is built upon a novel data
acquisition procedure and a direct Fourier-based iterative re-
construction scheme, referred to as Equally-Sloped Tomog-
raphy (EST) [1]. The EST method iterates back and forth
between object and the Fourier domains where constraints
are enforced in both domains. The EST iterative algorithm
is based on a new form of the fast Fourier transform (FFT)
called the pseudo-polar Fourier transform (PPFT) [10, 11],
in which the grid points in the Fourier domain are lying on
the equally-sloped lines instead of equally-angled lines. It has
been mathematically shown that PPFFT is algebraically exact,
geometrically faithful and invertible [10].

The EST method also uses another important scheme,
called ’oversampling’, which was initially developed to solve
the phase problem for non-crystallographic specimens [12,
13, 14]. When a Fourier slice is sampled at a frequency
finer than the Nyquist interval, the corresponding projection
in object domain is surrounded by mathematical zeros. If
the Fourier slice calculated from the measured projections
are oversampled, the 3D object to be reconstructed should
be surrounded with zeros. These mathematical zeros do not
provide extra information about the 3D object, but help to
extract the correlated information among the Fourier slices.
By using PPFFT and its inversion, an algorithm is developed
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Fig. 1. Graphical relationship between the oversampled pseudopolar grid and
the corresponding Cartesian grid, where N = 8. Not all data at the pseudo-
polar grid point are approachable, as we explained above.

to iterate back and forth between Fourier and object domains.
In Fourier domain, the measured Fourier slices are updated
in each iteration. In object domain, a support is defined
to separate the object from its surrounding zeros, and the
voxels outside the support and the negative voxels inside the
support are set to zeros. The algorithm converges to a solution
which satisfies the experiential measurements and the physical
constraints the most. While the EST iterative algorithm makes
superior image reconstructions, the bottleneck of the algorithm
is the speed of the inverse PPFFT which is more than one order
slower than the forward PPFFT, and hence hinders its broad
applications.

In this paper, we present mathematical formulation for the
image reconstruction problem related to EST, and develop
two iterative algorithms without use of the inverse PPFFT.
By numerical experiments, we show that the new algorithms
not only significantly reduce the computational time, but
also improve the quality of the reconstructed images. The
organization of the paper is as follows. In section II we give a
theoretic account of the method and the iterative algorithms. In
section III we provide the implementation of the algorithms.
Numerical results are present in section IV and the conclusion
in section V.

II. T HEORY

A. Mathematical Formulation

The EST projection data are ideally acquired at angles
corresponding to the lines of the pseudo-polar grid, which
consists of concentric squares with a horizontal and a vertical
groups of lines, shown in Fig. I. The purpose of such an
acquisition, in conjunction with the proposed algorithms, is
to provide a methodology to completely eliminate deleterious
interpolations that that riddle conventional tomographic recon-
struction algorithms. In both groups of lines on the pseudo-
polar grid, the lines are aligned in a manner that the slopes
of the lines form an arithmetic sequence, i.e. the difference of
the slope between two consecutive lines is a constant (i.e. the
lines are equally-sloped), whereas in the standard polar grid,
the angle between two consecutive lines is a constant (i.e. the
lines are equally-angled). The pseudo-polar grid was initially
introduced by Mersereauet al. [15] for the purpose of image
reconstruction. It was not until recently that a direct Fourier

transform (i.e. PPFFT) was developed to relate the pseudo-
polar and the Cartesian grids [10, 16].

The 2D pseudo-polar Fourier transform, denoted byF
throughout this paper, is defined between anN × N array
in Cartesian grid and a pseudo-polar grid with2N solid lines
with each having2N grid points, whereas each line represents
a Fourier slice. A fast algorithm of such a transform has
already been developed and can be implemented with the same
complexity order as the standard FFT[10]. The adjoint pseudo-
polar Fourier transform, denoted byF> throughout this paper,
can be implemented with the same efficiency.

