
University of California

Los Angeles

Applications of Variational Models and Partial

Differential Equations in Medical Image and

Surface Processing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Bin Dong

2009

c© Copyright by

Bin Dong

2009

The dissertation of Bin Dong is approved.

Luminita A. Vese

Paul Thompson

Andrea L. Bertozzi

Stanley J. Osher, Committee Chair

University of California, Los Angeles

2009

ii

To my parents,

who always have faith in me;

whose unrelenting and selfless love

keeps me going until today.

iii

Table of Contents

1 Variational and PDE Models in Surface Processing I: Surface

Restoration via Nonlocal Means . 1

1.1 Introduction . 1

1.1.1 Nonlocal Means . 2

1.1.2 Variational Viewpoints . 3

1.2 Numerical Strategies and Discussions 4

1.3 Numerical Results . 6

1.3.1 Denoising: Synthesis Noise 7

1.3.2 Denoising: Real Noisy Data 8

2 Variational and PDE Models in Surface Processing II: Capturing

Brain Aneurysms from Vascular Trees 13

2.1 Introduction . 13

2.2 Review of Level Set Based Illusory Contour Capturing 15

2.3 Our Method and Model Comparisons 18

2.3.1 Direction Extension from 2D to 3D? 18

2.3.2 Our Model . 22

2.3.3 Numerical Implementation and Computations of Geometries 24

2.3.4 Models Comparison . 26

2.4 Validations of Our Method on Various Brain Aneurysm Data . . . 28

2.4.1 Narrow-Necked Aneurysms 28

iv

2.4.2 Wide-Necked Aneurysms 29

3 Multiscale Representation (MSR) for Shapes and Its Applica-

tions in Medical Image Analysis . 35

3.1 Introduction . 35

3.2 Level Set Based MSR for Shapes 36

3.2.1 Continuous Transformations and Discrete Algorithms . . . 38

3.2.2 Numerical Experiments on the MSR 43

3.3 Application of Level Set Based MSR in Surface Inpainting 44

3.4 Level Set Based MSR for Images: A Few Remarks 47

4 Fast Numerical Methods for Compressive Sensing and �1-Minimizations

via Bregman Iterations . 51

4.1 Introduction . 51

4.2 Bregman and Linearized Bregman Iterative Algorithms 55

4.3 Convergence Analysis of Linearized Bregman Iterations 60

4.4 Fast Implementation . 66

4.5 Fast Solver for Total Variation (TV) Based Models via Split Breg-

man Iterations . 69

4.6 Numerical Results . 71

4.6.1 Efficiency . 71

4.6.2 Robustness to Noise . 73

4.6.3 Recovery of Signal with High Dynamical Range 76

4.6.4 Recovery of Sinusoidal Waves in Huge Noise 76

v

5 Application of �1-Minimizations to Needle Localization in Ultra-

sound Images . 85

5.1 Medical Background . 85

5.2 Mathematical Model . 86

5.3 Schematic Descriptions of Needle Detection and Tracking Procedure 89

5.3.1 Phase I . 90

5.3.2 Phase II . 91

5.4 Numerical Results . 93

vi

List of Figures

1.1 Figure (a) is the noisy shape; (b) is the result using mean curvature

smoothing with λ = 0.1; (c) is our approach. 8

1.2 The two figures in (a), (b), (c) or (d) are the front and back views

of the same cortical surface. Figure (a) is the clean gray matter;

(b) is the noisy one; (c) is the denoising result from mean curvature

smoothing with λ = 0.001; (d) is the result by our approach. . . . 9

1.3 The two figures in (a), (b), (c) or (d) are the global view and a

close-up of the same city terrain. Figure (a) is the clean terrain

surface; (b) is the noisy one; (c) is the denoising result from mean

curvature smoothing with λ = 0.01; (d) is the result by our approach. 10

1.4 The two figures in (a), (b) and (c) are noisy (left) and regularized

(right) white matter viewed from left, right and top. 11

1.5 The first figure in (a), (b) and (c) illustrates which slice of the

cortical surface is shown. The second and third figures in (a),

(b) and (c) are the corresponding close-ups for the axial ((x, y)-

slice), sagittal ((y, z)-slice) and coronal ((x, z)-slice) slices of the

cortical surface and the MRI scan. Here blue curves are the original

segmentation for white matter, and the red ones are regularized one. 12

2.1 Left: phantom vessel in 2D; middle: Kanizsa square; right: Kanizsa

triangle. The red curves are illusory contours. 14

vii

2.2 Reconstruction from 3D images. Left figure shows a few slices

of images corresponding to the reconstructed surface; right figure

shows the reconstructed surface with the red curve circling the

aneurysm. 15

2.3 Let figure illustrates the special example consider above, while the

right one shows the plot of E1(r). 19

2.4 Left: plot of E2(r) in 2D/3D with κ = mean curvature; right: plot

of E2(r) in 2D/3D with κ = Gaussian curvature. For both plots,

the parameter μ = 10. 20

2.5 Left figure: mean curvature; right figure: Gaussian curvature. . . 20

2.6 Left: special example with blue curve being the initial curve and

the red one the result; middle: one zoom-in with the blue arrows

specifying the vector field −A(ψ)∇d; right: the blood vessel (same

object as in Fig. 2.2 with another view) with concavity change on

the aneurysm region (within the red circle). 22

2.7 Figures from upper left to lower right are: Gaussian curvature on

the surface; initial surface (red) superimposed with the reference

surface; initial surface; iteration 200; iteration 500; iteration 1000;

and final result. 24

2.8 Left: selected points on the target vessel; right: initial surface (red). 26

2.9 Row 1-3 shows results of (2.4), (2.5) and (2.11) respectively. For

the visually best results, parameters are β = 1 for (2.4), (μ, β)=(500, 0.05)

for (2.5) and (μ, β)=(2700, 0.05) for (2.11). In each row, the five

figures are results at iteration=0, 100, 500, 1000 and 2000 respec-

tively. 27

viii

2.10 Top row shows the surfaces of narrow-necked aneurysms. Second

row shows the sets of points given by users. Third row is the cor-

responding initial surfaces. Bottom row is the corresponding final

captured surfaces. The surfaces in row 2-4 are shown with close-up

views. The volumes of the aneurysms captured are 213.527mm3,

520.196mm3, 602.7mm3, 319.296mm3 and 516.399mm3 respectively

from left to right. 30

2.11 Top row is the set of points given by users. Middle row is the

corresponding initial surfaces. Bottom is the corresponding final

captured surfaces. The resulting volumes for the different points

chosen by users from left to right are: 319.296mm3, 317.275mm3,

307.781mm3, 302.881mm3, 315.499mm3 and 310.905mm3. 31

2.12 Top row shows the surfaces of narrow-necked. Second row shows

the sets of points given by users. Third row is the correspond-

ing initial surfaces. Bottom row is the corresponding final cap-

tured surfaces. The surfaces in row 2-4 are shown with close-up

views. The volumes of the aneurysms captured are 78.767mm3,

95.823mm3, 117.355mm3, 300.493mm3 and 748.23mm3 respectively

from left to right. 33

2.13 Top row is the set of points given by users. Middle row is the

corresponding initial surfaces. Bottom is the corresponding final

captured surfaces. The resulting volumes for the different points

chosen by users from left to right are: 117.355mm3, 122.133mm3,

131.136mm3, 122.5mm3, 124.95mm3 and 116.436mm3. 34

ix

3.1 First row (left to right): MST S0, S1, . . . , S5. Second row shows

the details of MSR on S1, . . . , S5. Third row shows IMST S̃i, i =

0, 1, . . . , 4, where the Hausdorff distance between Si and S̃i are:

1.12h, 0.74h, 0.74h, 0.69h, and 0.63h respectively (with h the mesh

size). 45

3.2 Experiments on blood vessel inpainting. Row 1: vessels before

inpainting; row 2: vessels after inpainting; row 3: inpainted regions

shown in red. The percentage of the volume of inpainted region

over that of the entire shape are: 5.3%, 19.2%, 6.7% and 5.7%. . . 48

3.3 Images from upper left to lower right are: original image u0; u6,

the low frequency approximation of u0; and v1, v2, . . . , v6. 49

3.4 Images from upper left to lower right are: original image u0; u6,

the low frequency approximation of u0; and v1, v2, . . . , v6. 50

4.1 The left figure presents a simple signal with 5 non-zero spikes. The

right figure shows how the linearized Bregman iteration converges. 66

4.2 The left figure presents the convergence curve of the original lin-

earized Bregman iteration using the same signal as Fig 4.1. The

right figure shows the convergence curve of the linearized Bregman

iteration with the kicking modification. 69

4.3 The left figure presents the clean (red dots) and noisy (blue cir-

cles) measurements, with SNR=23.1084; the right figure shows the

reconstructed signal (blue circles) v.s. original signal (red dots),

where the relative error=0.020764, and number of iterations is 102. 74

x

4.4 Upper left, true signal (red dots) v.s. recovered signal (blue circle);

upper right, one zoom-in to the lower magnitudes; lower left, decay

of residual log10
‖Auk−f‖

‖f‖ ; lower right, decay of error to true solution

log10
‖uk−ū‖

‖ū‖ . 77

4.5 Noisy case. Left figure, true signal (red dots) v.s. recovered signal

(blue circle); right figure, one zoom-in to the magnitude≈ 105. The

error is measured by ‖uk−ū‖
‖ū‖ . 78

4.6 Noisy case. Left figure, true signal (red dots) v.s. recovered signal

(blue circle); right figure, one zoom-in to the magnitude≈ 106. The

error is measured by ‖uk−ū‖
‖ū‖ . 78

4.7 Noisy case. Left figure, true signal (red dots) v.s. recovered signal

(blue circle); right figure, one zoom-in to the magnitude≈ 108. The

error is measured by ‖uk−ū‖
‖ū‖ . 79

4.8 Reconstruction using 20% random samples of ũ with SNR= 2.6185.

The upper left figure shows the original (red) and noisy (blue) sig-

nals; the upper right shows the reconstruction (blue circle) v.s.

original signal (red dots) in Fourier domain in terms of their mag-

nitudes (i.e. |û∗| v.s. |̂̄u|); bottom left shows the reconstructed

(blue) v.s. original (red) signal in physical domain; and bottom

right shows one close-up of the figure at bottom left. 81

xi

4.9 Reconstruction using 40% random samples of ũ with SNR= −4.7836.

The upper left figure shows the original (red) and noisy (blue) sig-

nals; the upper right shows the reconstruction (blue circle) v.s.

