
Applications of Lagrangian-Based Alternating Direction Methods

and Connections to Split Bregman

Ernie Esser

March 2009

Abstract
Analogous to the connection between Bregman iteration and the method of multipliers that

was pointed out in [59], we show that a similar connection can be made between the split Breg-
man algorithm [32] and the alternating direction method of multipliers (ADMM) of ([29], [31]).
Existing convergence theory for ADMM [23] can therefore be used to justify both the alternating
step and inexact minimizations used in split Bregman for the cases in which the algorithms are
equivalent. Application of these algorithms to different image processing problems is simplified
by rewriting these problems in a general form that still includes constrained and unconstrained
total variation, (TV), and l1 minimization as was investigated in [32]. Numerical results for
the application to TV-l1 minimization [12] are presented. We also discuss applications of two
related methods, the alternating minimization algorithm (AMA) of [56] and the Bregman op-
erator splitting algorithm (BOS) of [61], which are sometimes better suited for problems where
further decoupling of variables is useful.

1 Introduction

An important class of problems in image processing, and now also compressive sensing, is convex
programs involving l1 or TV regularization. Illustrative examples include ROF denoising [50] and
basis pursuit [18]. Such problems have been notoriously slow to compute, but Bregman iteration
techniques and variants such as linearized Bregman, split Bregman and Bregman operator splitting
have been shown to yield simple, fast and effective algorithms for these types of problems. These
recent algorithms also have many interesting connections to classical Lagrangian methods for the
general problem of minimizing sums of convex functionals subject to linear equality constraints.
There are close connections for example to the method of multipliers, the alternating direction
method of multipliers, (ADMM) ([3], [23]), and the alternating minimization algorithm (AMA)
[56]. These algorithms can be especially effective when the convex functionals are based on the l1
norm and the l2 norm squared.

Consider the problem
min

u ∈ Rm

Ku = f

J(u), (1)

and assume J(u) has separable structure in the sense that it can be written as

J(u) = H(u) +
N∑

i=1

Gi(Aiu + bi),
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where H and Gi are closed proper convex functions Gi : Rni → (−∞,∞], H : Rm → (−∞,∞],
f ∈ Rs, bi ∈ Rni , each Ai is a ni ×m matrix and K is a s×m matrix. An equivalent formulation
that decouples the Gi is obtained by introducing new variables zi and constraints zi = Aiu + bi.
Now (1) can be rewritten as

min
z ∈ Rn, u ∈ Rm

Bz + Au = b

F (z) + H(u), (P0)

where F (z) =
∑N

i=1 Gi(zi), n =
∑N

i=1 ni, z =




z1
...

zN


, B =

[−I
0

]
, A =




A1
...

AN

K


, and b =




−b1
...

−bN

f


.

Letting d = n + s, note that A is a d × m matrix, B is a d × n matrix and b ∈ Rd. Similar
formulations are discussed for example in [3], [2], [48] and [56].

There is extensive literature in optimization and numerical analysis about splitting methods for
solving convex programming problems that have separable structure as (P0) does. The goal is to
produce algorithms that consist of simple, easy to compute steps that can deal with the terms of
J(u) one at a time. One approach based on duality leads to augmented Lagrangian type methods
that can be interpreted as splitting methods applied to a dual formulation of the problem. A
good summary of these methods can be found in chapter three of [30] and Eckstein’s thesis [24].
Here we will focus mainly on ADMM because of its connection to the Split Bregman algorithm of
Goldstein and Osher. They show in [32] how to simplify the minimization of convex functionals
of u involving the l1 norm of a convex function Φ(u). They replace Φ(u) with a new variable z,
add a constraint z = Φ(u) and then use Bregman iteration [59] techniques to handle the resulting
constrained optimization problem. A key application is functionals containing ‖u‖TV . A related
splitting approach that uses continuation methods to handle the constraints has been studied
by Wang, Yin and Zhang, [57] and applied to TV minimization problems including TV-l1 ([34],
[58]). The connection between Bregman iteration and the augmented Lagrangian for constrained
optimization problems with linear equality constraints is discussed by Yin, Osher, Goldfarb and
Darbon in [59]. They show Bregman iteration is equivalent to the method of multipliers of Hestenes
[37] and Powell [46] when the constraints are linear. The augmented Lagrangian for problem (1) is

Lα(u, λ) = J(u) + 〈λ, f −Ku〉+
α

2
‖f −Ku‖2,

where ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and standard inner product. The method of
multipliers is to iterate

uk+1 = arg min
u∈Rm

Lα(u, λk) (2)

λk+1 = λk + α(f −Kuk+1),

whereas Bregman iteration yields

uk+1 = arg min
u∈Rm

J(u)− J(uk)− 〈pk, u− uk〉+
α

2
‖f −Ku‖2 (3)

pk+1 = pk + αKT (f −Kuk+1).
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J(u)− J(uk)− 〈pk, u− uk〉 is the Bregman distance between u and uk, where pk is a subgradient
of J at uk. Similarly, in the special case when Φ is linear, an interpretation of the split Bregman
algorithm, explained in sections 3.1.1 and 3.2.1, is to alternately minimize with respect to u and z
the augmented Lagrangian associated to the constrained problem and then to update a Lagrange
multiplier. This procedure also describes ADMM, which goes back to Glowinski and Marocco [31],
and Gabay and Mercier [29]. The augmented Lagrangian for problem (P0) is

Lα(z, u, λ) = F (z) + H(u) + 〈λ, b−Au−Bz〉+
α

2
‖b−Au−Bz‖2,

and the ADMM iterations are given by

zk+1 = arg min
z∈Rn

Lα(z, uk, λk)

uk+1 = arg min
u∈Rm

Lα(zk+1, u, λk) (4)

λk+1 = λk + α(b−Auk+1 −Bzk+1).

ADMM can also be interpreted as Douglas Rachford splitting [22] applied to the dual problem.
Connections between these two interpretations were explored by Gabay [28] and Glowinski and
Le Tallec [30]. The dual version of the algorithm was studied by Lions and Mercier [39]. The
equivalence of ADMM to a proximal point method was studied by Eckstein and Bertsekas [23], who
also generalized the convergence theory to allow for inexact minimizations. Techniques regarding
applying ADMM to problems with separable structure are discussed in detail by Bertsekas and
Tsitsiklis in ([3] section 3.4.4) and also by Glowinski and Fortin in [27]. The connection between
split Bregman and Douglas Rachford splitting has also been made by Setzer [51].

Other splitting methods besides Douglas Rachford splitting can be applied to the dual problem,
which is a special case of the well studied more general problem of finding a zero of the sum of
two maximal monotone operators. See for example [25] and [39]. Some splitting methods applied
to the dual problem can also be interpreted in terms of alternating minimization of the augmented
Lagrangian. For example, Peaceman Rachford splitting [45] corresponds to an alternating mini-
mization algorithm very similar to ADMM except that it updates the Lagrange multiplier twice,
once after each minimization of the augmented Lagrangian [30].

Proximal forward backward splitting can also be effectively applied to the dual problem. This
splitting procedure, which goes back to Lions and Mercier [39] and Passty [44], appears in many
applications. Some examples include classical methods such as gradient projection and more recent
ones such as the iterative thresholding algorithm FPC of Hale, Yin and Zhang [35] and the framelet
inpainting algorithm of Cai, Chan and Shen [6].

The Lagrangian interpretation of the dual application of forward backward splitting was studied
by Tseng in [56]. He shows that it corresponds to an algorithm with the same steps as ADMM
except that one of the minimizations of the augmented Lagrangian, Lα(z, u, λ), is replaced by
minimization of the Lagrangian, which for (P0) is

L(z, u, λ) = F (z) + H(u) + 〈λ, b−Au−Bz〉.
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The resulting iterations are given by

uk+1 = arg min
u∈Rm

L(zk, u, λk)

zk+1 = arg min
z∈Rn

Lα(z, uk+1, λk) (5)

λk+1 = λk + α(b−Auk+1 −Bzk+1).

Tseng called this the alternating minimization algorithm, referred to in shorthand as AMA. This
method is useful for solving (P0) when H is strictly convex but including the augmented quadratic
penalty leads to a minimization step that is more difficult to solve.