However, there are several substantial differences between
the PPFFT and the standard FFT. First of all,F itself is not
orthogonal, i.e.FF> 6= F>F 6= Id. That is to say the adjoint
transform is not equivalent with the inverse transform ofF .
Second, the total number of the grid points in the frequency
domain is 4 times more than the number of the corresponding
grid points in the real domain, which means that the transform
itself is ‘redundant’. Therefore, an inverse transform is actually
defined and implemented by solving the corresponding least
square problem:

F−1(v) := arg min
u
‖Fu− v‖2 (1)

In [10] two numerical algorithms for the inversion ofF are
developed. Both of them have a much higher complexity
than the forward transform itself. As a result, an efficient
reconstruction scheme should avoid using the inverse pseudo-
polar Fourier transform as much as possible.

Here we mathematically formulate the problem discussed
above. Letu be the 2D image to be reconstructed in object
domain.Fu denotes the pseudo-polar Fourier transform ofu.

The information we attained from the tomography data can
be expressed as:

SFu = b1 (2)

whereS is a linear operator selecting the entry of approachable
frequency values andb1 is an array in frequency domain that
contains the known frequency values. This is the ‘frequency
constraint’. On the other hand, since we impose the oversam-
pling method, the surrounding region of the image is known
to be zero. Moreover, we might know some pixels in the
object region with certain intensity values in practice. we can
define the corresponding projection operator asS0 and have
the following ‘physical constraint’:

S0u = b0 (3)

whereb0 contains the padded zero surrounding the image and
other known object values. Comparing with condition (2), this
constraint is more mathematically rigorous, and the unknowns
in u are indeed directly eliminated here, so we can use this
condition to simplify the matrix involved in the system (2).
Notice that (3) is equivalent withu = (I − S0)u + b0, where
I is the identity matrix. Plug it into (2), then we have

SF(I − S0)u = b1 + SFb0 (4)

This system has a largely reduced rank comparing with (2). For
simplicity, we denote the equationSF(I−S0)u = b1 +SFb0
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asAu = b throughout this paper.
Since both (3) and (4) are linear equations, a direct least

square solution can in principle be obtained, but such a
solution is not necessarily an optimal one due to the pres-
ence of noise. In order to obtain a best possible solution, a
regularization functional is needed to quantify the quality of
the reconstructed image. In another word, we want to find
a solution that optimizes the regularization functional and
also satisfies equation (3) and (4). In this paper we use the
total variation norm to regularize the image, which is utilized
in the ROF model, one of the most successful denoising
models developed by Rudinet al. [17]. This model is widely
recognized to be able to remove the noise and other unwanted
fine scale artifacts while preserve sharp edges in an image by
minimizing the total variation norm, which is defined as

‖u‖TV :=
∫

Ω

|∇u(x)|dx (5)

We want to point out that other regularization functionals
may also be utilized here and can perform well under certain
conditions. For example, the non-local means regularization
functional, developed by Buadeset al. in [18], is proved to
give good performance when the image contains periodic or
repeating patterns. When replacing the regularization term, the
whole structure of the analysis demonstrated in this paper
remains the same and the direct extension of the algorithm
is straight forward.

In the following sections we focus on the constrained
optimization problem

min ‖u‖TV s.t. Au = b (6)

where u is restricted in the subspace{u : S0u = b0}, and
only the unknown elements ofu are free to change.

B. Algorithm Structure and Related Works

The constrained problem (6) can in principle be transformed
into a linear program and then solved by conventional linear
programming solvers. However, such solvers are not tailored
for the matrix involved in the equality constraints that is large-
scale and completely dense. For the same reason, methods
that involves the inversion of such kind of matrices are not
proper choices. In fact, this kind of problem is often solved
by regularization, that is,

min ‖u‖TV +
λ

2
‖Au− b‖22 (7)

We solve it inside the space{u : S0u = b0} but don’t include
S0u = b0 in the penalty term in (7) because this condition
effectively reduces the number of variables inu.