original signal (red dots) in Fourier domain in terms of their mag-

nitudes (i.e. |û∗| v.s. |̂̄u|); bottom left shows the reconstructed

(blue) v.s. original (red) signal in physical domain; and bottom

right shows one close-up of the figure at bottom left. 82

4.10 Reconstruction using 60% random samples of ũ with SNR= −6.7908.

The upper left figure shows the original (red) and noisy (blue) sig-

nals; the upper right shows the reconstruction (blue circle) v.s.

original signal (red dots) in Fourier domain in terms of their mag-

nitudes (i.e. |û∗| v.s. |̂̄u|); bottom left shows the reconstructed

(blue) v.s. original (red) signal in physical domain; and bottom

right shows one close-up of the figure at bottom left. 83

4.11 Reconstruction using 80% random samples of ũ with SNR= −11.0016.

The upper left figure shows the original (red) and noisy (blue) sig-

nals; the upper right shows the reconstruction (blue circle) v.s.

original signal (red dots) in Fourier domain in terms of their mag-

nitudes (i.e. |û∗| v.s. |̂̄u|); bottom left shows the reconstructed

(blue) v.s. original (red) signal in physical domain; and bottom

right shows one close-up of the figure at bottom left. 84

5.1 The left figure shows segmentation result using Algorithm 1; the

middle one is the decay of ‖d−Fuk‖
‖d‖ ; and the right one is the decay

of ‖uk+1−uk‖
‖uk‖ . 89

5.2 The four figures from left to right describes the four steps, and the

four images are the same one f(x) obtained by (5.1). 91

xii

5.3 Left figure shows direct segmentation of one single frame; mid-

dle one shows the skeletons extracted from the segmented regions;

right one shows the importance of step 3 in Phase I, where the

blue curve is represented by the solution u obtained form step 2,

and the red one is the skeleton by step 4. 91

5.4 The four figures from left to right describes the four steps. 92

5.5 Images from left to right are 5 sample frames among total 20 frames

of ultrasound images during Phase I. 94

5.6 Left figure is f(x) obtained from the 20 frames; middle one shows

the result of localization of the body of the needle; right one shows

the result of localization on the first image frame in Figure 5.5,

where the blue dot indicates the tip of the needle. 94

5.7 Images above are 12 sample frames among total 100 frames of

ultrasound images during Phase II. 94

5.8 Tracking results of the 12 sample frames in Phase II shown in

Figure 5.7. 95

5.9 Manual segmentation results of the 12 sample frames in Phase II

shown in Figure 5.7. 95

5.10 First figure is the current frame as shown in the fourth figure in

first row of Figure 5.7; second figure is the previous frame of the

first figure; third figure shows the corresponding f(x) obtained

from the first two figures and the red dot is the tracking result;

the last one shows the tracking result on the current frame which

is the same figure as in the upper fight figure of Figure 5.8. 96

xiii

List of Tables

4.1 Experiment results using 10 random instances for each configura-

tion of (m,n, ‖ū‖0), with nonzero elements of ū come from U(−1, 1). 73

4.2 Experiment results using 10 random instances for each configura-

tion of (m,n, ‖ū‖0). 75

xiv

Acknowledgments

Foremost, I would like to express my sincere gratitude to my PhD thesis

advisor Professor Stanley Osher for his wise guidance, constant encouragement

and support over the past four years. Not only I learnt numerous advanced and

useful mathematical techniques from him, but also realized the crucial aspects

to be a good researcher that are reflected from him, namely passion, intelligence

and hard working. I also want to thank for his generous financial supports that

gave me several opportunities to travel to workshops and conferences.

My thanks also go to my other committee members, Professor Andrea Bertozzi,

Professor Luminita Vese, and Professor Paul Thompson. I want to thank Profes-

sor Andrea Bertozzi for organizing VIGRE summer internships that supported

my research for the past two summers; I want to thank Professor Luminita Vese

for the discussions and her suggestions on part of the content in Section 3.2; I

also want to thank Professor Paul Thompson for his valuable comments given

during my presentations at the LONI-CCB.

Here I would also like to thank all my collaborators. I thank Professor

Zuowei Shen (Department of Mathematics, National University of Singapore)

for his insights and constructive suggestions for Section 3.2 and 3.3. I thank

Dr. Aichi Chien (Division of Interventional Neuroradiology, David Geffen School

of Medicine) for all her help and efforts that lead to the current form of Chap-

ter 2 and Section 3.2. I thank Professor Ivo Dinov (Department of Statistics

and Center for Computational Biology) for organizing the SIG-WAVE meeting

at LONI-CCB for the past three years, from which I am benefited a lot. I also

truly appreciate his important inputs in Chapter 1. I thank Doctor Eric Savitsky

xv

(Department of Emergency Medicine) for his sound medical advice and the vast

valuable medical data that he generously provided, which lead to Chapter 5. I

thank Professor Wotao Yin (Department of Mathematics, Rice University) for

his sound suggestions on the materials in Chapter 4.

I also want to thank David Y. Mao, James Y. Jian, Yifei Lou, Yongning Zhu,

Rongjie Lai, Yingying Li, Wenhua Gao, Tom Goldstein, Dr. Xiaoqun Zhang and

Dr. Yonggang Shi for all the helpful discussions that I had with them over the

years. My gratitude also goes to all the staffs of IPAM and the Mathematics

Department, especially Maggie Albert and Babette Dalton.

My final, but most heartfelt, acknowledgment must go to my girlfriend Ranran

Wang, who helped me walk through countless difficulties during my PhD study.

This work is supported by: NIH P20 MH65166; Department of Defense; NSF

DUE 0716055; NSF DMS-0714807; and NIH U54 RR021813 VIGRE of UCLA

Mathematics Department; SN-30014, Center for Computational Biology NIH

Toga; and the Telemedicine and Advanced Technology Research Center (TATRC)

of the US Army Medical Research and Material Command (MRMC).

xvi

Vita

1981 Born, Beijing, China.

1999–2003 B.S., School of Mathematical Sciences,

Peking University,Beijing, China.

2003–2005 M.S., Department of Mathematics,

National University of Singapore, Singapore.

2005–2009 Teaching and Research Assistant,

Department of Mathematics,

University of California, Los Angeles, USA.

Publications

B. Dong, A. Chien, Z. Shen and S. Osher, A new multiscale representation

for shapes and its application to blood vessel recovery, submitted, March 2009.

B. Dong, E. Savitsky and S. Osher, A novel method for enhanced needle

localization using ultrasound-guidance, UCLA CAM-Report 08-65, Sep. 2008.

B. Dong, A. Chien, Y. Mao, J. Ye, S. Osher, Level set based brain aneurysm

capturing in 3D, submitted, Nov 2008.

xvii

S. Osher, Y. Mao, B. Dong, W. Yin, Fast linearized Bregman iterations for

compressive sensing and sparse denoising, accepted by Communications in Math-

ematical Sciences (CAM-Report 08-37), Dec 2008.

B. Dong, A. Chien, Y. Mao, J. Ye, S. Osher, Level set based surface capturing

in 3D medical images, Proc MICCAI, 162–169, 2008.

B. Dong, J. Ye, S. Osher and I. D. Dinov, Level set based nonlocal surface

restoration, Multiscale Modeling and Simulation (MMS), 7(2), 589–598 (CAM-

Report 07-44), 2008.

B. Dong, Y. Mao, I. D. Dinov, Z. Tu, Y. Shi, Y. Wang and A. W. Toga,

Wavelet-based representation of biological shapes, CAM-Report 07-36, Sep. 2007.

B. Dong and Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput.

Harmon. Anal., 22, 78–104, 2007.

B. Dong and Z. Shen, Linear independence of pseudo-splines, Proc. Amer.

Math. Soc., 134 (9), 2685–2694, 2006.

B. Dong and Z. Shen, Construction of biorthogonal wavelets from pseudo-

splines, J. Approx. Theory, Vol 138 (2), 211–231, 2006.

xviii

Abstract of the Dissertation

Applications of Variational Models and Partial

Differential Equations in Medical Image and

Surface Processing

by

Bin Dong

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2009

Professor Stanley J. Osher, Chair

Variational, level set and PDE based methods and their applications in digital

image processing have been well developed and studied for the past twenty years.

These methods were soon applied to some medical image processing problems.

However, the study for biological shapes, e.g. surfaces of brains or other human

organs, are still in its early stage. The bulk of this dissertation explores some

applications of variational, level set and PDE based methods in biological shape

processing and analysis. This dissertation also covers some aspects of compres-

sive sensing, �1-minimizations and fast numerical solvers. Their applications in

medical image analysis are also studied.

The first topic is on surface restoration using nonlocal means [1], where we

extend nonlocal smoothing techniques for image regularization in [12] to surface

regularization, with surfaces represented by level set functions. Numerical results

show that our extension of nonlocal smoothing to surface regularization is very ef-

fective in removing spurious oscillations while preserving and even restoring sharp

features. Furthermore, topology corrections are also made by our algorithms for

xix

some of the surfaces.

The second topic is on 3D brain aneurysm capturing using level set based

method. Inspired by the illusory contour techniques proposed by [36, 37], we

present a level set based surface capturing algorithm to capture the aneurysms

from the vascular tree. Numerical results are presented to show the accuracy,

consistency and robustness of our method in capturing brain aneurysms and

volume quantification.

The third topic is on multiscale representations (MSR) of 3D shapes. We

introduce a new level set and PDE based MSR for shapes, which is intrinsic to

the shape itself, does not need any parametrization, and the details of the MSR

reveal important geometric information. Based on the MSR, we then design a

surface inpainting algorithm to recover 3D geometry of blood vessels. Because

of the nature of irregular morphology in vessels and organs, both phantom and

real inpainting scenarios were tested using our new algorithm. Numerical results

show that the inpainting regions are nicely filled in according to the neighboring

geometry of the vessels and allow us to accurately estimate the volume loss of

vessels.

The last, but definitely not the least, topic is on Bregman iteration as a fast

solver for �1-minimizations in compressive sensing and medical image analysis.

We analyzed the convergence properties of linearized Bregman and then improve

its convergence speed. We further observe that a general TV-based model can

be converted to an �1-minimization which can then be solved efficiently using

Bregman iterations. Finally, an application of �1-minimization is considered for

needle tracking in ultrasound images.

xx

CHAPTER 1

Variational and PDE Models in Surface

Processing I: Surface Restoration via Nonlocal

Means

1.1 Introduction

Variational and partial differential equations (PDEs) based image denoising mod-

els have had great success in the past twenty years (see e.g. [3, 23, 146, 148]).