There are other methods for decoupling variables that don’t require the functional to be strictly
convex. An example is the predictor corrector proximal method (PCPM) by Chen and Teboulle
[17], which alternates proximal steps for the primal and dual variables. The PCPM iterations are
given by

uk+1 = arg min
u∈Rm

L(zk, u, λk) +
1

2αk
‖u− uk‖2

zk+1 = arg min
z∈Rn

L(z, uk, λk) +
1

2αk
‖z − zk‖2

λk+1 = λk + (αk+1 + αk)(b−Auk+1 −Bzk+1)− αk(b−Auk −Bzk).

This method can require many iterations. Another technique to undo the coupling of variables
that results from quadratic penalty terms of the form αk

2 ‖Ku − f‖2 is to replace such a penalty
with one of the form 1

2δk
‖u − uk + αkδkK

T (Kuk − f)‖2, which instead penalizes the distance of
u from a linearization of the original penalty. This was applied to the method of multipliers by
Stephanopoulos and Westerberg in [52]. It was used in the derivation of the linearized Bregman
algorithm in [59]. This technique is also used with Bregman iteration methods by Zhang, Burger,
Bresson and Osher in [61], leading to the Bregman Operator Splitting (BOS) algorithm, which
they apply for example to nonlocal TV minimization problems. They also show the connection to
inexact Uzawa methods. Written as an inexact Uzawa method, the BOS algorithm applied to (1)
yields the iterations

uk+1 = arg min
u∈Rm

J(u) + 〈λk, f −Ku〉+
1

2δk
‖u− uk + αkδkK

T (Kuk − f)‖2 (6)

λk+1 = λk + αk(f −Kuk+1).

Section 3.3.2 describes how this idea can be applied to (P0).
This paper consists of three parts. The first part discusses the Lagrangian formulation of

the problem (P0) and the dual problem. The second part focuses on exploring the connection
between split Bregman and ADMM, their application to (P0) and their dual interpretation. It
also demonstrates how further decoupling of variables is possible using AMA and BOS. The third
part shows how to apply these algorithms to some example image processing problems, focusing on
applications that illustrate how to take advantage of problems’ separable structure.

2 The Primal and Dual Problems

Lagrangian duality will play an important role in the analysis of (P0). In this section we define a
Lagrangian formulation of (P0) and the dual problem. We also discuss conditions that guarantee
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solutions to the primal and dual problems.

2.1 Lagrangian Formulation and Dual Problem

Associated to the primal problem (P0) is the Lagrangian

L(z, u, λ) = F (z) + H(u) + 〈λ, b−Au−Bz〉, (7)

where the dual variable λ ∈ Rd can be thought of as a vector of Lagrange multipliers. The dual
functional q(λ) is a concave function q : Rd → [−∞,∞) defined by

q(λ) = inf
u∈Rm,z∈Rn

L(z, u, λ). (8)

The dual problem to (P0) is
max
λ∈Rd

q(λ). (Q0)

Since (P0) is a convex programming problem with linear constraints, if it has an optimal solution
(z∗, u∗) then (Q0) also has an optimal solution λ∗, and

F (z∗) + H(u∗) = q(λ∗),

which is to say that the duality gap is zero, ([2] 5.2, [48] 28.2, 28.4). To guarantee existence of an
optimal solution to (P0), assume that the set

{(z, u) : F (z) + H(u) ≤ c , Au + Bz = b}
is nonempty and bounded for some c ∈ R. Alternatively, we could assume that Ku = f has a
solution, and if it’s not unique, which it probably won’t be, then assume F (z) + H(u) is coercive
on the affine subspace defined by Au + Bz = b. Either way, we can equivalently minimize over
a compact subset. Since F and H are closed proper convex functions, which is to say lower
semicontinuous convex functions not identically infinity, Weierstrass’ theorem implies a minimum
is attained [2].

2.2 Saddle Point Formulation and Optimality Conditions

Finding optimal solutions of (P0) and (Q0) is equivalent to finding a saddle point of L. More
precisely ([48] 28.3), (z∗, u∗) is an optimal primal solution and λ∗ is an optimal dual solution if and
only if

L(z∗, u∗, λ) ≤ L(z∗, u∗, λ∗) ≤ L(z, u, λ∗) ∀ z, u, λ. (9)

From this it follows that

max
λ∈Rd

F (z∗)+H(u∗)+〈λ, b−Au∗−Bz∗〉 = L(z∗, u∗, λ∗) = min
u∈Rm,z∈Rn

F (z)+H(u)+〈λ∗, b−Au−Bz〉,

from which we can directly read off the Kuhn-Tucker optimality conditions.

Au∗ + Bz∗ = b (10a)

BT λ∗ ∈ ∂F (z∗) (10b)

AT λ∗ ∈ ∂H(u∗), (10c)
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where ∂ denotes the subgradient, defined by

∂F (z∗) = {p ∈ Rn : F (v) ≥ F (z∗) + 〈p, v − z∗〉 ∀v ∈ Rn} ,

∂H(u∗) = {q ∈ Rm : H(w) ≥ H(u∗) + 〈q, w − u∗〉 ∀w ∈ Rm} .

These optimality conditions (10) hold if and only if (z∗, u∗, λ∗) is a saddle point for L ([48] 28.3).
Note also that L(z∗, u∗, λ∗) = F (z∗) + H(u∗).

2.3 Dual Functional

The dual functional q(λ) (8) can be written in terms of the Legendre-Fenchel transforms of F and
H.

q(λ) = inf
z∈Rn,u∈Rm

F (z) + 〈λ, b−Bz −Au〉+ H(u)

= inf
z∈Rn

(F (z)− 〈λ,Bz〉) + inf
u∈Rm

(H(u)− 〈λ,Au〉) + 〈λ, b〉
= − sup

z∈Rn

(〈BT λ, z〉 − F (z)
)− sup

u∈Rm

(〈AT λ, u〉 −H(u)
)

+ 〈λ, b〉

= −F ∗(BT λ)−H∗(AT λ) + 〈λ, b〉,

where F ∗ and H∗ denote the Legendre-Fenchel transforms, or convex conjugates, of F and H
defined by

F ∗(BT λ) = sup
z∈Rn

(〈BT λ, z〉 − F (z)
)
,

H∗(AT λ) = sup
u∈Rm

(〈AT λ, u〉 −H(u)
)
.

2.4 Maximally Decoupled Case

An interesting special case of (P0), which will arise in many of the following examples, is when
H(u) = 0. This corresponds to

min
u ∈ Rm, z ∈ Rn

Bz + Au = b

F (z). (P1)

As before, the dual functional is given by

q1(λ) = −F ∗(BT λ)−H∗(AT λ) + 〈λ, b〉,

except here H∗(AT λ) can be interpreted as an indicator function defined by

H∗(AT λ) =

{
0 if AT λ = 0,
∞ otherwise.

This can be interpreted as the constraint AT λ = 0, which is equivalent to Pλ = λ, where P is the
projection onto Im(A)⊥ defined by

P = I −A(AT A)−1AT .
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Therefore the dual problem for (P1) can be written as

max
λ ∈ Rd

AT λ = 0

−F ∗(BT Pλ) + 〈Pλ, b〉. (Q1)

The variable u can also be completely eliminated from the primal problem, which can be
equivalently formulated as

min
z ∈ Rn

P (b−Bz) = 0

F (z). (P2)

The associated dual functional is

q2(λ) = −F ∗(BT Pλ) + 〈Pλ, b〉,

and the dual problem is therefore

max
λ∈Rd

−F ∗(BT Pλ) + 〈Pλ, b〉, (Q2)

which is identical to (Q1) without the constraint. However, since q2(λ) = q2(Pλ) the AT λ = 0
constraint can be added to (Q2) without changing the maximum.

3 Algorithms

In this section we start by analyzing Bregman iteration (3) applied to (P0) because the first step
in deriving the split Bregman algorithm in [32] was essentially to take advantage of the separable
structure of (1) by rewriting it as (P0) and applying Bregman iteration. Then we show an equiv-
alence between ADMM (4) and the split Bregman algorithm and present a convergence result by
Eckstein and Bertsekas [23]. Next we interpret AMA (5) and BOS (6) as modifications of ADMM
applied to (P0), and we discuss when they are applicable and why they are useful. Throughout,
we also discuss the dual interpretations of Bregman iteration/method of multipliers as gradient as-
cent, split Bregman/ADMM as Douglas Rachford splitting and AMA as proximal forward backward
splitting.