The unconstrained convex optimization problem (7) is easier
to solve than (6). Because (7) allows the constraint (4) to be
relaxed, it can be used when the measurementb is contami-
nated by encoding errors such as noise. However, when there
are no encoding errors, one must assign a large value to heavily
weigh the fidelity term in order for the equality constraint to be
nearly satisfied. Indeed, one can easily show that the solution
of (7) never exactly equals the solution of (6) except for trivial
cases. In this paper we will address two iterative algorithms to

find a solution of (6) by solving a small number of instances
of the unconstrained problem (7). The first scheme is based on
the Bregman iterative regularization, which was introduced in
[19] for the purpose of image denoising. The second scheme
is based on the continuation method. The two methods share a
similar algorithmic structure and only differ in one line, even
though they are developed from different motivations.

We want to point out that the mathematical model that has
a form like (6) or (7) has been widely discussed in recent
references for different problems. For example, in [20] Candés
et al. point out the connection between the tomography recon-
struction with limited data and the total variation minimization
problem with the measurement as linear constraints. In the
context of compressed sensing the following optimization
problem is discussed:

min ‖u‖1 s.t. Au = b (8)

where A is a measurement matrix. Here the regularization
term is thel1 norm of the desired signalu instead of the total
variation. Another example is the ROF model for deblurring
image that considers the following objective function:

min ‖u‖TV +
λ

2
‖Ku− b‖22 (9)

whereK is the blurring operator. In both cases, several effi-
cient algorithms have been developed, see e.g. [21, 22, 23, 24].
The Bregman iterative scheme has received considerable at-
tention in these fields as well. For example, it was extended
to wavelet-based denoising [25] and compressed sensing in
MR imaging [26]. In [21] the Bregman iteration forl1 mini-
mization problem is discussed, while an analogy for the total
variational norm is covered briefly. In [21] and [22] a modi-
fied Bregman iteration called linearized Bregman iteration is
developed forl1 minimization problem. In a recent work [27]
it was pointed out that the Bregman iterative regularization
coincides with the classical Uzawa method. The continuation
method has been used in these fields, for example, in [23].

To solve the unconstrained problem (7), we use the forward-
backward operating splitting method in this paper, which was
first proposed by Lions and Mercier [28] and Passty [29] in
1979. Subsequently this scheme and its modifications have
been extensively studied by various groups (see [30] for
related references). In a recent paper [30], Combettes and
Wajs gave an extensive generalization of the forward-backward
operating splitting method and proved the convergence in a
relatively weak restriction on the objective function. More
recently a large number of methods substantially equivalent
to the operator splitting method have been developed to
solve problem(9) through different approaches such as soft
thresholding or linearization. They include (but are not limited
to) [31, 32, 33, 34, 35]. The splitting method has been used
to solve(8) as well, see, e.g. [36].

In section II-C we review the operator splitting method and
apply it to problem (7). We also discuss its connection with the
iterative method for equally sloped tomography introduced in
[6]. In section II-D we introduce the Bregman iterative method.
In section II-E we present the continuation method.
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C. Operator Splitting Method

The operator splitting method was developed to solve the
optimization problem when the objective function is the sum
of two convex functions. Consider two proper lower semi-
continuous convex functionalsJ(u) and H(u) defined in
an Euclid spaceΩ such thatH(u) is differentiable with a
Lipschitz continuous gradient, solving the optimization prob-
lem min[J(u) + H(u)] is equivalent to findu such that
0 ∈ ∂J(u) + ∂H(u), where ∂J denotes the sub-derivative
of J when J is not differentiable. Forτ > 0, if I + τ∂J
is invertible, then we have the following iterative fixed-point
algorithm:

vn = (I − τ∂H)un (10)

un+1 = arg min
u

τJ(u) +
1
2
‖u− vn‖22 (11)

The step (10) is called the forward step and the step (11) is
called the backward step. The algorithm converges ifI−τ∂H
is non-expensive [30].