The goal is to remove noise (in the form of random high frequency oscillations)

from an image, while keeping features, e.g. sharp edges and textures.

Recently, some of the models used for image denoising have been extended

to denoising surfaces (see [5–7, 14, 20, 21]). There are mainly two ways to rep-

resent surfaces. One is using triangular meshes, the other is implicitly, usually

using level set functions. The well known advantages of handling implicitly repre-

sented surfaces over triangulated surfaces are numerical simplicity and flexibility

of topological changes. Topological flexibility is important and it makes possi-

ble for our algorithm to do not only denoising, but also topology corrections.

In this chapter we shall focus on implicitly represented surfaces. We note that

Yoshizawa, Belyaev and Seidel [22] recently introduced a nonlocal averaging algo-

rithm for denoising triangulated surfaces. Their algorithm is also related to some

earlier works on semi-local similarity-based shape descriptors and applications in

1

shape matching, retrieval, and modelling [4, 10, 11, 17, 24]. Although both our

and Yoshizawa-Belyaev-Seidel’s methods are based on ideas of nonlocal means

introduced by Buades, Coll and Morel [1] for image denoising, our approach is

different in the sense that we are handling implicit surfaces with all their ad-

vantages. Elmoataz, Lezoray and Bougleux [9] recently introduced a nonlocal

discrete regularization framework, which is the discrete analogue of the contin-

uous Euclidean nonlocal regularization functionals in [12, 13]. This method is

applied for image and manifold processing using weighted graphs of the arbitrary

topologies. This approach is useful for various types of images, meshes, manifolds

and data represented as graphs.

1.1.1 Nonlocal Means

The nonlocal means method was introduced by Buades, Coll and Morel in [1].

They suggested the following nonlocal averaging for image denoising:

NL(u)(x) =
1

c(x)

∫
Ω

e−da(u(x),u(y))/h2

u(y)dy

where c(x) is a normalization factor and

da(u(x), u(y)) =

∫
Ω

Ga(t)|u(x+ t)− u(x− t)|2dt,

with Ga a Gaussian with standard deviation a. This algorithm gives excellent

results in image denoising (see [1, 12]). In a later work by Buades, Coll and

Morel [2], they showed that the nonlocal means filter can be extended from

the linear regression neighborhood filter. They also derived and analyzed the

corresponding PDE to the linear regression neighborhood filter, as well as the

connection between bilateral filters [19] and Perona-Malik equations [16].

2

1.1.2 Variational Viewpoints

In [12, 13], Gilboa and Osher put nonlocal averaging into a variational frame-

work (an earlier variational formulation was done in [15]). We will extend their

formulation to surface denoising.

In [12, 13], the following energy was used

J(u) :=
1

4

∫
Ω

∣∣∇wu
∣∣2dx.

(This uses ideas introduced in [25].) The corresponding gradient flow of the

energy J(u) is the nonlocal heat equation

ut = ∇2
wu :=

1

2
divw(∇wu) =

∫
Ω

(u(y)− u(x))w(x, y)dy, (1.1)

for x ∈ Ω. The discrete version of (1.1) is

uk+1
j = uk

j + dt
∑
l∈Nj

wjl(u
k
l − uk

j), (1.2)

where uj denotes the value of u at grid point j with j going over all grid points in

the computational domain, and Nj is some neighborhood of j such that w(l, j) >

0 for l ∈ Nj . The CFL restriction for the time step dt is

1 ≥ dt
∑
l∈Nj

wjl, ∀j.

In [12], they showed that excellent denoising results can be obtained by using

some properly chosen weight w, which is related to the kernel of nonlocal means.

The rest of this chapter is organized as follows. In Section 1.2, we will show

how to choose the weight w and apply (1.2) to surface denoising. In Section 1.3

3

we will present some denoising results for both phantom and real surface data.

1.2 Numerical Strategies and Discussions

For the rest of this chapter, all surfaces are represented by signed distance func-

tions. To be precise, the surface S is taken as the boundary of some domain

Σ. The corresponding signed distance function φ satisfies: φ(x) < 0, for x ∈ Σ;

φ > 0, for x /∈ Σ; and |∇φ| = 1 away from its singularities. Thus we have

S = {x : φ(x) = 0}. Our strategy for surface denoising is described as follows.

Strategy:

1. Surfaces are represented by signed distance functions φ.

2. Calculations are performed on a narrow band of zero level set of φ, denoted

as Σδ with δ the width of narrow band.

3. Choice of weight w(x, y) and similarity function D(x, y):

w(x, y) = e−|x−y|2/c1e−D(x,y)/c2,

D(x, y) = ‖φ[x]− φ[y]‖22, x ∈ Σδ, y ∈ Nx,

where Nx is a neighborhood of x within Σδ, and φ[x] is a 3D patch of φ

centered at x.

4. Under discrete formulations, the iterative scheme (1.2) now reads as

φk+1
j = φk

j + dt
∑
l∈Nj

wjl(φ
k
l − φk

j), (1.3)

4

with wjl calculated as given in (3), and dt chosen to be

dt = 1/max
j
{
∑
l∈Nj

wjl},

where j goes over all grid points in Σδ.

5. Stopping time k = K is chosen by the user (see the remark below for more

details).

Remark 1.2.1.

1. The reason we use a narrow band calculation is not only for numerical

efficiency, but also because we want to (and should) focus more on the zero

level set and its neighboring level sets. The nearby level sets contain more

relevant information than distant level sets.

2. The way of choosing weight wjl in (3) is, in fact, a semi-nonlocal version of

the original nonlocal means in (1.2) (see [12]). The parameter c1 controls

how much one wishes to penalize distant of two grid points in the weight,

while c2 controls how much one wishes to penalize similarity of the two

patches. Larger c1 allows one make use of more remote information, while

larger c2 gives results with sharper features (but requires more iterations in

general).

3. In the definition of similarity function D(x, y) in (3), we simply measure

the L2 distance of two cubical patches without doing Gaussian smoothing

first. This is because the signed distance function is not very noisy, even

though its zero level set is quite noisy. Hence the direct L2 distance gives a

good measurement of similarity, which saves computation time.

5

4. Here we let users to determine the stopping iteration K. The reason is

that for real noisy surfaces (like the cortical surfaces from MRI scans in

Section 3.2), the type of noise can be arbitrary (not necessarily Gaussian

noise). Hence there is no apparent way of giving a unified stopping criteria

as people did for image denoising. In our experiments below, the number

of iterations is around 300 for the twin-cubes and city terrain, and around

150 for the cortical surfaces. In future, we shall define a unified stopping

criteria for our method.

1.3 Numerical Results

In this section, we present numerical results for the algorithm given in the previous

section. We will first show some denoising results for some shapes corrupted

with Gaussian white noise. Then we test the algorithm on some biological data

generated from high resolution MRI scans. For all experiments, the width δ of

the narrow band Σδ is chosen to be 2, i.e. Σδ has grid points of 5 level sets

including the approximate zero level set. For each given grid point x ∈ Σδ, Nx is

chosen to have 100 grid points which are closest to x within Σδ. The patch φ[x],

centering at x, is taken to be of size 5×5×5 (whose grid points could lie outside

of Σδ).

All biological data, i.e. cortical surfaces and MRI images, are provided by

the Laboratory of Neural Imaging, Center for Computational Biology, UCLA,

http://www.ccb.ucla.edu.

6

1.3.1 Denoising: Synthesis Noise

The noisy level set function φ̃ is given by φ̃ = φ + ε, with ε ∈ N (0, σ). We

compared our approach to mean curvature based surface regularization:

φt = |∇φ|
(
∇ ·

(∇φ
|∇φ|

)
− λ(H(φ)−H(φ̃))

)
,

with H the Heaviside function. The parameter λ is chosen manually for each

example.

Figure 1.1 is a man made shape, where two boxes are attached together.

Mean curvature smoothing gives a fair result which removes most of the noise

and preserves some edge information. Our approach gives a much better result.

All noise is removed and the edges are not only preserved perfectly, but also

reconstructed for some regions. This is not surprising because one can regard the

nonlocal smoothing as a “copy-paste” procedure. Since the noisy shape has some

sharp edges uncontaminated, the algorithm then “copies” them to the regions

where the edges are lost and reconstruct them almost perfectly (as one can see

from (c) in Figure 1.1). One may notice that some corners are not recovered from

the noisy data. This is because the neighborhood Nx is not global and we are

not taking rotations into account, so that within Nx, no similar information (i.e.

corners) can be found. We shall take rotation into account in our future work.

Figure 1.2 shows denoising results for a cortical surface (gray matter), where our

approach preserves the features (e.g. sulci) very well. Figure 1.3 shows denoising

results for man made city terrain surface. This is actually a harder surface to

denoise than the previous ones, because the “holes” on the base of the surface

make it a high genus surface, i.e. the topology is changed by noise. Also, the

thickness of the base is only 3 grid points, which is hard to preserve for some

7

algorithms. For example, the mean curvature algorithm will destroy the base as

one can see from (c) of Figure 1.3. If one uses a triangular mesh based algorithm to

denoise the surface, it will be very tricky to correct the topology and reconstruct

back the base. In contrast, our algorithm here did a very good job in removing

noise, and in topology corrections (see (d) of Figure 1.3).

(a) (b) (c)

Figure 1.1: Figure (a) is the noisy shape; (b) is the result using mean curvature
smoothing with λ = 0.1; (c) is our approach.

1.3.2 Denoising: Real Noisy Data

The cortical surface (white matter) in Figure 1.4 is obtained from high-resolution

MRI scans. The raw data is a volumetric mask of size 181×217×181 segmented

from MRI scans manually, which means the segmentation is accurate; however it

is very noisy. Then the mask is transformed to a signed distance function using

a fast sweeping method introduced in [18].

Cortical surfaces are much more complicated than the previous examples.

First, they have very deep and narrow sulci and thin gyri. Since sulci and gyri are

very important features for cortical surfaces, we want to preserve them as much

as possible during regularization. In addition, the noisy cortical surfaces have

lots of isolated small pieces that need to be removed. Our algorithm performed

well here in removing noise and isolated pieces, while preserving sulci and gyri,

as one can see from Figure 1.4 and Figure 1.5.

8

(a)

(b)

(c)

(d)

Figure 1.2: The two figures in (a), (b), (c) or (d) are the front and back views
of the same cortical surface. Figure (a) is the clean gray matter; (b) is the noisy
one; (c) is the denoising result from mean curvature smoothing with λ = 0.001;
(d) is the result by our approach.