3.1 Bregman Iteration and Method of Multipliers

3.1.1 Application to Primal Problem

Bregman iteration applied to (P0) yields

(zk+1, uk+1) = arg min
z∈Rn,u∈Rm

F (z)− F (zk)− 〈pk
z , z − zk〉+

H(u)−H(uk)− 〈pk
u, u− uk〉+ (11)

α

2
‖b−Au−Bz‖2

pk+1
z = pk

z + αBT (b−Auk+1 −Bzk+1)

pk+1
u = pk

u + αAT (b−Auk+1 −Bzk+1).
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For the initialization, p0
z and p0

u are set to zero while z0 and u0 are arbitrary. Note that for k ≥ 1,
pk

u ∈ ∂H(uk) and pk
z ∈ ∂F (zk). Now, following the argument in [59] that shows an equivalence

between Bregman iteration and the method of multipliers (2) in the case of linear constraints, define
λk for k ≥ 0 by λ0 = 0 and

λk+1 = λk + α(b−Auk+1 −Bzk+1). (12)

Notice that if pk
z = BT λk and pk

u = AT λk then pk+1
z = BT λk+1 and pk+1

u = AT λk+1. So by
induction, it holds for all k. This implies that

−〈pk
z , z〉 − 〈pk

u, u〉 = −〈BT λk, z〉 − 〈AT λk, u〉 = 〈λk,−Au−Bz〉.

This means the objective function in (11) up to a constant is equivalent to the augmented La-
grangian at λk, defined by

Lα(z, u, λk) = F (z) + H(u) + 〈λk, b−Au−Bz〉+
α

2
‖b−Au−Bz‖2. (13)

Then (zk+1, uk+1) in (11) can be equivalently updated by

(zk+1, uk+1) = arg min
z∈Rn,u∈Rm

Lα(z, u, λk) (14)

λk+1 = λk + α(b−Auk+1 −Bzk+1), (15)

which is the method of multipliers (2). This connection was also pointed out in [54].
Note that the same assumptions that guaranteed existence of a minimizer for (P0) also guarantee

that (14) is well defined. Having assumed that there exists c ∈ R such that

Q = {(z, u) : F (z) + H(u) ≤ c , Au + Bz = b}

is nonempty and bounded, it follows that

R =
{

(z, u) : F (z) + H(u) + 〈λk, b−Au−Bz〉+
α

2
‖b−Au−Bz‖2 ≤ c

}

is nonempty and bounded. If not, then being an unbounded convex set, R must contain a half
line. Because of the presence of the quadratic term, any such line must be parallel to the affine set
defined by Au + Bz = b. But since R is also closed, by ([48] 8.3) a half line is also contained in
that affine set, which contradicts the assumption that Q was bounded. Weierstrass’ theorem can
then be used to show that a minimum of (14) is attained.

3.1.2 Dual Interpretation

Since Bregman iteration with linear constraints is equivalent to the method of multipliers it also
shares some of the interesting dual interpretations. In particular, it can be interpreted as a proximal
point method for maximizing q(λ) or as a gradient ascent method for maximizing qα(λ), where qα(λ)
denotes the dual of the augmented Lagrangian Lα defined by

qα(λ) = inf
z∈Rn,u∈Rm

Lα(z, u, λ). (16)
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Note that from previous assumptions guaranteeing existence of an optimal solution to (P0), and
because the augmented term α

2 ‖b−Au−Bz‖2 is zero when the constraint is satisfied, the maximums
of q(λ) and qα(λ) are attained and equal. Following an argument by Rockafellar in [47], note that

Lα(z, u, λk) = max
y∈Rd

L(z, u, y)− 1
2α
‖y − λk‖2

and that the maximum is attained at

y∗ = λk + α(b−Au−Bz).

Let (zk+1, uk+1) (possibly not unique) be where the minimum of Lα(z, u, λk) is attained. So

inf
z∈Rn,u∈Rm

max
y∈Rd

L(z, u, y)− 1
2α
‖y − λk‖2

is attained at (zk+1, uk+1, y∗) where y∗ = λk + α(b−Auk+1 −Bzk+1). Because we have convexity
in (z, u) and strict concavity in y, the inf and max can be swapped ([48] 37.3). Thus we have

qα(λk) = inf
z,u

max
y

L(z, u, y)− 1
2α
‖y − λk‖2 (17a)

= max
y

inf
z,u

L(z, u, y)− 1
2α
‖y − λk‖2 (17b)

= max
y

q(y)− 1
2α
‖y − λk‖2 (17c)

= q(y∗)− 1
2α
‖y∗ − λk‖2 (17d)

From the definition of the Lagrange multiplier update (15), we see that

λk+1 = y∗ = arg max
y∈Rd

q(y)− 1
2α
‖y − λk‖2, (18)

which can be interpreted as a step in a proximal point method for maximizing q(λ). The connection
to the proximal point method is also derived for example in [3]. Since from (18), λk+1 is uniquely
determined given λk, that means that Auk+1 + Bzk+1 is constant over all minimizers (zk+1, uk+1)
of Lα(z, u, λk). Going back to the Bregman iteration (11), we also have that pk+1

z = BT λk+1 and
pk+1

u = AT λk+1 were uniquely determined at each iteration.
One way to interpret (18) as a gradient ascent method applied to qα(λ) is to note that from

(17c), qα(λk) is minus the Moreau envelope of index α of the closed proper convex function −q at
λk ([19] 2.3). The Moreau envelope can be shown to be differentiable, and there is a formula for
its gradient [19], which when applied to (17c) yields

∇qα(λk) = −
[

λk − arg maxy

(
q(y)− 1

2α‖y − λk‖2
)

α

]
.

Substituting in λk+1 we see that

∇qα(λk) =
λk+1 − λk

α
,

which means we can interpret the Lagrange multiplier update as the gradient ascent step

λk+1 = λk + α∇qα(λk),

where ∇qα(λk) = (b−Auk+1 −Bzk+1).
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3.2 Split Bregman and ADMM Equivalence

3.2.1 Alternating Minimization

The split Bregman algorithm uses an alternating minimization approach to minimize (14), namely
iterating

zk+1 = arg min
z∈Rn

F (z) + 〈λk,−Bz〉+
α

2
‖b−Auk −Bz‖2 (19)

uk+1 = arg min
u∈Rm

H(u) + 〈λk,−Au〉+
α

2
‖b−Au−Bzk+1‖2 (20)

T times and then updating

λk+1 = λk + α(b−Auk+1 −Bzk+1). (21)

When T = 1, this becomes ADMM (4), which can be interpreted as alternately minimizing the
augmented Lagrangian Lα(z, u, λ) with respect to z, then u and then updating the Lagrange mul-
tiplier λ. A similar derivation motivated by the augmented Lagrangian can be found in [3]. Note
that this equivalence between split Bregman and ADMM is not in general true when the constraints
are not linear.

Also note the asymmetry of the u and z updates. If we switch the order, first minimizing over
u, then over z, we obtain a valid but different incarnation of ADMM, which we are not considering
here.

3.2.2 Convergence Theory

In [23], Eckstein and Bertsekas demonstrate that ADMM can be interpreted as an application of the
proximal point algorithm. They use this observation to prove a convergence result for ADMM that
allows for approximate computation of zk+1 and uk+1, as well some over or under relaxation. Their
theorem as stated applies to (P0) in the case when A = I, b = 0 and B is an arbitrary full column
rank matrix, but the same result also holds under slightly weaker assumptions. In particular, we
can let b be nonzero and replace A = I by the assumption that H(u) + ‖Au‖2 is strictly convex.
Note the latter assumption holds in particular when A has full column rank. We restate their result
as it applies to (P0) under the slightly weaker assumptions and in the case without over or under
relaxation factors.