Equations (10) and (11) can be applied to the problem (7)
by letting J(u) = 1

λ‖u‖TV and H(u) = 1
2‖Au − b‖22. Now

the forward step (10) becomes

vn = un − τA>(Aun − b) (12)

WhenJ(u) = 1
λ‖u‖TV , the backward step (11) coincides with

a standard ROF denoising model [17]:

un+1 = arg min
u

τ

λ
‖u‖TV +

1
2
‖u− vn‖22 (13)

Due to the popularity of the ROF model, a number of fast
algorithms have been developed to solve (13), e.g. the graph
cut based solver [37, 38]. In the following we will use

un+1 = ROFτ/λ(vn) (14)

to denote the procedure of solving (13). Note that both (12)
and (14) are automatically restricted in the space{u : S0u =
0}. Putting them together, we obtain the following algorithm
1 to solve (7). As described in section II-A, the algorithm
can be easily generalized by replacing theJ(u) with other
regularization functional, and the ROF solver in (14) with the
corresponding solver.

Algorithm 1 Operator Splitting method for solving the un-
constrained problem (7)

Initialize: u ∈ {u : S0u = b0}.
while “‖Aun − b‖ not converge”do

v ← u− τA>(Au− b)
u ← ROFτ/λ(v)

end while

The computational complexity of the algorithm is low
becauseF andF> and the ROF solver can be implemented
veryefficiently [10, 37]. ProjectionsS and S0 are costless
elementary operators.

In practice, however, there are other physical constraints
on u such as the non-negativity of the signal. This kind of
physical constraints can be implemented in our algorithm by

setting the negative part ofu to zero in each iteration, which
is equivalent to adding an extra penalty term on the negative
part of u into H(u). We will return to this in section III.

Remark 1.

In [6] n iterative algorithm is presented for image recon-
struction through equally-sloped tomography, which is very
similar to 1. After re-organization the algorithm in [6] can be
stated as follows:

Algorithm 2 Algorithm in [6] after organization, using our
notations

Initialize: u ∈ {u : S0u = 0}. A = SF(I − S0).
while “‖Au− b‖ not converge”do

v ← u− (I − S0)F−1(Au− b)
u ← ROF1/λ(v)

end while

Compared to algorithm 1, algorithm 3 setsτ = 1 and uses
F−1 instead ofF>. This can be understood that algorithm
3 tries to converge the same minimum by using a different
descent strategy. However, as we discussed in section II-A,
the computational cost ofF−1 is almost 20 times higher
than that ofF>. Our experimental results have shown that
this difference makes algorithm 1 significantly faster than
algorithm 3.

D. Bregman Iterative Regularization

The Bregman iteration was introduced in the context of
image denoising by Osheret al. [19] and has recently
been extended to other applications. Instead of minimizing
J(u) + H(u) whereJ(u) is a regularization term andH(u)
is a fidelity term, the Bregman iterative method considers a
series of minimization problems

uk+1 = arg min
u

J(u)− J(uk)− 〈∂J(uk), u− uk〉+ H(u)
(15)

starting with u0 = ∂J(u0) = 0, whereD(u, v) := J(u) −
J(v) − 〈∂J(v), u − v〉 is called the Bregman distance [39].
In [19] it is proved that if J(u) is convex andH(u) is
convex and differentiable, then the sequence{uk} given by
iteration (15) monotonically decreases to the minimum of
H(u). Specifically, ifH(u) = ‖Au − b‖22 and {u : Au = b}
is not empty, then{uk} converges tōu ∈ {u : Au = b}.
Moreover,ū solves the constrained problem

min
u

J(u) s.t. Au = b (16)

whereA is a linear operator and in our caseA = SF(I−S0).
In other words, the iteration (15) tries to solve a constrained
optimization problem by solving a sequence of unconstrained
problems.

Step (15) itself appears complicated, but ifH(u) = λ
2 ‖Au−

b‖22, (15) is equivalent to the following iterative procedure [19]
after simple algebraic manipulation:

uk = arg min
u

J(u) +
λ

2
‖Au− bk‖22 (17)

bk+1 = bk + b−Auk (18)
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with initial setting b0 = b. This procedure has an intriguing
interpretation at first glance: in step (18) the residualb−Auk+1

is ‘added back’ tobk, while bk is used as the new ‘data’ in the
fidelity term in (17). Intuitively, this can be understood as we
want to keep extracting ‘good’ information from the residual
in each iteration by adding the residual back to the data term.
Numerical results show that this mechanism works very well.
On the other hand, one can see from (17) that in each iteration,
the unconstrained optimization keeps the same form as the
original one, which means we can still use algorithm 1 to
solve (17) in each step. This leads to algorithm 3.