9

(a)

(b)

(c)

(d)

Figure 1.3: The two figures in (a), (b), (c) or (d) are the global view and a
close-up of the same city terrain. Figure (a) is the clean terrain surface; (b) is
the noisy one; (c) is the denoising result from mean curvature smoothing with
λ = 0.01; (d) is the result by our approach.

10

(a)

(b)

(c)

Figure 1.4: The two figures in (a), (b) and (c) are noisy (left) and regularized
(right) white matter viewed from left, right and top.

11

(a)

(b)

(c)

Figure 1.5: The first figure in (a), (b) and (c) illustrates which slice of the cortical
surface is shown. The second and third figures in (a), (b) and (c) are the cor-
responding close-ups for the axial ((x, y)-slice), sagittal ((y, z)-slice) and coronal
((x, z)-slice) slices of the cortical surface and the MRI scan. Here blue curves are
the original segmentation for white matter, and the red ones are regularized one.

12

CHAPTER 2

Variational and PDE Models in Surface

Processing II: Capturing Brain Aneurysms from

Vascular Trees

2.1 Introduction

Subarachnoid hemorrhage, primarily from brain aneurysm rupture, accounts for

5 to 10% of all stroke cases with a high fatality rate [26]. Advancements in

neuroimaging technology have helped these aneurysms to be more frequently

found prior to rupture. A method to determine if aneurysms are at higher risk

of rupturing would be extremely valuable. Brain aneurysm rupture has been

reported to be related to the size of aneurysms [27]. It is known that the risk

of rupture greatly increases as the aneurysm becomes larger [28, 29]. Currently,

methods to determine the aneurysm size are to simply manually measure the size

of the neck and the dome of aneurysms. However, these methods may overlook

important geometric information and are very hard to perform consistently across

subjects.

Our goal is to first segment the aneurysm from the entire blood vessel with

minimal human interaction, then compute its volume and other geometric quan-

tities. This problem can actually be realized as an illusory surface capturing

problem by observing Fig. 2.1, which is an extension from illusory contours in

13

Figure 2.1: Left: phantom vessel in 2D; middle: Kanizsa square; right: Kanizsa
triangle. The red curves are illusory contours.

2D. The boundaries of the aneurysm that are not part of the blood vessel sur-

face can be completed naturally by illusory surfaces. Illusory contours have been

intensively studied in cognitive neuroscience, where people find that the human

vision system is capable of combining nonexistent edges and making meaningful

visual organization of both the real and imaginary contour segments [30–32] (e.g.

the Kanizsa square and triangle [30] in Fig. 2.1). Various researchers have intro-

duced mathematical models and techniques to mimic the human vision system in

detecting and capturing perceptual contours in images [33–38]. These mathemat-

ical models can be used to describe the process in medical evaluation when the

location of an aneurysm needs to be identified. Given that our problem is to first

capture and then calculate volumes and geometries of aneurysms, representing

surfaces using level set functions and designing a proper surface evolution PDE

is essential. Therefore, we introduce a level set and PDE based illusory surface

model, inspired by the illusory contour models in [36], to capture aneurysms, and

calculate their volumes and geometries.

The focus of this chapter is to introduce a novel method to capture a specific

part of a given pre-segmented surface obtained from 3D images. Therefore, we will

not place emphasis on the techniques of surface reconstruction from 3D images.

However, we note that different segmentations from a 3D image may result in

rather different surfaces in terms of geometry. In fact, surface segmentation from

14

3D images is highly nontrivial, and is a very active research area. Interested

readers can consult [39–41] and their references for detailed techniques of blood

vessel segmentations. As an example, we applied a simple thresholding method

(with carefully chosen thresholds) followed by fast sweeping method [18] and

Gaussian smoothing to reconstruct the surface represented by a level set function

[174], which takes positive values inside the vessel region and negative values

outside. We note that one can replace the Gaussian smoothing by some more

sophisticated smoothing techniques, e.g. nonlocal means [1, 42], if there are

some sharp and delicate features in the surfaces need to be well reserved. Fig.

2.2 illustrates the idea of reconstruction of vessel surfaces from 3D images and

an example of brain aneurysm.

Figure 2.2: Reconstruction from 3D images. Left figure shows a few slices of
images corresponding to the reconstructed surface; right figure shows the recon-
structed surface with the red curve circling the aneurysm.

2.2 Review of Level Set Based Illusory Contour Captur-

ing

Many PDE based methods have been proposed to identify illusory contours as well

as explain the phenomena [33–38]. One of the most typical ones was introduced

by Sarti et al [34, 35]. In their work, they first chose a fixation point inside the

domain bounded by the ideal illusory contour, and constructed a surface on the

15

whole domain on the basis of the point, then evolve the entire surface based on

the image gradient. In fact, our user interactive initialization strategy (in Section

2.3.3) is very similar to their fixation point idea. More details can be found in

[35].

In this section, we shall focus on reviewing the level set formulations of the

illusory contour problems introduced by Zhu and Chan [36], because our PDE

model is motivated by theirs. As a convention, all level set functions in this

chapter take negative values inside the domain of interest and positive outside.

For example in Figure 2.1, denoting the regions inside the red curves as Ω, then

the corresponding level set function φ satisfies

φ(x)

⎧⎨
⎩ < 0 x ∈ Ω

> 0 x ∈ Ωc,
(2.1)

and ∂Ω, which is the zero level set of φ, represents the illusory contours (red

curves).

The first model considered in [36] is

E(φ) =

∫
Ω

(
dδ(φ)|∇φ|+ αH(ψ)H(φ) + βδ(φ)|∇φ|

)
dx, (2.2)

where ψ is the signed distance function obtained from a given image (see e.g.

Fig. 2.1) whose zero level set represents the boundaries of the objects in the

image, and d = |ψ| is the corresponding unsigned distance function. The symbol

∇ is the gradient operator, δ(φ) is the Dirac delta functional, and H(φ) is the

Heaviside function. The energy term αH(ψ) ensures that the model will capture

only the inner contour, instead of the outer one (see e.g. the Kanizsa square and

triangle in Fig. 2.1). We note that in [36], the authors also had an additional

16

term
∫
Ω
κ2dx in the energy (5.2) to ensure the continuity of the curvature of φ.

However, this term will result in a fourth order evolution PDE which significantly

slows down the computations. Since what is important for us is the consistency

of segmentation of aneurysms and their volumes, it seems unnecessary to have

the curvature term in the energy.

From equation (5.2), the corresponding gradient flow can be written as

∂φ

∂t
= δ(φ)∇d · ∇φ|∇φ| + δ(φ)d∇ · ∇φ|∇φ| − αδ(φ)H(ψ) + βδ(φ)∇ · ∇φ|∇φ| . (2.3)

Since the function δ(φ) is concentrated only on the zero level set of φ, the PDE

(2.3) only describes a motion for the zero level set of φ. Similar to [43], to ensure

all level sets of φ have similar motions and to be able to solve the PDE on the

entire 3D rectangular domain, we replace δ(φ) in (2.3) by |∇φ| and obtain the

following PDE

∂φ

∂t
= |∇φ|

(
∇d · ∇φ|∇φ| + d∇ · ∇φ|∇φ| − αH(ψ) + β∇ · ∇φ|∇φ|

)
. (2.4)

Numerical results in [36] show that solving the PDE (2.4) gives fairly good

results. However, the sharp corners, e.g. the corners in Kanizsa squares and

triangles in Fig. 2.1, are not well captured. Therefore in that paper, the authors

also considered the following improved model which enables the final curves to

stick to sharp corners more closely

E(φ) =

∫
Ω

(
(1 + μca,bκ

+(ψ))dδ(φ)|∇φ|+ αH(ψ)H(φ) + βδ(φ)|∇φ|
)
dx, (2.5)

where μ is some constant, ca,b is some restriction function defined in (2.13) and

κ+(ψ) is the positive part of curvature. The corresponding evolution PDE to the

17

energy (2.5) is

∂φ

∂t
= |∇φ|

(
∇[(1 + μca,bκ

+(ψ))d] · ∇φ|∇φ| + [(1 + μca,bκ
+(ψ))d]∇ · ∇φ|∇φ|
− αH(ψ) + β∇ · ∇φ|∇φ|

)
.

(2.6)

Numerical experiments in [36] show that the model (2.6) does an excellent job in

capturing illusory contours, especially at regions with sharp features.

2.3 Our Method and Model Comparisons

In this section, we will first discuss the possibility of extending (5.2) and (2.5)

directly from 2D to 3D, and what difficulties and problems one may encounter.

Then, motivated by these discussions, we shall introduce our model in Section

2.3.2.

2.3.1 Direction Extension from 2D to 3D?

Let us first consider the model (5.2) and call it E1. Notice that it can be extended

to 3D trivially. Since it gives a fairly good result in 2D, one may expect it to do so

in 3D. However, the following special examples says otherwise. Take α = β = 0 in

(5.2), and take ψ represents a unit circle/sphere, and φ represents a circle/sphere

with radius r ∈ [0, 1] (see Fig. 2.3). Then we can write E1 explicitly as a function

of r,

E1(r) =

∫
S

d(s)ds =

⎧⎨
⎩ 2π(1− r)r, 2D

4π(1− r)r2, 3D
(2.7)

18

The plot of E1(r) in Fig. 2.3 shows that one should initialize φ by a circle with

radius r > 1
2

and r > 2
3

respectively in 2D and 3D in order to converge to the

right solution. Thus, the initialization constraint in 3D is more restrictive than

that in 2D. This is because the shrinking force from minimizing the surface area

in 3D is stronger than that from minimizing the curve length in 2D. On the other

hand, model (5.2) does not perform well in terms of capturing sharp corners in

both 2D and 3D and the problem is even more severe in 3D than in 2D for similar

reasons.

r
1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

r

E
1

2D
3D

Figure 2.3: Let figure illustrates the special example consider above, while the
right one shows the plot of E1(r).

Let us now consider (2.5), and denote it by E2. Take the same example as

in Fig. 2.3, and let α = β = 0 and ca,b ≡ 1. If we choose κ to be mean and

Gaussian curvature, we shall have the following two formulas for E2(r) in 2 and

3 dimensions,

E2(r) =

∫
S

(1 + μκm)d(s)ds =

⎧⎨
⎩ 2π(1 + μ

r
)(1− r)r, 2D

4π(1 + μ
r
)(1− r)r2, 3D;

(2.8)

E2(r) =

∫
S

(1 + μκg)d(s)ds =

⎧⎨
⎩ 2π(1 + μ

r
)(1− r)r, 2D

4π(1 + μ
r2)(1− r)r2, 3D.