Theorem 3.1. (Eckstein, Bertsekas [23]) Consider the problem (P0) where F and H are closed
proper convex functions, B has full column rank and H(u) + ‖Au‖2 is strictly convex. Let λ0 ∈ Rd

and u0 ∈ Rm be arbitrary and let α > 0. Suppose we are also given sequences {µk} and {νk} such
that µk ≥ 0, νk ≥ 0,

∑∞
k=0 µk < ∞ and

∑∞
k=0 νk < ∞. Suppose that

‖zk+1 − arg min
z∈Rn

F (z) + 〈λk,−Bz〉+
α

2
‖b−Auk −Bz‖2‖ ≤ µk (22)

‖uk+1 − arg min
u∈Rm

H(u) + 〈λk,−Au〉+
α

2
‖b−Au−Bzk+1‖2‖ ≤ νk (23)

λk+1 = λk + α(b−Auk+1 −Bzk+1). (24)

If there exists a saddle point of L(z, u, λ) (7), then zk → z∗, uk → u∗ and λk → λ∗, where
(z∗, u∗, λ∗) is such a saddle point. On the other hand, if no such saddle point exists, then at least
one of the sequences {uk} or {λk} must be unbounded.
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The proof, which requires only very minor changes to the one presented in [23], is partially
sketched in Appendix A.

Note that the convergence result carries over to the split Bregman algorithm in the case when
the constraints are linear and when only one inner iteration is used.

3.2.3 Dual Interpretation

Some additional insight comes from the dual interpretation of ADMM as Douglas-Rachford [22]
splitting applied to the dual problem (Q0), which we recall can be written as

max
y∈Rd

−F ∗(BT y) + 〈y, b〉 −H∗(AT y).

Define operators Ψ and φ by

Ψ(y) = B∂F ∗(BT y)− b (25)

φ(y) = A∂H∗(AT y). (26)

Douglas Rachford splitting is a classical method for solving parabolic problems of the form

dλ

dt
+ f(λ) + g(λ) = 0

by iterating

λ̂k+1 − λk

∆t
+ f(λ̂k+1) + g(λk) = 0

λk+1 − λk

∆t
+ f(λ̂k+1) + g(λk+1) = 0,

where ∆t is the time step. By iterating to steady state, this can also be used to solve

f(λ) + g(λ) = 0.

Solving the dual problem (Q0) is equivalent to finding λ such that zero is in the subdifferential of
−q at λ, which is equivalent to solving

0 ∈ Ψ(λ) + φ(λ). (27)

By formally applying Douglas Rachford splitting to (27) with α as the time step, we get

0 ∈ λ̂k+1 − λk

α
+ Ψ(λ̂k+1) + φ(λk), (28a)

0 ∈ λk+1 − λk

α
+ Ψ(λ̂k+1) + φ(λk+1). (28b)

Following the arguments by Glowinski and Le Tallec [30] and Eckstein and Bertsekas [23], we can
show that ADMM satisfies (28). Define

λ̂k+1 = λk + α(b−Bzk+1 −Auk).

11



Then from the optimality condition for (19),

BT λ̂k+1 ∈ ∂F (zk+1).

Then from the definitions of subgradient and convex conjugate it follows that

zk+1 ∈ ∂F ∗(BT λ̂k+1).

Multiplying by B and subtracting b we have

Bzk+1 − b ∈ B∂F ∗(BT λ̂k+1)− b = Ψ(λ̂k+1).

The analogous argument starting with the optimality condition for (20) yields

Auk+1 ∈ A∂H∗(AT λk+1) = φ(λk+1).

With λk+1 defined by (21) and noting that Auk ∈ φ(λk), we see that the ADMM procedure satisfies
(28).

It’s important to note that Ψ and φ are not necessarily single valued, so there could possibly be
multiple ways of formally satisfying the Douglas Rachford splitting as written in (28). For example,
in the maximally decoupled case where H(u) = 0, φ can be defined by

φ(y) =

{
Im(A) for y such that AT y = 0
∅ otherwise

.

The method of multipliers applied to either (P1) or (P2) with Pλ0 = λ0 is equivalent to the
proximal point method applied to the dual. This would yield

λk+1 = λ̂k+1 = arg max
y∈Rd

−F ∗(BT Py) + 〈Py, b〉 − 1
2α
‖y − λk‖2

with Pλk = λk. This also formally satisfies (28), but the λk+1 updates are different from ADMM
and ususally more difficult to compute. The particular way in which ADMM satisfies (28), rewritten
in terms of the resolvents (I + αΨ)−1 and (I + αφ)−1 is

λ̂k+1 = (I + αΨ)−1(λk − αAuk) (29)

λk+1 = (I + αφ)−1(λ̂k+1 + αAuk) (30)

Since uk by assumption is uniquely determined, Auk is well defined. One way to argue the resolvents
are well defined is using monotone operator theory [25]. Briefly, a multivalued operator Φ : Rd → Rd

is monotone if
〈w − w′, u− u′〉 ≥ 0 whenever w ∈ Φ(u) , w′ ∈ Φ(u′) .

The operator Φ is maximal monotone if in addition to being monotone, its graph {(u,w) ∈ Rd ×
Rd|w ∈ Φ(u)} is not strictly contained in the graph for any other monotone operator. From a
result by Minty [40], if Φ is maximal monotone, then for any α > 0, (I + αΦ)−1 is single valued
and defined on all of Rd ([23], [56]). Then from a result by Rockafellar ([48] 31.5.2), Φ is maximal
monotone if it is the subdifferential of a closed proper convex function. Since Ψ(y) and φ(y) were

12



defined to be subdifferentials of F ∗(BT y)− 〈y, b〉 and H∗(AT y) respectively, the resolvents in (29)
are well defined.

It’s possible to rewrite the updates in (29) completely in terms of the dual variable. Combining
the two steps yields

λk+1 = (I + αφ)−1
(
(I + αΨ)−1(λk − αAuk) + αAuk

)
. (31)

Suppose
yk = λk + αAuk.

Since Auk ∈ φ(λk), yk ∈ (I + αφ)λk. So λk = (I + αφ)−1yk. We can use this to rewrite (31) as

λk+1 = (I + αφ)−1
[
(I + αΨ)−1

(
2(I + αφ)−1 − I

)
+

(
I − (I + αφ)−1

)]
yk.

Now let
yk+1 =

[
(I + αΨ)−1

(
2(I + αφ)−1 − I

)
+

(
I − (I + αφ)−1

)]
yk. (32)

Recalling the definition of λ̂k+1 and λk+1

yk+1 =
(
(I + αΨ)−1(λk − αAuk) + αAuk

)

= λ̂k+1 + αAuk

= λk + α(b−Bzk+1)

= λk+1 + αAuk+1.

Thus assuming we initialize y0 = λ0 + αAu0 with u0 ∈ ∂H∗(AT λ0), yk = λk + αAuk and λk =
(I+αφ)−1yk hold for all k ≥ 0. So ADMM is equivalent to iterating (32). This is the representation
used by Eckstein and Bertsekas [23] and referred to as the Douglas-Rachford recursion. Note that
in the maximally decoupled case, (I + αφ)−1 reduces to the projection matrix P , which projects
onto Im(A)⊥.

3.3 Decoupling Variables Using AMA and BOS

The quadratic penalty terms of the form α
2 ‖Ku− f‖2 that appear in the ADMM iterations couple

the variables in a way that can make the algorithm computationally expensive. If K has special
structure, this may not be a problem. For example, K could be diagonal. Or it might be possible
to diagonalize KT K using fast transforms like the FFT or the DCT. Alternatively, the ADMM
iterations can be modified to avoid the difficulty caused by the ‖Ku‖2 term. In this section we
show how AMA (5) and BOS (6) accomplish this by modifying the ADMM iterations in different
ways. AMA essentially removes the offending quadratic penalty, while BOS adds an additional
quadratic penalty chosen so that it cancels the ‖Ku‖2 term. A strict convexity assumption is
required to apply AMA, but not for BOS.

3.3.1 AMA Applied to Primal Problem

In order to apply AMA to (P0), either F or H must be strictly convex. Assume for now that H(u)
is strictly convex with modulus σ > 0. The additional strict convexity assumption is needed so
that the step of minimizing the non-augmented Lagrangian is well defined.