Algorithm 3 Using Bregman iterative regularization to solve
the constrained problem (6)

Initialize: u ∈ {u : S0u = 0}. DenoteA = SF(I − S0).
while “‖Au− b‖ not small enough (or other stop criteria)”
do

Start from b̃ = b
while “‖Au− b̃‖ not converge”do

v ← u− τA>(Au− b̃)
u ← ROFτ/λ(v)

end while
b̃ ← b̃ + b−Au

end while

Remark 2.

In recent work [27] it was realized that the Bregman
iterative regularization coincides with the classical Uzawa
method, which basically is a gradient ascent method that solves
the duality of the primal constrained optimization problem.
An introduction of this method can be found in a standard
optimization textbook, for example [40]. Let us consider the
following constrained problem

min
u

J̃(u) s.t. Au = b (19)

The duality of the problem ismaxv L(v) where

L(v) := min
u

J̃(u) + 〈v, Au− b〉 (20)

Therefore, a natural gradient ascent forv on L(v) leads to the
following algorithm

{
uk = arg minu J̃(u) + 〈vk, Au− b〉
vk+1 = vn + τ∂L(vk) = vn + τ(Auk − b)

(21)

By settingτ = 1 and J̃(u) = J(u) + 1
2‖Au‖22, the iteration

(21) is essentially equivalent to (17). The difference between
J(u) and J̃(u) is not important because the solution of (6)
satisfiesAu = b, and the extra term1

2‖Au‖22 is a constant.

E. Continuation Method

This method is canonical in the context of equality con-
strained optimization, which was first proposed by Courant in
1943. It can be found in a standard textbook such as [41],
in which it is called the quadratic penalty method. The main
idea of this method is to solve the constrained problem (6)
by a sequence of unconstrained problem (7), while gradually

increasing the compromise parameterλ in (7). There is a
theoretical result stating that whenλ →∞, the solution of (7)
converges to the solution of (6). In practice, directly choosing
a very largeλ in (7) will make the problem difficult to solve.
Indeed, in this case the fidelity termH(u) will converge too
fast and there is no room forJ(u) to be minimized. Instead,
we first start from a smallerλ and solve (6). After it converges,
we increaseλ and use the currentu as the new initial guess.
This leads to the following algorithm 4.

Algorithm 4 Using continuation method to solve the con-
strained problem (6)

Initialize: u ∈ {u : S0u = 0}. DenoteA = SF(I − S0).
while “‖Au− b‖ not small enough (or other stop criteria)”
do

while “‖Au− b‖ not converge”do
v ← u− τA>(Au− b)
u ← ROFτ/λ(v)

end while
λ ← λ + ∆λ

end while

One can easily see that algorithms 3 and 4 share a very
similar structure.

III. I MPLEMENTATION

Algorithm 3 can be easily implemented due to the concise
structure. However, we need to address some details of the
implementation. There are two major considerations. First,
we want to have a good performance and fast convergence.
Second, we want to minimize the number of parameters that
we need to tune up in practice.