(2.9)

The plots of E2(r) in Fig. 2.4 show that if we choose mean curvature for κ,

then in 2D, we have global convergence, while in 3D, we still need to initialize

19

0 0.5 1
0

20

40

60

80

r

E
2

2D
3D

0 0.5 1
0

50

100

150

r

E
2

2D
3D

Figure 2.4: Left: plot of E2(r) in 2D/3D with κ = mean curvature; right: plot
of E2(r) in 2D/3D with κ = Gaussian curvature. For both plots, the parameter
μ = 10.

properly in order to get the correct solution. However if we choose Gaussian

curvature, we have global convergence in both 2D and 3D. This is one of the

motivations for using Gaussian curvature in 3D. Another, yet more important,

motivation for choosing Gaussian curvature instead of mean curvature for our

particular application is illustrated in the following Fig. 2.5. As is shown be-

low, Gaussian curvature can discriminate between aneurysm and blood vessels

naturally, while mean curvature cannot. This is essentially because cylindrical

objects have small Gaussian curvatures in general, while the Gaussian curvatures

for bulb like objects are relatively large. In contrast, mean curvatures for both

cylindric and bulb like objects generally have comparable magnitudes.

Figure 2.5: Left figure: mean curvature; right figure: Gaussian curvature.

However, directly applying (2.5) in 3D using Gaussian curvature for κ does

20

not give satisfactory results in general. We now consider another simple example

in 2D to illustrate this. In Section 2.3.4 we shall give some comparisons in 3D.

Let us now consider an example as given in Fig. 2.6, where the target object is

no longer convex. We note that the aneurysms are usually not convex (see e.g.

the right figure of Fig. 2.6). Therefore, the 2D example in Fig. 2.6 is a rather

typical example for our applications. The left figure of Fig. 2.6 shows that if

we initialize using the blue curve, we will converge to the red curve, which is

not a satisfactory result because we lost the sharp feature (the small bump). To

further explain the reason we obtain such a result, we recall the evolution PDE

corresponding to the energy (2.5)

∂φ

∂t
= |∇φ|

(
∇(A(ψ)d) · ∇φ|∇φ| + A(ψ)d∇ · ∇φ|∇φ| − αH(ψ) + β∇ · ∇φ|∇φ|

)
,

(2.10)

where A(ψ) = 1+μca,bκ
+(ψ). As we can see from (2.10), the force field−∇(A(ψ)d)

is indeed enhanced by A(ψ), which means around regions with large curvature

we have a stronger force pushing the zero level set of φ towards the sharp tip (see

the middle figure of Fig. 2.6). However, because of the concavity change, the

force vectors are almost tangential to the blue curve and hence most of the forces

are wasted. Meanwhile, the shrinking force given by the second term of (2.10)

is also enhanced by the factor A(ψ). Therefore, the blue curve will eventually

shrink to the red one, instead of moving forward and capturing the entire small

bleb, which is a very important feature for aneurysms (see right figure in Figure

2.6). To overcome this, one may choose the initial curve containing the entire

small bump. However for our particular application here, it is not reasonable

to assume that one can always start with some surface that includes the entire

aneurysm within or as a subsurface. In addition, it is always desirable to have a

21

method with less restrictive initialization constraints.

Figure 2.6: Left: special example with blue curve being the initial curve and the
red one the result; middle: one zoom-in with the blue arrows specifying the vector
field −A(ψ)∇d; right: the blood vessel (same object as in Fig. 2.2 with another
view) with concavity change on the aneurysm region (within the red circle).

2.3.2 Our Model

Here we introduce our modified illusory surface model based on equation (2.4),

∂φ

∂t
= |∇φ|

(
A(ψ)∇d · ∇φ|∇φ| + d∇ · ∇φ|∇φ| − αH(ψ) + β∇ · ∇φ|∇φ|

)
, (2.11)

A(ψ) = 1 + μκ+(ψ), (2.12)

where μ is a constant parameter and κ+(ψ) is the positive part of the Gaussian

curvature of ψ.

Remarks:

1. The major difference of our model (2.11) from (2.6) is that, instead of

putting the factor A(ψ) in the energy as in (2.5), we modify (2.4) directly

and only enhance the force field −∇d. The numerical experiments in Sec-

tion 2.3.4 show significant improvement of the results using our model (2.11)

for the blood vessel shown in Fig. 2.2. More details are discussed in Section

2.3.4.

22

2. The choice of the positive component (instead of some other choices such

as the absolute value) of the Gaussian curvature is to ensure that the re-

sulting surface does not contain any part of the vessels. Indeed, assuming

that the initial surface contains part of the blood vessels, and if the vessel

locally looks like a cylinder, then its Gaussian curvatures are small, and the

part of the surface on the vessel area will shrink and disappear eventually.

More often than not, vessels are curved instead of straight as cylinders, as

shown in the left figure of Figure 2.7. Since in (2.12) we do not enhance

the force field at the region with negative Gaussian curvatures, then the

part of the surface on those regions of the vessel will be peeled off quickly,

and eventually all the surface parts within vessel regions will shrink and

disappear. On the other hand, if the curved vessel is small in diameter, the

mean curvature term β∇ · ∇φ
|∇φ| dominates A(ψ)∇d · ∇φ

|∇φ| , and the zero level

set of φ in these regions also shrink. To illustrate the above observations

visually, we show in Figure 2.7 the process of evolution when solving (2.11).

The left figure of Figure 2.7 superimposes Gaussian curvature of the surface

onto the surface itself, where the red curves specifies the regions where the

blood vessels are curved, with one side having positive curvature and the

other side negative curvatures. The figures from the second to the last show

the evolutions of φ. As one can see, all the vessels that were included in

the initial guess of φ disappeared at the final stage.

3. We also note that our model (2.11) can be used in other types of surface

capturing problems. We just need to fashion the factor A(ψ) according to

the type of surfaces and applications we have.

23

Figure 2.7: Figures from upper left to lower right are: Gaussian curvature on
the surface; initial surface (red) superimposed with the reference surface; initial
surface; iteration 200; iteration 500; iteration 1000; and final result.

2.3.3 Numerical Implementation and Computations of Geometries

Although our numerical experiments show that our model (2.5) is less restrictive

in terms of initialization than the models (2.4) and (2.6), properly chosen ini-

tial guesses are still desirable. To obtain a reasonable initial surface, we adopt

a user interactive strategy to initiate the computation. We let users to select

points around the area of interest and use the selected points to determine a

sphere/ellipsoid with level set function φs. Then φ(x, 0) is defined as the in-

tersection of φs with ψ, or mathematically φ(x, 0) = min{φs(x), ψ(x)}. In our

proposed method, the selection of the points for the region of interest is the only

part that needs user interaction. Although automated computation is desirable,

determining a pathologic region is a medical diagnosis which needs an expert’s

supervision. Therefore, it is reasonable to have experts’ inputs and use them to

initiate the computation. In the numerical section, we will show numerous clini-

cal examples of allowing the user to select only a few (no more than six) points

24

to capture the surfaces of brain aneurysms.

With the initial condition described above, we employ the local level set

method and finite difference discretizations [44] to solve equation (2.4) and (2.11),

as well as to minimize (2.5), in order to alleviate the time step restrictions and

lower the complexity of our numerical computations. Generally speaking, we

solve

φt + ca,b(φ)Vn(φ)|∇φ| = 0

instead of

φt + Vn(φ)|∇φ| = 0

with Vn(φ) the normal velocity depending on φ (e.g. Vn = −κ for mean curva-

ture motion), and the restriction function ca,b introduced to confine all effective

calculations within a narrow band of zero level set of φ. The restriction function

ca,b is defined as

ca,b(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, |x| ≤ a;

(|x|−b)2(2|x|+b−3a)
(b−a)3

, a < |x| ≤ b;

0, |x| > b.

(2.13)

There are three parameters in our model (2.11), i.e. μ, α and β. The parame-

ter μ controls the amount of force one wishes to apply near the regions with sharp

features. The term αH(ψ) prevents the zero level set of φ from passing through

that of ψ. Since we initialize our φ within ψ, this term only acts as a barricade

and we shall fix its value throughout our experiments. The parameter β controls

the global smoothness of φ. The larger β is, the smoother our final results will

be. In Section 2.4, we shall fix all the parameters μ, α and β, and the stopping

tolerance. Our numerical results show that the set of parameters we have chosen

25

gives consistently good results for all of the ten different subjects we tested.

After we obtain the solution φ which represents the aneurysm, we calculate

its volume using by V (φ) =
∫
H(φ)dx, the mean curvature by κm(φ) = ∇ · ∇φ

|∇φ| ,

and the Gaussian curvature [45] by κg(φ) = ∇φT H(φ)∇φ
|∇φ|4 , where

H(φ) =

⎛
⎜⎜⎜⎝

φyyφzz − φyzφzy φyzφzx − φyxφzz φyxφzy − φyyφzx

φxzφzy − φxyφzz φxxφzz − φxzφzx φxyφzx − φxxφzy

φxyφyz − φxzφyy φyxφxz − φxxφyz φxxφyy − φxyφyx

⎞
⎟⎟⎟⎠ ,

and subscripts denote the partial derivatives in Cartesian coordinates. Note that

the mean and Gaussian curvatures in Fig. 2.5 are computed using the above

formulas.

2.3.4 Models Comparison

The algorithms (2.4), (2.6) and our method (2.11) are applied to a set of brain

images acquired by 3D CT angiography. The images have 512 × 512 in-plane

spatial resolutions with each voxel size approximately 0.125mm3. We then extract

subimages of size 54 × 37 for the aneurysm from the entire brain images. The

reconstruction of the surface is shown in Fig. 2.2. The initial surface, i.e. the

zero level set of φ(x, 0), is visualized in Fig. 2.8 (right).

Figure 2.8: Left: selected points on the target vessel; right: initial surface (red).

26

The numerical results of solving (2.4) are shown in Fig. 2.9, top row. Although

this model has been reported with fairly good results for 2D images [36], direct

application to capturing 3D surface is not satisfactory, as discussed in Section

2.3.1. Here we also tested the model (2.6) which was developed to improve the

illusory contours at corners [36]. The results are shown in the second row of Fig.

2.9. This model provides improvement at the tip of the aneurysm in comparison

with the model (2.4); however, it still can not capture the entire tip which is

a very important medical feature. The reason is the concavity change near the

sharp tip, which is consistent with our earlier discussion in Section 2.3.1. The

results of our surface capturing model (2.11) are shown in the third row of Fig.