13



Recalling the definitions of Ψ and φ (25), proximal forward backward splitting applied to the
dual problem (Q0) yields

λk+1 = (I + αΨ)−1(I − αφ)λk, (33)

where λ0 is arbitrary. Note that φ(λk) is single valued because of the strict convexity of H(u). Also,
(I +αΨ)−1 is well defined because Ψ is maximal monotone. So (33) determines λk+1 uniquely given
λk.

As Tseng shows in [56], (33) is equivalent to

uk+1 = arg min
u∈Rm

H(u)− 〈AT λk, u〉 (34a)

zk+1 = arg min
z∈Rn

F (z)− 〈BT λk, z〉+
α

2
‖b−Auk+1 −Bz‖2 (34b)

λk+1 = λk + α(b−Auk+1 −Bzk+1). (34c)

To see the equivalence, note that optimality of uk+1 implies AT λk ∈ ∂H(uk+1). It follows that

Auk+1 ∈ A∂H∗(AT λk) = φ(λk).

Similarly, optimality of zk+1 implies

Bzk+1 − b ∈ Ψ(λk+1).

Since λk+1 = λk + α(b−Auk+1 −Bzk+1),

0 ∈ λk+1 + αΨ(λk+1)− λk + αφ(λk),

from which (33) follows.
Tseng shows that {uk, zk} converges to a solution of (P0) and {λk} converges to a solution of

(Q0) if α, which he allows to depend on k, satisfies the time step restriction

ε ≤ αk ≤ 4σ

‖A‖2
− ε (35)

for some ε ∈ (0, 2σ
‖A‖2 ).

It is tempting to try to extend AMA to the non strictly convex case by adding an extra variable.
Consider applying AMA to (1) where J is closed proper convex but not strictly convex. A step in
the method of multipliers applied this problem would require minimizing J(u) + 〈λk, f − Ku〉 +
α
2 ‖f −Ku‖2. To decouple the variables coupled by the matrix K, we can consider rewriting the
problem as

min
z ∈ Rm, u ∈ Rm

Ku = f
z = u

J(z) +
c

2
‖z − u‖2,

Where c > 0. The Lagrangian for this problem is

Lc(z, u, λ, q) = J(z) +
c

2
‖z − u‖2 + 〈λ, f −Ku〉+ 〈q, z − u〉,
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and the augmented Lagrangian is

Lc,α(z, u, λ, q) = Lc(z, u, λ, q) +
α

2
‖f −Ku‖2 +

α

2
‖z − u‖2.

Since Lc is strictly convex in u, we can consider applying an AMA-like approach where we al-
ternately minimize Lc with respect to u, then Lc,α with respect to z, and finally update the
multipliers λ and q. Although empirically this works for α sufficiently small at least in the case
where J(z) = ‖z‖1, it’s important to note that this isn’t actually an application of AMA. Because
of the coupling of z and u, J(z) + c

2‖z − u‖2 cannot be written as F (z) + H(u) with H(u) strictly
convex. So the convergence theory for AMA doesn’t immediately extend to this application.

3.3.2 BOS Applied to Primal Problem

The BOS algorithm applied to (1) was interpreted by Zhang, Burger, Bresson and Osher in [61] as
an inexact Uzawa method. It modifies the augmented Lagrangian not by removing the quadratic
penalty, but by adding an additional proximal-like penalty chosen so that the ‖Ku‖2 term cancels
out. It simplifies the minimization step by decoupling the variables coupled by the constraint
matrix K, and it doesn’t require the functional J to be strictly convex. In a sense it combines the
best advantages of Rockafellar’s proximal method of multipliers [47] and Daubechies, Defrise and
De Mol’s surrogate functional technique [20]. Recall that the method of multipliers (2) applied to
(1) requires solving

uk+1 = arg min
u∈Rm

J(u) + 〈λk, f −Ku〉+
α

2
‖f −Ku‖2.

The inexact Uzawa method in [61] modifies that objective functional by adding the term

1
2
〈u− uk, (

1
δ
− αKT K)(u− uk)〉,

where δ is chosen such that 0 < δ < 1
α‖KT K‖ in order that (1

δ − αKT K) is positive definite.
Combining and rewriting terms yields

uk+1 = arg min
u∈Rm

J(u) +
1
2δ
‖u− uk + αδKT (Kuk − f − λk

α
)‖2.

The new penalty keeps uk+1 close to a linear approximation of the old penalty evaluated at uk,
and the iteration is simplified because the variables u are no longer coupled together by K. An
important example is the case when J(u) = ‖u‖1, in which case the decoupled functional can be
explicitly minimized by a shrinkage formula discussed in section 4.2. In [61], the algorithm was
combined with split Bregman and applied to more complicated problems such as one involving
nonlocal total variation regularization. Applying the same decoupling trick to ADMM iterations
means selectively replacing some quadratic penalties of the form α

2 ‖Ku− f‖2 with their linearized
counterparts 1

2δ‖u−uk+αδKT (Kuk−f)‖2. An example application to constrained TV minimization
is given in section 4.7. The convergence theory from [61] has been extended by Zhang to this
splitting application in [60].
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4 Example Applications

Here we give a few examples of how to write several optimization problems from image processing
in the form (P0) so that application of ADMM takes advantage of the separable structure of the
problems and produces efficient, numerically stable methods. The example problems that follow
involve minimizing combinations of the l1 norm, the square of the l2 norm, and a discretized version
of the total variation seminorm. ADMM applied to these problems often requires solving a Poisson
equation or l1-l2 minimization. So we first define the discretizations used, the discrete cosine
transform, which can be used for solving the Poisson equations, and also the shrinkage formulas
that solve the l1-l2 minimization problems.

4.1 Notation Regarding Discretizations Used

A straightforward way to define a discretized version of the total variation seminorm is by

‖u‖TV =
Mr∑

p=1

Mc∑

q=1

√
(D+

1 up,q)2 + (D+
2 up,q)2 (36)

for u ∈ RMr×Mc . Here, D+
k represents a forward difference in the kth index and we assume

Neumann boundary conditions. It will be useful to instead work with vectorized u ∈ RMrMc and to
rewrite ‖u‖TV . The convention for vectorizing an Mr by Mc matrix will be to associate the (p, q)
element of the matrix with the (q − 1)Mr + p element of the vector. Consider a graph G(E ,V)
defined by an Mr by Mc grid with V = {1, ..., MrMc} the set of m = MrMc nodes and E the set of
e = 2MrMc −Mr −Mc edges. Assume the nodes are indexed so that the node corresponding to
element (p, q) is indexed by (q−1)Mr +p. The edges, which will correspond to forward differences,
can be indexed arbitrarily. Define D ∈ Re×m to be the edge-node adjacency matrix for this graph.
So for a particular edge η ∈ E with endpoint indices i, j ∈ V and i < j, we have

Dη,k =





−1 for k = i,

1 for k = j,

0 for k 6= i, j.

(37)

Also define E ∈ Re×m such that

Eη,k =

{
1 if Dη,k = −1,

0 otherwise.
(38)

The matrix E will be used to identify the edges used in each forward difference. Now define a norm
on Re by

‖w‖E =
m∑

k=1

(√
ET (w2)

)

k

. (39)

With this notation the discrete TV seminorm defined above (36) can be written as

‖u‖TV = ‖Du‖E .

The matrix D is a discretization of the gradient and −DT is the corresponding discretization of
the divergence. The product −DT D defines the discrete Laplacian 4 corresponding to Neumann
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boundary conditions. It is diagonalized by the basis for the discrete cosine transform. Let g̃ ∈
RMr×Mc denote the discrete cosine transform of g ∈ RMr×Mc defined by

g̃s,t =
Mr∑

p=1

Mc∑

q=1

gp,q cos
(

π

Mr
(p− 1

2
)s

)
cos

(
π

Mc
(q − 1

2
)t

)

Like the fast Fourier transform, this can be computed with O(MrMc log(MrMc)) complexity. The
discrete Laplacian can be computed by

(̃4g)s,t =
(

2 cos
(

π(s− 1)
Mr

)
+ 2 cos

(
π(t− 1)

Mc

)
− 4

)
g̃s,t.