A. Precondition

As a well known fact, the efficiency of a gradient descent
method for quadratic function depends heavily on the condi-
tion number of the matrix involved in the function, which, in
our case, isA = SF(I−S0). Although the condition number
of this matrix is not easy to estimate, we can intuitively see that
it is related to the condition number ofF . Unlike the standard
Cartesian Fourier transform, the condition number ofF is not
equal to 1. As described in [10], the condition number ofF is
much greater than 1 because the pseudo-polar grid points have
different intensity and weights in the frequency domain. To fix
this problem, we use a preconditionerM , which is chosen such
that the condition number ofA>MA is much smaller than
A>A or at least the eigenvalues ofA>MA are well-clustered.
Therefore, instead of consideringH(u) = ‖Au − b‖22, we
considerH(u) = ‖Au− b‖2M = (Au− b)>M(Au− b) in our
algorithm. Here we use the diagonal preconditionerM estab-
lished by the principal of density compensation, where each
element ofM is defined by the area of the sample square of
the corresponding pseudo-polar grid in the frequency domain.
This preconditioner has been used in [10] when calculating
the inverse ofF through the preconditioned conjugate gradient
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method. SinceA = SF(I−S0) andS>MS = MS whenM
is diagonal, the corresponding line in algorithm 3 becomes

vn = un − τA>M(Au− b) (22)

which can be implemented efficiently.

B. Step Size

To make sure that the operator splitting iterative algorithm
(10) and (11) converges, the step sizeτ in (10) should be
chosen such thatI − τ∂H is contractive [30]. In our case
whereH(u) = (Au− b)>M(Au− b), this means that

‖(u1−τA>M(Au1−b))−(u2−τA>M(Au2−b))‖ < ‖u1−u2‖
(23)

which leads to the following universal condition onτ :

0 < τ <
2

λmax(A>MA)
(24)

However, this is just a sufficient condition for fixedτ . In
practice, to accelerate the convergence ofH(u), we may
choose differentτ in each step such thatH(u) is decreased
fastest. Indeed, we can use a standard line search scheme to
select the optimizedτ . Since the direction of each step is given
explicitly andH is a quadratic function, the optimalτ has a
closed form that can be calculated precisely as follows

τu := arg min
τ

H(u−τA>M(Au−b)) =
‖A>M(Au− b)‖22
‖AA>M(Au− b)‖2M

(25)
Numerical results have shown that this choice ofτ in each
iteration gives very good convergence rate.

C. Parameterλ

For the Bregman iterative method, parameterλ in the ROF
solver is not a crucial factor because after the Bregman
iteration the solution converges to the constrained problem
(6), in theory the choice ofλ should not make difference.
In practice we suggest a small initialλ. Numerical results
also indicate that it is not a sensitive parameter. For the
continuation method a small initialλ should be chosen to make
the image regularized enough at the very beginning. In each
outer iteration,λ is increased by∆λ. This increment is not a
sensitive factor as shown from the numerical experiments.

D. Stop Criteria

In algorithms 3 and 4 there are two levels of iterations, each
of which needs an appropriate stop criterion. For the inner
loop, i.e. the forward-backward operator splitting iteration, the
iteration can be terminated when the relative decrease ofH(u)
is smaller than a certain threshold, or after a fixed number of
iterations. For the outer loop, very few iterations are needed.
Numerical experiments show that generally 2-3 iterations can
give good performance, which is consistent with the observa-
tions in [19] and [36] where different algorithms with similar
structure are studied. We can also set a threshold of the residual
H(u) to automatically terminate the iteration. As discussed in
sections II-D and II-E, the purpose of the outer loop is to

iteratively ‘squeeze’ information from the measurements. Too
many outer iterations will introduce high noise into the image,
especially when the measurements contain significant noise.
Since the details and artifacts are brought back to the image
gradually, under certain environments we can also let users
judge the quality of images after each outer iterative step and
terminate the outer iteration at a proper time.

On the other hand, as we want the final image to be faithful
to the measured data, i.e. equation (4) is strictly satisfied, we
apply a post ‘legitimation’ procedure by correcting the mea-
sured Fourier coefficients of the image in frequency domain.
Since the image has converged to a less noisy state during
the previous steps, this final step will not bring back a lot of
noise (although the image may be degraded if the data itself
is noisy).

E. Overall Algorithm

Combining all things together, we can obtain algorithm 5
in which we insert physical positivity constraints onu and
improve the performance as discussed in section II-C. We also
want to point out that this algorithm can be easily extended
by replacing the ROF solver with other schemes that can
regularize images in a certain manner, or by adding other
physical constraints if we have the prior knowledge.