2.9. Using our method (2.11), we are able to capture the entire aneurysm.

Figure 2.9: Row 1-3 shows results of (2.4), (2.5) and (2.11) respectively. For
the visually best results, parameters are β = 1 for (2.4), (μ, β)=(500, 0.05) for
(2.5) and (μ, β)=(2700, 0.05) for (2.11). In each row, the five figures are results
at iteration=0, 100, 500, 1000 and 2000 respectively.

27

2.4 Validations of Our Method on Various Brain Aneurysm

Data

In this section, we further validate our model (2.5) on ten different brain aneurysms.

Brain aneurysms are classified as the narrow-neck aneurysms or wide-neck aneurysms

by their dome/neck ratios. A narrow-neck aneurysm has a dome/neck ratio more

than 1.5; otherwise, it is a wide-neck aneurysm [46]. We shall test the consis-

tency and robustness of our method on both types(five subjects for each cate-

gory). Throughout the numerical experiment, parameters μ, α and β are taken

as α = 0.5, β = 0.001, and μ = 2/mean(κ+(ψ)). Only the stopping criteria

are different depending on whether the aneurysm is classified as narrow-neck or

wide-neck. Numerical results presented in Fig. 2.10 to Fig. 2.13 show that this

choice of parameters and stopping criteria gives consistently good results.

All the numerical experiments were performed using MATLAB on a Windows

Laptop (Duo processor, 2.0GHz CPU and 2GB RAM). It took approximately

one minute to capture an aneurysm with volume 100mm3, and an additional one

minute for every 100mm3 increase in size.

2.4.1 Narrow-Necked Aneurysms

We test our model (2.11) on five narrow-neck aneurysms data. The reconstructed

surfaces from 3D images are given in the top row of Fig. 2.10. We initialize our

computation and perform the calculation by the algorithm in Section 2.3.2 and

2.3.3, and employ the following stopping criteria for narrow-necked aneurysms

‖φn+1 − φn‖2
‖φn‖2 < tolerance, (2.14)

28

where n is the iteration number which comes from the discretization of time

variable t. Fig. 2.10 (bottom row) shows the numerical results of aneurysm

capturing for the five subjects. The robustness of the numerical solutions is also

tested by randomly choosing 6 different sets of initial points (Fig 2.11 top row) on

one of five aneurysms in Fig. 2.10, which generates 6 different initial surfaces (Fig

2.11 middle row). The final results from the 6 different initializations are nearly

identical to each other as shown in Fig. 2.11 bottom row. The volumes captured

by different initial points are 312.273± 6.245mm3 (mean ±standard deviation).

As a result, we expect the deviation of the volume computation which can be

caused by different users is approximately 2% of the total aneurysm volume,

which can be considered well acceptable in practice.

2.4.2 Wide-Necked Aneurysms

For wide-neck aneurysms, using (2.14) as stopping criteria may cause the zero

level set of φ shrink to zero. This is because in general there does not exit a stable

state for the zero level set of φ due to the fact that the necks of the aneurysms

are usually wide open. Thus, we adopt the following stopping criteria based on

the special geometry of wide-neck aneurysms,

‖φn+1 − φn‖2
‖φn − φn−1‖2 ≈ 1. (2.15)

The above equation means that the computation stops whenever the change of φn

picks up some constant pace. We test our model (2.11) with the above stopping

criteria (2.15) on five wide-neck aneurysms data. The reconstructed surfaces

from 3D images are given in Fig. 2.12 top row. Fig. 2.12 bottom row shows

the numerical results of aneurysm capturing. To test the robustness, we also

randomly choose 6 different sets of initial points on one of five aneurysms in

29

Figure 2.10: Top row shows the surfaces of narrow-necked aneurysms. Second
row shows the sets of points given by users. Third row is the corresponding
initial surfaces. Bottom row is the corresponding final captured surfaces. The
surfaces in row 2-4 are shown with close-up views. The volumes of the aneurysms
captured are 213.527mm3, 520.196mm3, 602.7mm3, 319.296mm3 and 516.399mm3

respectively from left to right.

30

Figure 2.11: Top row is the set of points given by users. Middle row is the
corresponding initial surfaces. Bottom is the corresponding final captured sur-
faces. The resulting volumes for the different points chosen by users from left
to right are: 319.296mm3, 317.275mm3, 307.781mm3, 302.881mm3, 315.499mm3

and 310.905mm3.

31

Fig. 2.12, which generates 6 different initial surfaces. The final results from the 6

different initializations are also nearly identical as one can see in Fig. 2.13 bottom

row. The volumes captured by different initial points are 122.42 ± 5.37mm3

(mean ±standard deviation). As a result, we expect the deviation of the volume

computation which can be caused by different users is approximately 4.4% of

the total aneurysm volume. Note that, although we do not have a theoretical

guarantee that (2.15) works for all wide-neck aneurysms, we believe it should

work for typical wide-necks and it certainly works well for the 5 subjects we

tested on in Section 2.4.2.

32

Figure 2.12: Top row shows the surfaces of narrow-necked. Second row shows
the sets of points given by users. Third row is the corresponding initial surfaces.
Bottom row is the corresponding final captured surfaces. The surfaces in row
2-4 are shown with close-up views. The volumes of the aneurysms captured are
78.767mm3, 95.823mm3, 117.355mm3, 300.493mm3 and 748.23mm3 respectively
from left to right.

33

Figure 2.13: Top row is the set of points given by users. Middle row is the
corresponding initial surfaces. Bottom is the corresponding final captured sur-
faces. The resulting volumes for the different points chosen by users from left
to right are: 117.355mm3, 122.133mm3, 131.136mm3, 122.5mm3, 124.95mm3 and
116.436mm3.

34

CHAPTER 3

Multiscale Representation (MSR) for Shapes

and Its Applications in Medical Image Analysis

3.1 Introduction

Multiscale representation (MSR in short) of functions, e.g. wavelets, has been

well studied in the past twenty years [53, 54]. Theories and numerical algorithms

have been developed extensively. However, when one deals with shapes, especially

shapes in R
3, most of the previous theories and algorithms cannot be extended

straightforwardly. One fundamental problem and major difficulty is the fact that

it is generally hard to associate each shape with a function such that the geometric

properties of the shape can be naturally characterized by the function, and the

MSR decomposition of such function reveals interesting geometric information

that is intrinsic to the shape itself.

Many attempts have been made on designing wavelet-typed MSR for bio-

logical shapes, among which, the method proposed by Nain et. al. [66, 67] is

rather effective. Their basic idea is to first map the shape (triangulated) onto

the unit sphere so that one obtains a vector-valued function f : S2 �→ R
3; then

apply spherical wavelet decomposition [72] to each component of f . However,

the wavelet coefficients obtained from their approach are not intrinsic to the

shape, but rather dependent on the mapping f (in other words, the spherical

35

parametrization). Furthermore, finding a good mapping from a shape to the unit

sphere (or to some other canonical domains) is nontrivial and in fact a popular

ongoing research area [58–65, 70].

More recently, Pauly et. al. [86] introduced an MSR for point-based surfaces.

Their idea was to use Moving Least Square method [83] to define a series of

smoother and smoother point-based surfaces, and then define wavelet coefficients

as the displacements from two successive levels. Their method only requires a

local parametrization of the point-based surface which is easy to calculate. How-

ever, the application of their method is rather limited in medical image analysis,

because most of the biological shapes are not point-based.

Motivated by Pauly et. al.’s work, we shall introduce a new MSR framework in

Section 3.2 based on level set motions via solving some properly chosen Hamilton-

Jacobi (HJ) like equation (in contrast to the Moving Least Square method used

in Pauly et. al.’s MSR [86]). We shall leave the details to Section 3.2. In section

3.3, we will apply our MSR framework to surface inpainting problems for both

phantom and real biological shapes. A few remarks on applying the MSR in

Section 3.2 to images and functions will be made in Section 3.4.

3.2 Level Set Based MSR for Shapes

In this section, we will propose a new MSR for shapes. The basic idea is using

level set motions via solving some properly chosen HJ like equation to obtain a

sequence of shapes that become smoother and smoother as time evolves (analo-

gous to coarse level approximation in wavelet decomposition). Then we carefully

define the so-called “details” (analogous to, e.g. wavelet coefficients) of the MSR

which carry important geometric information and facilitate a perfect reconstruc-

36

tion. While the wavelet based multi scale decomposition and reconstruction use

filters, which are linear processes, the proposed new MSR for shapes uses (non-

linear) PDEs for both decomposition and reconstruction. However, the spirit is

the same, i.e. separate features from smooth components of the surface. Due to

the level set formulation, parametrization is no longer needed.

Throughout this section, shapes are defined to be smooth boundaries of do-

mains Ω ∈ R
3 and are represented by level set functions, typically signed distance

functions. A level set function φ that represents the shape ∂Ω is defined as follows

φ(x)

⎧⎨
⎩ < 0 x ∈ Ω;

> 0 x ∈ Ωc.

We always assume that the function φ is at least Lipschitz continuous.

Level set motions can be achieved by solving the following HJ like equation

[95],

φt + vn (∇φ) |∇φ| = 0, φ(x, 0) = φ0(x), (3.1)

where we take (x, t) ∈ D× [0, T] with D some bounded domain in R
3 and T > 0.

Here vn (∇φ) is the normal velocity, which essentially depends on∇φ while second

order derivatives of φ may be involved (e.g. mean curvature). If it only depends

on first order derivatives, then it is a HJ equation. We also assume that the

PDE (3.1) is geometric [103, 104], which is satisfied for the velocity fields that we

will focus in this section. Comprehensive theoretical analysis of PDE (3.1) and

surface evolution equations can be found in [96, 97, 99–104, 106].

The velocity fields that we shall focus here are

vn = c(x)− λκ, λ > 0 and vn = κa − κ, (3.2)

37

where c(x) is some smooth function, κ is the mean curvature defined as κ :=

∇· ∇φ
|∇φ| , and κa is the average mean curvature. Note that for vn = κa−κ, the PDE

(3.1) generates an volume preserving mean curvature motion [82, 89, 93, 105].