4.2 Shrinkage Formulas

When the original functional involves the l1 norm or the TV seminorm, application of split Bregman
or ADMM will result in l1-l2 minimization problems that can be solved by soft thresholding, or
shrinkage formulas, which will be defined in this section. Consider

min
w

∑

i

(
µ‖wi‖+

1
2
‖wi − fi‖2

)
, (40)

where wi, fi ∈ Rsi . This decouples into separate problems of the form minwi Θi(wi) where

Θi(wi) = µ‖wi‖+
1
2
‖wi − fi‖2. (41)

Consider the case when ‖fi‖ ≤ µ. Then

Θi(wi) = µ‖wi‖+
1
2
‖wi‖2 +

1
2
‖fi‖2 − 〈wi, fi〉

≥ µ‖wi‖+
1
2
‖wi‖2 +

1
2
‖fi‖2 − ‖wi‖‖fi‖

=
1
2
‖wi‖2 +

1
2
‖fi‖2 + ‖wi‖(µ− ‖fi‖)

≥ 1
2
‖fi‖2 = Θi(0),

which implies wi = 0 is the minimizer when ‖fi‖ ≤ µ. In the case where ‖fi‖ > µ, let

wi = (‖fi‖ − µ)
fi

‖fi‖ ,

which is nonzero by assumption. Then Θ is differentiable at wi and

∇Θ(wi) = µ
wi

‖wi‖ + wi − fi,

which equals zero because
wi

‖wi‖ =
fi

‖fi‖ .
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So altogether, the minimizer of (40) is given by

wi =

{
wi = (‖fi‖ − µ) fi

‖fi‖ if ‖fi‖ > µ

0 otherwise
. (42)

When fi, wi ∈ R are the components of f, w ∈ Rs, fi

‖fi‖ is just sign (fi). Define the scalar
shrinkage operator S by

Sµ(f)γ =

{
fγ − µ sign (fγ) if |fγ | > µ

0 otherwise
, (43)

where γ = 1, 2, ..., s. This can be interpreted as solving the minimization problem,

Sµ(f) = arg min
w∈Rs

µ‖w‖1 +
1
2
‖w − f‖2.

The formula (42) can be interpreted as wi = Sµ(‖fi‖) fi

‖fi‖ , which is to say scalar shrinkage of ‖fi‖
in the direction of fi. Note also that the problem of minimizing over w ∈ Re

µ‖w‖E +
1
2
‖w − z‖2, (44)

which arises in TV minimization problems, is of the form (40). In the notation of the previous
section, it can be written as

min
w∈Re

m∑

k=1

[
µ

(√
ET (w2)

)

k

+
1
2

(
ET (w − z)2

)
k

]
.

Let
s = E

√
ET (z)2.

Similar to the scalar case, by applying (42) for γ = 1, 2, ..., e we can define the operator S̃µ(z) that
solves (44) by

S̃µ(z)γ =

{
zγ − µ

zγ

sγ
if sγ > µ

0 otherwise
. (45)

4.3 ADMM Applied to Constrained TV Minimization

One of the example applications of split Bregman that was presented in [32] is constrained total
variation minimization. Here we consider the same example but in the context of applying ADMM
to (P0). Consider

min
u ∈ Rm

Ku = f

‖u‖TV ,

which can be rewritten using the norm ‖ · ‖E defined in section 4.1 as

min
u ∈ Rm

Ku = f

‖Du‖E . (46)
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Writing this in the form of (P0) while taking advantage of the separable structure, we let

z = Du B =
[−I

0

]
A =

[
D
K

]
b =

[
0
f

]
.

Now the problem can be written
min

z ∈ Rn, u ∈ Rm

Bz + Au = b

‖z‖E .

We assume that ker (D)
⋂

ker (K) = {0}, or equivalently that ker (K) does not contain the vector
of all ones. This ensures that A has full column rank, so Theorem 3.1 can be used to guarantee
convergence of ADMM applied to this problem. Introducing a dual variable λ, the augmented
Lagrangian is

‖z‖E + 〈λ, b−Bz −Au〉+
α

2
‖b−Bz −Au‖2.

Let λ =
[
p
q

]
and rewrite the augmented Lagrangian as

‖z‖E + 〈p, z −Du〉+ 〈q, f −Ku〉+
α

2
‖z −Du‖2 +

α

2
‖f −Ku‖2.

Moving linear terms into the quadratic terms, the ADMM iterations are given by

zk+1 = arg min
z
‖z‖E +

α

2
‖z −Duk +

pk

α
‖2

uk+1 = arg min
u

α

2
‖Du− zk+1 − pk

α
‖2 +

α

2
‖Ku− f − qk

α
‖2

pk+1 = pk + α(zk+1 −Duk+1)

qk+1 = qk + α(f −Kuk+1),

where p0 = q0 = 0, u0 is arbitrary and α > 0. Note that this example corresponds to the maximally
decoupled case, in which the u update has the interesting interpretation of enforcing the constraint
AT λ = 0. Here, since DT p0 + KT q0 = 0 and by the optimality condition for uk+1, it follows that
DT pk + KT qk = 0 for all k. In particular, this makes the qk+1 update unnecessary. The explicit
ADMM steps reduce to

zk+1 = S̃ 1
α
(Duk − pk

α
)

uk+1 = (−4+ KT K)−1

(
DT zk+1 +

DT pk

α
+ KT f +

KT qk

α

)

= (−4+ KT K)−1
(
DT zk+1 + KT f

)

pk+1 = pk + α(zk+1 −Duk+1).

Since the discrete cosine basis diagonalizes the discrete Laplacian for Neumann boundary conditions,
this can be efficiently solved whenever KT K can be simultaneously diagonalized.
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4.4 ADMM Applied to TV-l1

The same decomposition principle applied to constrained TV minimization also applies to the
discrete TV-l1 minimization problem ([11], [12]),

min
u∈Rm

‖u‖TV + β‖Ku− f‖1,

which can be rewritten as
min
u∈Rm

‖Du‖E + β‖Ku− f‖1. (47)

Writing this in the form of (P0), we let

z =
[
w
v

]
=

[
Du

Ku− f

]
B = −I A =

[
D
K

]
b =

[
0
f

]
.

Again assume that ker (D)
⋂

ker (K) = {0}, or ker (K) does not contain the vector of all ones. With
this assumption, Theorem 3.1 again applies. Introducing the dual variable λ, which we decompose

into λ =
[
p
q

]
, the augmented Lagrangian can be written

‖w‖E + β‖v‖1 + 〈p, w −Du〉+ 〈q, v −Ku + f〉+
α

2
‖w −Du‖2 +

α

2
‖v −Ku + f‖2.

Minimizing over z would correspond to simultaneously minimizing over w and v. But no term in
the augmented Lagrangian contains both w and v, so it is equivalent to separately minimizing over
w and over v.

The ADMM iterations are given by

wk+1 = arg min
w
‖w‖E +

α

2
‖w −Duk +

pk

α
‖2

vk+1 = arg min
v

β‖v‖1 +
α

2
‖v −Kuk + f +

qk

α
‖2

uk+1 = arg min
u

α

2
‖Du− wk+1 − pk

α
‖2 +

α

2
‖Ku− vk+1 − f − qk

α
‖2

pk+1 = pk + α(wk+1 −Duk+1)

qk+1 = qk + α(vk+1 −Kuk+1 + f),

where p0 = q0 = 0, u0 is arbitrary and α > 0. Again, corresponding to the AT λ = 0 constraint in
the dual problem, since DT p0 + KT q0 = 0 and by the optimality condition for uk+1, it follows that
DT pk + KT qk = 0 for all k. The explicit formulas for wk+1, vk+1 and uk+1 are given by

wk+1 = S̃ 1
α
(Duk − pk

α
)

vk+1 = S β
α
(Kuk − f − qk

α
)

uk+1 = (−4+ KT K)−1

(
DT wk+1 +

DT pk

α
+ KT (vk+1 + f) +

KT qk

α

)

= (−4+ KT K)−1
(
DT wk+1 + KT (vk+1 + f)

)
.
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f û

Figure 1: TV-l1 Minimization of 512× 512 Synthetic Image

Image Size Iterations Time
64× 64 40 1s
128× 128 51 5s
256× 256 136 78s
512× 512 359 836s

Table 1: Iterations and Time Required for TV-l1 Minimization

To get a sense of the speed of this algorithm, we let K = I and test it numerically on a synthetic
grayscale image similar to one from [11]. The intensities range from 0 to 255 and the image is scaled
to sizes 64× 64, 128× 128, 256× 256 and 512× 512. Let β = .6, .3, .15 and .075 for the different
sizes respectively. Similarly let α = .02, .01, .005 and .0025. Let û denote uk at the first iteration
k > 1 such that ‖uk − uk−1‖∞ ≤ .5, ‖Duk − wk‖∞ ≤ .5 and ‖vk − uk + f‖∞ ≤ .5. The original
image f and the result û are shown in Figure 1. The number of iterations required and time to
compute on an average PC running a MATLAB implementation are tabulated in Table 1.