Algorithm 5 Final iterative algorithm for solving the con-
strained problem (6)

Initialize: u ∈ {u : S0u = 0}. DenoteA = SF(I − S0).
while “‖Au− b‖ not small enough (or other stop criteria)”
do

Start from b̃ = b
while “‖Au− b̃‖ not converge”do

τ ← ‖A>M(Au− b)‖22/‖AA>M(Au− b)‖2M
v ← u− τA>M(Au− b)
u ← ROFτ/λ(v)
u ← u+

end while
b̃ ← b̃ + b−Au or λ ← λ + ∆λ

end while

IV. N UMERICAL EXPERIMENTS

There are two factors that influence the quality of the
reconstructed image and the radiation dose: the number of
projections and the fluence of the illumination particles. The
former determines how many measurements, i.e. linear con-
straints on the image, and the latter determines the magnitude
of noise in the measurements. In the following we compare our
algorithms with the conventional FBP approach as a function
of projections and fluence. We show that our algorithms per-
form far better than FBP even using fewer projections and less
fluence. In another word, our method can lead to great dose
reduction without reducing the quality of the reconstructed
images.

To quantify the quality of image reconstruction of our algo-
rithms for complex objects, we present numerical simulations
on slice 82 of the Zubal anthropomorphic head phantom [42],
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(a) (b)

Fig. 2. (a) Slice 82 of the Zubal head phantom with assigned linear
attenuation coefficients. (b) Zoom-in view of the phantom showing fine
features.

shown in Fig. 2(a). The values that were assigned to the
organs represent x-ray attenuation coefficients corresponding
to a TASMIP x-ray spectra calculated for 120 kvp and 2mm
resulting in a mean flux weighted energy of 56.4 kev. Figure
2(b) shows a zoom-in view the phantom indicating the fine
features for a comparison purpose. In the numerical simula-
tions we calculated 360, 90, 60, 45 projections, respectively,
and added Poisson noise to the projections with a fluence
of 7.0 × 105m−2. The reconstructed images by FBP, the
EST iterative method given in[6] (i.e. EST iterative), the EST
Bregman iterative method (i.e. EST Bregman) and the EST
continuation method (i.e. EST continuation) are shown in Fig.
4. The arrows indicate the fine features that disappear in Figs.
3(i) and (m), but clearly visible in the EST reconstructions
from the same number of projections (Figs. 3(j), (k), (l), (n),
(o) and (p)).

To quantify the reconstructions, we utilize the Fourier
Ring Correlation (FRC) to measure the correlation of the
reconstructed images to the original phantom as a function
of spatial frequency [8]. The FRC across ’rings’ in Fourier
domain is defined as

FRCimg1,img2(k,∆k) :=

∣∣∣∑κ Fimg1(κ)F ∗img2(κ)
∣∣∣

√∑
κ |Fimg1(κ)|2 ∑

κ |Fimg2(κ)|2

∣∣∣∣∣
|κ|∈(k,k+∆k)

(26)
wherek is the radial parameter in Fourier domain,∆k the

frequency interval size of the rings, and the subscripts refer to
the reconstructed image and the original phantom, respectively.
A FRC value of 1 represents 100% correlation while a value of
0 represents 0% correlation; the spatial frequency defined by
the 0.5 value of the FRC curve, representing 50% correlation
between reconstructed image and the original phantom, is
commonly taken as a numerical value of the resolution. Fig-
ures 4(a), (b), (c) and (d) show the FRC values of the FBP, EST
iterative, EST continuation and EST Bregman reconstructions
from 360, 90, 60 and 45 projections, respectively.