3.2.1 Continuous Transformations and Discrete Algorithms

Let Ωt ∈ R
3 be some domain with scale t, and St := ∂Ωt be the shape at scale t

represented by some time-dependent level set function φ(x, t), i.e. φ(x, t) < 0 for

x ∈ Ωt, φ(x, t) > 0 for x ∈ Ωc
t , and

St = {x ∈ R
3 | φ(x, t) = 0}t≥0. (3.3)

Here S0 denotes the original shape with the corresponding level set function

φ0(x) = φ(x, 0). Throughout the rest of the section, the function φ(x, t) is always

taken to be the solution of (3.1). For some properly chosen vn in (3.1), e.g.

with vn = −κ or κa − κ, we can obtain a continuous series of shapes {St}t∈[0,T],

which tends to become smoother when t increases. Based on this, we define our

continuous level set based MSR of S0 as follows.

Definition 3.2.1. Let φ(x, t) be the solution of the PDE (3.1) and (x, t) ∈ D ×
[0, T]. We now understand xl(t) as a path on the propagating l-th level set of

φ, i.e. φ(xl(t), t) = l. For simplicity, we shall omit the subscript “l” unless a

particular level set is considered.

1. We now define the multiscale transformation (MST) of φ0(x) as

�W (x, t) := W (φ0) := −vn
∇φ
|∇φ| = −x

′(t). (3.4)

Vector −x′(t) is the displacement vector and w(x, t) := −vn(x, t) is the

38

detail of the MST.

2. We shall call �W (x, t) the displacement vector field at scale t, and denote

�W|(x, t) (w|(x, t)) as the restriction of �W (x, t) (w(x, t)) on St.

3. The MSR for the original shape S0 in terms of φ0(x) is denoted as

MSR(φ0) =
{
{ �W (x, t)}t∈(0,T), φ(x, T)

}
.

4. We define the inverse multiscale transformation (IMST) via solving

the following PDE

ψτ + �W (x, T − τ) · ∇ψ = 0, ψ(x, 0) = φ(x, T). (3.5)

for given T > 0 and 0 ≤ τ ≤ T .

Remark 3.2.2.

1. The technique of generating a sequence of the spaces {St} via solving PDEs

is known as scale space decomposition (see e.g. [47, 48]). However, a

classical scale space analysis does not study the details as defined above.

2. The last identity in (3.4) can be shown by taking the directive of φ(x(t), t) =

l w.r.t. t and using the PDE (3.1) and the assumption that x′(t) is aligned

with normal directions of level sets of φ. Indeed, taking derivative with

respect to t at φ(x(t), t) = l, one obtains

∇φ · x′(t) + φt = 0.

39

Using equation (3.1), we have

∇φ · x′(t) = H(∇φ).

Assuming that x′(t) is in the same direction as ∇φ, we let x′(t) = A∇φ
and then we have

A|∇φ|2 = H(∇φ).

Solving A from the above equation, we obtain the desired expression for

x′(t).

3. The detail w|(x, t) is a function on St that characterizes intrinsic geometric

information of the shape at scale t. Here by intrinsic we mean that w|(x, t),

as well as {St}t>0, does not depend on the initial embedding φ0 for a large

class of functions [99, 103], but only depends on S0. Therefore, we now

have an intrinsic MSR for S0:

MSR(S0) =
{
{ �W|(x, t)}t∈(0,T), ST

}
. (3.6)

4. The MSR defined above can be easily adapted to a point-based or triangu-

lated surface. One simply need to first associate the surface with a level set

function and then perform the MST. For point-based surfaces, the IMST

from its MSR (3.6) can be point-wise defined as S0 = ST +
∫ T

0
�W|(x, t)dt or

equivalently x0(0) = x0(T) +
∫ T

0
−x′0(t)dt, which is obviously true.

5. For different purpose of application, one can choose different vn. For ex-

ample, if one seeks a sparse MSR of shapes, it makes more sense to use

the motion with vn = κa − κ than vn = −κ. To see this intuitively, let us

imagine the shape S0 is the unit sphere. It is a perfectly smooth and simple

40

shape and its MSR should not produce any details. If vn = κa − κ, w(x, t)

is actually equal to zero [105], while for vn = −κ, w(x, t) will never be zero,

because St will keep shrinking and vanishes in finite time [99, 103]. Gener-

ally speaking, different velocity field vn means different type of MSR of the

original shape S0, which mimics different choices of wavelet representation

of functions.

Now the question is that if we have perfect reconstructions via (3.5). The

answer is given in the following proposition, which directly follows from theories

of ODEs.

Proposition 3.2.3. Assume that �W (x, t) stays Lipschitz continuous for (x, t) ∈
D × [0, T]. Then the equation (3.5) inverts the MST defined by (3.4) in the

sense that ψ(x, τ) := φ(x, T − τ) is the unique solution of (3.5).

Remark 3.2.4. The assumption in Proposition 3.2.3 is not always valid (e.g.

vn = c < 0 and φ0(x) representing a cube). However, if we choose, for example,

vn = −κ, vn = κa − κ or vn = c(x) − λκ (for some smooth c(x) and λ > 0),

and choose some appropriate ending time T > 0 (e.g. before any topological

changes occur), the above assumption will be valid and we will have a perfect

reconstruction using (3.5) [104, 105].

Notice from Definition 3.2.1 and Proposition 3.2.3 that to perfectly recon-

struct φ0(x) from φ(x, T), we need to store the entire vector field �W (x, t) for

every x ∈ D and all scale t. However, in practice, we only want a perfect re-

construction of S0, and thus we do not need that much information. In fact, we

should only store the displacement vectors within a narrow band of the zero level

set of φ(x, t) for each scale t.

We can be even more “greedy” here by only storing �W|(x, t) which lives on

41

the zero level set of φ(x, t). As for the inverse transform, we need to extend

�W|(x, t) to at least a narrow band of the zero level set of φ(x, t). Note that no

extension can guarantee an exact recovery of the vector field �W (x, t), and hence

the reconstruction will not be exact. However, if the extension is conducted

accurately and when the mesh grid is dense enough, i.e. the resolution of the

shape is high enough, the reconstruction should be more and more accurate. The

extension we shall adopt here is such that the extended vectors are constant in

the normal directions of each level set of φ(x, t) [110]. In our experiments below,

we shall simply use a local search method to extend �W|(x, t).

We now propose the discrete version of MSR in the following Algorithm 1.

Algorithm 1 Level Set Based MST and IMST

Start from the given level set function φ0(x) representing shape S0. Choose
time steps 0 = t0 < t1 < . . . < tN = T , where maxi(ti+1 − ti) is small.
Initialize: Sample a point set X0 from S0 (either uniformly or non-uniformly).

MST:
while i ≤ N do

1. Starting from φ(x, ti−1), solve (3.1) for t ∈ [ti−1, ti] and obtain φ(x, ti).
2. Orthogonally project Xi−1 onto the zero level set of φ(x, ti) and obtain
Xi.
2. Compute the discrete displacement vector by �W|i = Xi − Xi−1, and
i← i+ 1.

end while
We then obtain the discrete MSR of S0:

MSR(S0) := { �W|1, �W|2, . . . , �W|N , φ(x, T)}.

IMST:
1. Extend the vector fields { �W|i}Ni=1 such that the values are constant along
normal directions of the level sets of φ(x, ti).

2. Solve (3.5) using �W|i within interval [ti, ti−1] iteratively for each i.

42

3.2.2 Numerical Experiments on the MSR

One of the key steps of implementing Algorithm 1 is to solve the evolution PDE

(3.1) efficiently. There are many ways of solving equation (3.1). The most

straightforward way is to use monotone finite difference schemes [95, 174]. How-

ever, it is not very efficient computationally. To overcome this, Merriman, Bence

and Osher introduced a diffusion-based level set motion in [87, 88], and it was

further studied in [84, 90–92], where in [84] the correctness of the method is rigor-

ously proven. In [89], Ruuth and Wetton introduced a fast algorithm to calculate

volume preserving motion by mean curvatures. All these methods speeded up

curvature driven motions drastically.

In this section, we will recall the fast algorithms of level set motion for the

case vn = c and vn = κa − κ given by [87–89, 91]. These algorithms will be used

in the later sections to generate fast multiscle decompositions of shapes.

Now we first recall the fast method of solving (3.1) with vn = c (see [87, 88,

91]) in Algorithm 2.

Algorithm 2 Level Set Motion with Constant Normal Velocity

Start from a given shape represented by φ.
while t < T do

1. Define the corresponding characteristic function by χ = 1{φ<0}. Set V0

equal to the volume of {φ < 0}.
2. Starting from χ, evolve χ̄ for a time Δt by χ̄t = ∇2χ̄.
4. Sharpen:

χ =

{
1 if χ̄ > 0
0 otherwise

5. Let t← t+ Δt. Compute φ(x, t) from χ via fast sweeping method [18].
end while

We now recall the fast implementation of (3.1) with vn = κa− κ proposed by

Ruuth and Wetton [89] in Algorithm 3. Their algorithm is based on the diffusion-

43

based mean curvature motion proposed by [87, 88]. Note that if we remove step

3 in Algorithm 3 and choose λ = 0.5 in step 4, it is exact the fast mean curvature

motion proposed in [87, 88].

Algorithm 3 Volume Preserving Mean Curvature Motion: vn = κa − κ.
Start from a given shape represented by φ.
while t < T do

1. Define the corresponding characteristic function by χ = 1{φ<0}. Set V0

equal to the volume of {φ < 0}.
2. Starting from χ, evolve χ̄ for a time Δt by χ̄t = ∇2χ̄.
3. Determine the threshold value that preserves the volume of the set: i.e.
find a 0 < λ < 1 s.t. ∣∣∣|{x : χ̄ < λ}| − V0

∣∣∣ < ε.

4. Sharpen:

χ =

{
1 if χ̄ > λ
0 otherwise

5. Let t← t+ Δt. Compute φ(x, t) from χ via fast sweeping method [18].
end while

Some numerical results of the MST and IMST in Algorithm 1 are presented

in Figure 3.1 using the tested shape (right hemisphere of a cortex). The velocity

field is chosen to be vn = κa − κ and 5 levels of decomposition are conducted

(first and second row of Figure 3.1). The IMST is also presented in Figure 3.1

where S̃i denotes the reconstruction of level i from level i + 1. As we can see,

although the reconstructions are not exact for each level, they are quite accurate

in the sense that most of the features are well reconstructed.

3.3 Application of Level Set Based MSR in Surface In-

painting

Inpainting problem, for both images and surfaces, has been extensively studied

in the literature (see e.g. [107, 112–131]). It occurs when part of the data in an

44

Figure 3.1: First row (left to right): MST S0, S1, . . . , S5. Second row shows the
details of MSR on S1, . . . , S5. Third row shows IMST S̃i, i = 0, 1, . . . , 4, where
the Hausdorff distance between Si and S̃i are: 1.12h, 0.74h, 0.74h, 0.69h, and
0.63h respectively (with h the mesh size).

image or regions of a surface is missing or corrupted. The major task of inpainting

is to fill in the missing information based on the geometry of the image/surface.