4.5 ADMM Applied to TV-l2

An example where there is more than one effective way to apply ADMM is the TV-l2 minimization
problem

min
u∈Rm

‖u‖TV +
λ

2
‖Ku− f‖2,

which can be rewritten as
min
u∈Rm

‖Du‖E +
λ

2
‖Ku− f‖2. (48)

The splitting used by Goldstein and Osher for this problem in [32] can be written in the form of
(P0) by letting

z = Du B = −I A = D b = 0.
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Note that F (z) = ‖z‖E and H(u) = λ
2‖Ku− f‖2. Introducing the dual variable p, the augmented

Lagrangian can be written

‖z‖E +
λ

2
‖Ku− f‖2 + 〈p, z −Du〉+

α

2
‖z −Du‖2.

Assume again that ker (D)
⋂

ker (K) = {0}, or ker (K) does not contain the vector of all ones. This
ensures that λ

2‖Ku − f‖2 + ‖Du‖2 is strictly convex, so Theorem 3.1 applies and guarantees the
convergence of ADMM.

The ADMM iterations are given by

zk+1 = arg min
z
‖z‖E +

α

2
‖z −Duk +

pk

α
‖2

uk+1 = arg min
u

λ

2
‖Ku− f‖2 +

α

2
‖Du− zk+1 − pk

α
‖2 (49)

pk+1 = pk + α(zk+1 −Duk+1).

The explicit formulas for zk+1 and uk+1 are

zk+1 = S̃ 1
α
(Duk − pk

α
)

uk+1 = (−α4+ λKT K)−1
(
λKT f + αDT zk+1 + DT pk

)
.

Another approach is to apply ADMM to TV-l2 as it was applied to TV-l1. This corresponds
to the maximally decoupled case and involves adding new variables not just for the TV term but
also for the l2 term when rewriting (48) in the form of (P0). Let

z =
[
w
v

]
=

[
Du

Ku− f

]
B = −I A =

[
D
K

]
b =

[
0
f

]
.

Note that F (z) = ‖w‖E+ λ
2‖v‖2 , H(u) = 0 and A has full column rank. The augmented Lagrangian

can be written

‖w‖E +
λ

2
‖v‖2 + 〈p, w −Du〉+ 〈q, v −Ku + f〉+

α

2
‖w −Du‖2 +

α

2
‖v −Ku + f‖2.

As with the TV-l1 example, minimizing over z would correspond to simultaneously minimizing over
w and v, which here is equivalent to separately minimizing over w and over v.

The ADMM iterations are then

wk+1 = arg min
w
‖w‖E +

λ

2
‖w −Duk +

pk

α
‖2

vk+1 = arg min
v

λ

2
‖v‖2 +

α

2
‖v −Kuk + f +

qk

α
‖2

uk+1 = arg min
u

α

2
‖Du− wk+1 − pk

α
‖2 +

α

2
‖Ku− vk+1 − f − qk

α
‖2

pk+1 = pk + α(wk+1 −Duk+1)

qk+1 = qk + α(vk+1 −Kuk+1 + f).
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The formulas for wk+1, vk+1 and uk+1 are

wk+1 = S̃ 1
α
(Duk − pk

α
)

vk+1 =
1

λ + α
(αKuk − αf − qk)

uk+1 = (−4+ KT K)−1
(
KT f + DT wk+1 + KT vk+1

)
.

By substituting vk+1 into the update for uk+1 and using the fact that DT pk + KT qk = 0 for all k,
the updates for q and v can be eliminated. The remaining iterations are

wk+1 = S̃ 1
α
(Duk − pk

α
)

uk+1 = (−4+ KT K)−1

(
λKT f

λ + α
+ DT wk+1 +

DT pk

λ + α
+

αKT Kuk

λ + α

)

pk+1 = pk + α(wk+1 −Duk+1).

This alternative application of ADMM to TVL2 is very similar to the first(49), differing only in the
update for uk+1. Empirically, at least in the denoising case for K = I, the two approaches perform
similarly. But since the algorithm is neither simplified nor improved by the additional decoupling
of the l2 term, there is no compelling reason to do it.

An approach suggested in [32] for speeding up the iterations of (49) is to only approximately
solve for uk+1 using several Gauss Seidel iterations instead of solving a Poisson equation. Conver-
gence of the resulting approximate algorithm could be guaranteed by Theorem 3.1 if we knew that
the sum of the norms of the errors was finite, but this is a difficult thing to know in advance. Since
H(u) was strictly convex in the first method for TV-l2, an alternative approach to simplifying the
iterations is to apply AMA.

4.6 AMA Applied to TV-l2

Consider again the TV-l2 problem (48) in the denoising case where K = I. Since H(u) is strictly
convex, we can apply AMA to obtain a similar algorithm that doesn’t require solving the Poisson
equation. Recall the Lagrangian for this problem is given by

‖z‖E +
λ

2
‖u− f‖2 + 〈p, z −Du〉.

The AMA iterations are

uk+1 = arg min
u

λ

2
‖u− f‖2 − 〈DT pk, u〉

zk+1 = arg min
z
‖z‖E +

α

2
‖z −Duk+1 +

pk

α
‖2 (50)

pk+1 = pk + α(zk+1 −Duk+1).
(51)
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The explicit formulas for zk+1 and uk+1 are

uk+1 = f +
DT pk

λ

zk+1 = S̃ 1
α
(Duk+1 − pk

α
).

Note that α must satisfy the time step restriction from (35). Since H(u) is strictly convex with
modulus λ

2 , a safe choice for α is to let α ≤ λ
‖D‖2 . We can bound ‖D‖2 by the largest eigenvalue

of DT D, which is minus the discrete Laplacian corresponding to Neumann boundary conditions.
The matrix DT D from its definition has only the numbers 2, 3 and 4 on its main diagonal. All
the off diagonal entries are 0 or −1, and the rows sum to zero. Therefore, by the Gersgorin Circle
Theorem, all eigenvalues of DT D are in the interval [0, 8]. Thus ‖D‖2 ≤ 8, so we can take α = λ

8 .
For this example, since it is already efficient to solve the Poisson equation using the discrete

cosine transform, the benefit of slightly faster iterations is slightly outweighed by the reduced
stability and the additional iterations required.

4.7 BOS Applied to Constrained TV

Consider again the constrained TV minimization problem (46) but now with a more complicated
matrix K that makes the update for uk+1

uk+1 = arg min
u

α

2
‖Du− zk+1 − pk

α
‖2 +

α

2
‖Ku− f − qk

α
‖2

difficult to compute. Applying the main idea from the BOS algorithm, we can handle the Ku = f
constraint in a more explicit manner by adding 1

2〈u − uk, (1
δ − αKT K)(u − uk)〉 to the objective

functional for the uk+1 update, with 0 < δ < 1
α‖KT K‖ . This yields

uk+1 = arg min
u

α

2
‖Du− wk+1 − pk

α
‖2 +

1
2δ
‖u− uk + αδKT (Kuk − f − qk

α
)‖2

= (
1
δ
− α4)−1

(
αDT wk+1 + DT pk +

1
δ
uk − αKT

(
Kuk − f − qk

α

))
.