According to Figs. 3 and 4, the quality of reconstructed
images with the EST methods is significantly better than FBP.
As Fig. 4 shows, with the same number of projections, the EST
methods outperform FBP in all spatial frequencies, indicating
higher resolution and correlation for the EST reconstructions.
The differences between the three EST methods are relatively

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 3. Image reconstructions with a fluence of7.0 × 105. First column
(a),(e),(i),(m): FBP reconstructions from 360, 90, 60 and 45 projections,
respectively. Second column (b),(f),(j),(n): EST iterative reconstructions from
360, 90, 60 and 45 projections, respectively. Third column (c),(g),(k),(o): EST
continuation reconstructions from 360, 90, 60 and 45 projections, respectively.
Last column (d),(h),(l),(p): EST Bregman reconstructions from 360, 90, 60
and 45 projections, respectively.
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EST iterative 45 projections
EST Continuation 45 projections
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(d)

Fig. 4. Quantitative FRC comparisons of the reconstructions (Fig. 3) by the
four method from (a) 360 projections, (b) 90 projections, (c) 60 projections
and (d) 45 projections, respectively.
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small when the number of projections is large, but becomes
large when the number of projections is reduced. Furthermore,
when there is a limited number of projections, the EST
Bregman reconstruction shows more fine features that the EST
iterative reconstruction, as shown in Figs. 3 (n), (o) and (p).
The improvement is mainly due to the outer iterative loop
in the EST Bregman and continuation algorithms, which can
obtain fine features from noisy data more efficiently. As impor-
tantly, by replacingF−1 with F>, the computational time in
each iteration is reduced by approximately 70%, and the total
number of iterations is reduced by approximately 50% due to
the more efficient convergence strategy. Therefore, even with
the extra outer iterative loop in the new algorithms, the overall
computation time is significantly reduced, shown in Tab. I.
Although the new algorithms still require more computation
power than FBP, they can in principle be implemented in
clinical CT scanners by parallel computing and fast FFT based
processors such as graphical processing units (GPUs) [43].

According to Figs. 3 (a), (p) and 4(d), the EST Bregman
reconstruction from 45 projections is as good as the FBP
reconstruction from 360 projections. We also performed dose
reduction numerical experiments by reducing the fluence. Fig.
5 shows the FBP, EST iterative, EST continuation and EST
Bregman reconstructions from 360 and 45 projections with a
fluence of3.5 × 105, respectively. The EST Bregman recon-
struction from 45 projections (Fig. 3(h)) is still comparable to
the FBP reconstruction from 360 projections (Fig. 3(a)). The
significant dose reduction of the EST method is mainly due to
the fact that it doesn’t interpolate the missing projections from
the measurements, but directly searches for the ”best” image
from the acquired measurements by using advanced iterative
algorithms. Although there exist other iterative algorithm for
tomographic reconstruction such as ART, SART and SIRT, our
previous quantitative comparisons have shown that the EST
iterative method is far superior [6, 5]. Therefore, in this paper,
we mainly focus on the quantitative comparisons between the
EST iterative method with the new algorithms.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Image reconstructions with a fluence of3.5×105. (a),(e): FBP recon-
structions from 360 and 45 projections. (b),(f): EST iterative reconstructions
from 360 and 45 projections. (c),(g): EST continuation reconstructions from
360 and 45 projections. (d),(h): EST Bregman reconstructions from 360 and
45 projections.

V. CONCLUSION

We show that the EST reconstruction can be represented as
a constrained problem (6), and develop an iterative approach
to find the solution by solving a sequence of unconstrained
problems (7). We establish the operator splitting method
to efficiently and accurately solve (7). Based on these
mathematical developments, we propose two new iterative
algorithms for image reconstruction through EST, which
are called the EST Bregman and the EST continuation
algorithms. Compared to the traditional FBP, ART and SART,
the new image reconstruction algorithms avoid any direct
interpolations and search for the most regularized image that
is consistent with the experimental measurements and the
physical constraints. Compared to the EST iterative algorithm
reported in [6], the EST Bregman and the EST continuation
algorithms not only improve the image quality, but also
significantly reduce the computational time. Our numerical
experiment results suggest that EST coupled with the novel
iterative algorithm significantly reduce the required radiation
dose for achieving a desired resolution. We expect the new
algorithms can be broadly applied to X-ray tomography,
electron microscopy, coherent diffraction microscopy and
other tomographic fields.
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