Altogether, the modified ADMM iterations are given by

zk+1 = S̃ 1
α
(Duk − pk

α
)

uk+1 = (
1
δ
− α4)−1

(
αDT wk+1 + DT pk +

1
δ
uk − αKT

(
Kuk − f − qk

α

))

pk+1 = pk + α(zk+1 −Duk+1)

qk+1 = qk + α(f −Kuk+1).

Although it no longer follows that DT pk + KT qk = 0 as it did for ADMM applied to constrained
TV, all updates except for the uk+1 step remain the same.
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h û

Figure 2: Constrained TV minimization of 32× 32 image subject to constraints on 4 Haar wavelet
coefficients

As a numerical test, we will apply this algorithm to a TV wavelet inpainting type problem
[16]. Let K = Xψ, where X is a row selector and ψ is the matrix corresponding to the translation
invariant Haar wavelet transform. For a 2r × 2r image, there are (1 + 3r)22r Haar wavelets when
all translations are included. The rows of the (1 + 3r)22r × 22r matrix ψ contain these wavelets
weighted such that ψT ψ = I. X is a diagonal matrix with ones and zeros on the diagonal. For
a simple example, let h be a 32 × 32 image that is a linear combination of four Haar wavelets.
Let X select the corresponding wavelet coefficients and define f = Xψh. Also choose α = .01 and
δ = 50. Let û = u10000, the result after 10000 iterations. Figure 2 shows h and û. Although û
may look unusual, it satisfies the four constraints and does indeed have smaller total variation.
‖h‖TV = 1.25× 104 whereas ‖û‖TV = 1.04× 104.
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A ADMM Convergence Proof

This proof of theorem 3.1 is due to Eckstein and Bertsekas and is taken from their paper [23]. Only
a few minor changes are needed to accomodate the slightly weaker assumptions made here. In
other ways, however, this version is less general because it ignores the relaxation factors ρk in [23],
which here we take to be one. The entire proof is not reproduced here. Just enough is sketched to
make the changes clear.

Proof. Let JαΨ and Jαφ be shorthand notation for the resolvents (I + αΨ)−1 and (I + αφ)−1

respectively. Also define

yk = λk + αAuk , k ≥ 0

λ̂k = λk + α(b−Bzz+1 −Auk), k ≥ 0
ak = α‖B‖µk , k ≥ 0

β0 = ‖λ0 − Jαφ(λ0 − αAu0)‖
βk = α‖A‖νk, k ≥ 1

The main outline of Eckstein and Bertsekas’ proof is to show that

(Y 1) ‖λk − Jαφ(yk)‖ ≤ βk

(Y 2) ‖λ̂k − JαΨ(2λk − yk)‖ ≤ ak

(Y 3) yk+1 = yk + λ̂k − λk

hold for all k ≥ 0. Then assuming there exists a saddle point of L(z, u, λ) (7), they apply an earlier
theorem in their paper to say that {yk} converges. This theorem still applies here with the slightly
different assumptions. Finally they argue that zk → z∗, uk → u∗ and λk → λ∗, where (z∗, u∗, λ∗)
is a saddle point of L(z, u, λ). Some changes are made to this last part.

Noting that (Y 1) is true for k = 0, they suppose it is true at iteration k and show it follows
that (Y 2) is true at k. Define

z̄k = arg min
z∈Rn

F (z) + 〈λk,−Bz〉+
α

2
‖b−Bz −Auk‖2

and
λ̃k = λk + α(b−Bz̄k −Auk).

Note that z̄k is uniquely determined because B has full column rank. From the optimality conditions
for the z̄k update, it follows that

z̄k ∈ ∂F ∗(BT λ̃k),

and therefore that
Bz̄k − b ∈ Ψ(λ̃k).

Since
λ̃k + α(Bz̄k − b) = λk − αAuk ∈ λ̃k + αΨ(λ̃k),

it follows that
λ̃k = JαΨ(λk − αAuk) = JαΨ(2λk − yk).
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Then

‖λ̂k − JαΨ(2λk − yk)‖ = ‖λ̂k − λ̃k‖ = α‖B(zk+1 − z̄k)‖ ≤ α‖B‖‖zk+1 − z̄k‖ ≤ α‖B‖µk = ak.

Thus (Y 2) holds at iteration k. Next they assume (Y 1) and (Y 2) hold at k and define

sk = yk + λ̂k − λk

= λk + α(b−Bzk+1)

ūk = arg min
u∈Rm

H(u) + 〈λk,−Au〉+
α

2
‖b−Bzk+1 −Au‖2

s̃k = λk + α(b−Bzk+1 −Aūk).

(Y 3) holds trivially since

yk+1 = λk+1 + αAuk+1 = λk + α(b−Bzk+1) = yk + λ̂k − λk.

Next, from the assumption that H(u) + ‖Au‖2 is strictly convex, it follows that ūk is uniquely
determined. The optimality condition for the ūk update yields

ūk ∈ ∂H∗(AT s̃k)

from which it follows that
Aūk ∈ φ(s̃k).

Since
sk = s̃k + αAūk ∈ s̃k + αφ(s̃k),

we have that
s̃k = Jαφ(sk).

Noting that yk+1 = sk,

‖λk+1 − Jαφ(yk+1)‖ = ‖λk+1 − Jαφ(sk)‖ = ‖λk+1 − s̃k‖ = α‖A(uk+1 − ūk)‖ ≤ α‖A‖νk = βk,

which means (Y 1) holds at k + 1. By induction, (Y 1), (Y 2) and (Y 3) hold for all k. Moreover, the
sequences {βk} and {ak} are summable by definition. Taken together this satisfies the requirements
of a previous theorem in ([23] p. 307), Theorem 7. If there exists a saddle point L(z, u, λ), then in
particular there exists an optimal dual solution, in which case Theorem 7 implies that yk converges
to y∗ = λ∗ + αw∗ such that w∗ ∈ φ(λ∗) and −w∗ ∈ Ψ(λ∗). If there is no saddle point, Theorem
7 implies the sequence {yk} is unbounded, which means either {λk} or {uk} is unbounded. In the
case where yk converges, note that

y∗ ∈ λ∗ + αφ(λ∗),

so
λ∗ = Jαφ(y∗).

From (Y 1) and the continuity of Jαφ it follows that λk → λ∗. Let wk = Auk. Then wk = yk−λk

α ,
which implies wk → y∗−λ∗

α = w∗. If A had full column rank, we could immediately conclude the
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convergence of {uk}. Instead, define S(u) = H(u) + α
2 ‖Au‖2, which was assumed to be strictly

convex. Rewrite the objective functional for the u minimization step

H(u)+〈λk,−Au〉+ α

2
‖b−Bzk+1−Au‖2 = S(u)+〈λk,−Au〉+ α

2
‖b−Bzk+1‖2+α〈b−Bzk+1,−Au〉.

The optimality condition for ūk then implies that

0 ∈ ∂S(ūk)−AT (λk + α(b−Bzk+1))

0 ∈ ∂S(ūk)−AT (λk+1 + αAuk+1)

AT yk+1 ∈ ∂S(ūk)

ūk ∈ ∂S∗(AT yk+1).

Since S is strictly convex, S∗ is continuously differentiable ([48] 26.3), so ūk = ∇S∗(AT yk+1). Since
‖uk+1 − ūk‖ → 0, this implies

uk → ∇S∗(AT y∗).

Let u∗ = ∇S∗(AT y∗). Since Auk → w∗, we have that Au∗ = w∗. Now since λk+1 − λk =
α(b−Bzk+1 −Auk+1) → 0, we have that

Bzk+1 → b−Au∗.

Since B has full column rank, zk → z∗ where

Au∗ + Bz∗ = b.

Now note that we also have λ̃k → λ∗, s̃k → λ∗, z̄k → z∗ and ūk → u∗. Recalling the optimality
conditions for the u and z update steps,

z̄k ∈ ∂F ∗(BT λ̃k) and ūk ∈ ∂H∗(AT s̃k).

Citing a result by Brezis [5] regarding limits of maximal monotone operators, it then follows that

z∗ ∈ ∂F ∗(BT λ∗) and u∗ ∈ ∂H∗(AT λ∗).

These together with Au∗ + Bz∗ = b are exactly the optimality conditions (10) for (P0). Thus
(z∗, u∗, λ∗) is a saddle point of L(z, u, λ).
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