In this section, we will propose a new surface inpainting algorithm based on

the MSR in Section 3.2.1 for blood vessel reconstruction that arises in medical

image analysis.

Our surface inpainting algorithm (Algorithm 4 below) inherits the following

framelet-based image inpainting structure proposed by Cai et. al. [123]:

1. Take framelet transform of the given image;

2. Truncate the framelet coefficients via soft-thresholding and reconstruct;

3. Apply the exact data outside the inpainting domains, and repeat.

Since we already have an MSR for surfaces, the first step above can be replace by

our MST. As for a mimicking thresholding scheme, we shall solve the following

45

PDE for IMST instead of the PDE (3.5) that was originally proposed in Definition

3.2.1:

ψτ + �W (x, T − τ) · ∇ψ = ε∇2ψ, ψ(x, 0) = φ(x, T). (3.7)

The above PDE mimics thresholding in the sense that it penalizes the recon-

struction from �W by introducing a vanishing viscosity ε∇2ψ, which forces some

information outside the inpainting region to flow into the inpainting regions. Also,

when ε → 0, the solution of (3.7) converges uniformly to the viscosity solution

of (3.5) [97, 106].

Since we generally expect volumes of surfaces to increase during inpainting,

we choose the following PDE for the MST of Algorithm 1,

φt + (c + κa − κ)|∇φ| = 0, φ(x, 0) = φ0(x), c > 0. (3.8)

Note that the PDE (3.8) generates a curvature-related motion with increasing

volumes of the domains enclosed by level sets of φ(x, t). The constant c can be

regarded as a parameter that need to be adjusted according to different surface

inpainting scenarios. In our experiments, we solve PDE (3.8) via a combination

of Algorithm 2 and Algorithm 3.

Algorithm 4 Surface Inpainting via MSR

Start from φ0, with inpainting region D. Choose some ε > 0.
while “Not converge” do

1. Perform discrete MST by solving (3.8) and acquire �W|i by Algorithm 1.
2. Perform IMST by solving (3.7) and obtain ψε.
3. Copy the known information to ψε: ψε|Dc ← ψ0|Dc .
4. Decrease amount of smoothing: ε↘.

end while

We test Algorithm 4 on both phantom (first two vessels in Figure 3.2) and real

(last two vessels in Figure 3.2) surface inpainting scenarios. First row of Figure 3.2

46

shows four blood vessels with inpainting regions specified by red circles. For the

two phantom inpainting scenarios, the inpainting regions are created manually,

and the surface within those regions were chopped off. For the two real inpainting

scenarios, we do not know the exact inpainting regions. Therefore in practice,

we adopt a user interactive strategy to determine the inpainting regions. After

several points have been selected on the surface, the inpainting regions are then

generated automatically. Inpainting results are given in second and third row of

Figure 3.2. We want to point out that during the inpainting process, topological

change may occur for some cases (e.g. second vessel in Figure 3.2). Although it

violates the assumption in Proposition 3.2.3, topological change is still allowed for

inpainting problems. The reason is that perfect reconstruction is only required at

the very last stage of inpainting (i.e. when ε ≈ 0) in order to ensure convergence,

while topological changes will happen during the middle of the process if the

parameters (e.g. c in (3.8)) are properly chosen.

3.4 Level Set Based MSR for Images: A Few Remarks

The ideas of the MSR in Section 3.2.1 can also be applied to images (in fact, all

functions in any spatial dimension). Denote the original image by u0. Then the

MST, or the scale space decomposition [47, 48], can be obtained by solving

ut +H(D2u,Du, u) = 0, u(x, 0) = u0(x). (3.9)

Since we now have a canonical domain, i.e. R
2, for the function u(x, t), it is much

easier to define displacement vectors. The algorithm is summarized in Algorithm

5. Two numerical examples on the MSR given by Algorithm 5 are presented in

Figure 3.3 and Figure 3.4, where 6 levels of decomposition were conducted.

47

Figure 3.2: Experiments on blood vessel inpainting. Row 1: vessels before in-
painting; row 2: vessels after inpainting; row 3: inpainted regions shown in red.
The percentage of the volume of inpainted region over that of the entire shape
are: 5.3%, 19.2%, 6.7% and 5.7%.

48

Algorithm 5 MST and IMST for Images

Start from a given image u0. Let i = 0 and choose 0 = t0 < t1 < . . . < tN = T .

MST:
while i < N do

1. Solve PDE (3.9) for time [ti, ti+1].
2. Compute the displacements by vi = u(x, ti)− u(x, ti+1).
3. i← i+ 1.

end while
The above procedure describes the discrete MST of u0:

MST(u0) := {v1, v2, . . . , vN , uT}.

IMST: Perfect reconstruction from MST(u0) to u0 (the discrete IMST) is
trivial:

u0 = uT + vN + · · ·+ v1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.02

−0.01

0

0.01

0.02

0.03

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

−0.01

−0.005

0

0.005

0.01

0.015

−0.01

−0.005

0

0.005

0.01

Figure 3.3: Images from upper left to lower right are: original image u0; u6, the
low frequency approximation of u0; and v1, v2, . . . , v6.

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.04

−0.02

0

0.02

0.04

0.06

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

−0.02

−0.01

0

0.01

0.02

0.03

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 3.4: Images from upper left to lower right are: original image u0; u6, the
low frequency approximation of u0; and v1, v2, . . . , v6.

50

CHAPTER 4

Fast Numerical Methods for Compressive

Sensing and �1-Minimizations via Bregman

Iterations

4.1 Introduction

A compressive sensing (CS) problem is to recover a sparse signal u ∈ R
n, with

κ := ‖u‖0 = |supp(u)| � n, from some random measurements f ∈ R
m satisfying

Au = f,

where A ∈ R
m×n is the measurement matrix with n > m. The rank of the matrix

A could be ≤ m in general. However, for most measurement matrices used in

practice, A is always full rank. Therefore, for simplicity, we shall assume that

rank(A) = m throughout this chapter.

The most straightforward way to solve the CS problem is to consider the

following minimization problem:

min
u∈Rn
{‖u‖0|Au = f}, (4.1)

which can be solved approximately by matching pursuit [134–136]. However,

51

the matching pursuit method does not guarantee to obtain a global minimizer of

(4.1) in general. After all, the problem (4.1) is not convex and is difficult to solve.

Also, the matching pursuit method is not computationally efficient when the size

of the measurement matrix A is huge, which is usually the case in practice.

An alternative and more popular way to solve the CS problem is to consider

the following standard �1-minimization problem:

min
u∈Rn
{‖u‖1|Au = f}. (4.2)

There has been a recent burst of research in compressive sensing, which involves

solving (4.2). This was led by Candès et.al. [141–143], Donoho, [144], and others

(see [138–140] for extensive references). The correctness of the solution from (4.2)

is guaranteed by the following theorem by Candès and Tao [141]:

Theorem 4.1.1. Restricted Isometry Property (RIP): If a measurement

matrix A is a restricted isometry, i.e. if there exists δκ and 0 < δκ < 1 s.t.

(1− δκ)‖u‖ ≤ ‖Au‖ ≤ (1 + δκ)‖u‖,

for all 3κ-vector u, then we can recover the sparse signal u from (4.2).

Judging from the definition of RIP, it is very difficult to find a matrix A

satisfying RIP deterministically. However, there are many types of matrices A

that satisfy RIP with high probability (i.e. less than but very close to 1, e.g.

1− e−ρ or 1− O(n−ρ), see [143, 145] for more details). For example, it is shown

in [145] that when the m × n matrix A is subgaussian (e.g. Gaussian, Bernoulli

etc.), and if

m ∼ κ log(n/κ),

52

then the RIP is satisfied with high probability. Another example is partial Fourier

matrices. It is shown in [143] that when A is Fourier submatrix obtained by

randomly chosen m rows from the original n× n Fourier matrix, and if

m ∼ κ logn,

then the RIP is satisfied with high probability.

Now, the CS problem then becomes one of solving (4.2) fast. Conventional

linear programming solvers are not tailored for the large scale dense matrices A

and the sparse solutions u that arise here. To overcome this, Bregman distance

based methods were developed recently (see [137–140]), which are all very efficient

in solving (4.2).

Bregman iteration applied to (4.2) involves solving the constrained optimiza-

tion problem through solving a small number of unconstrained optimization prob-

lems:

min
u

{
μ‖u‖1 +

1

2
‖Au− f‖22

}
(4.3)

for μ > 0.

In [138], the authors used a method called the fast fixed point continuation

solver (FPC) [147] which appears to be efficient. Other solvers of (4.3) could be

used in this Bregman iterative regularization procedure.

In this chapter we will improve and analyze a linearized Bregman iterative

regularization procedure, which, in its original incarnation [137, 138], involved

only a two line code and simple operations and was already extremely fast and

accurate.

In addition, we are interested in the denoising properties of Bregman iterative

regularization, for signals, not images. The results for images involved the BV

53

norm, which we may discretize for n× n pixel images as:

TV (u) =

n−1∑
i,j=1

((ui+1,j − uij)
2 + (ui,j+1 − uij)

2)
1
2 . (4.4)

We usually regard the success of the ROF TV based model [148]

min
u

{
TV (u) +

λ

2
‖f − u‖2

}
(4.5)

(we now drop the subscript 2 for the L2 norm throughout this section) as due

to the fact that images have edges and in fact are almost piecewise constant

(with texture added). Therefore, it is not surprising that sparse signals could be

denoised using (4.3). The ROF denoising model was greatly improved in [146]

and [149] with the help of Bregman iterative regularization. We will do the same

thing here using Bregman iteration with (4.3) to denoise sparse signals, with the

added touch of undersampling the noisy signals.

This chapter is organized as follows: In section 4.2 we describe Bregman

iterative algorithms, as well as the linearized version. We motivate these methods

and describe previously obtained theoretical results. In section 4.3 and 4.4 we

introduce an improvement to the linearized version, call “kicking” which greatly

speeds up the method, especially for solutions u with a large dynamic range.

In section 4.5, we shall discuss some TV-based models which can be converted

into a generalized �1-minimization problem, and hence fast implementations are

available through Bregman iterations. Finally in section 4.6 we present some

numerical results, including sparse recovery for u having large dynamic range,

and the recovery of signals in large amounts of noise.

54

4.2 Bregman and Linearized Bregman Iterative Algorithms

Discussions in this section are based on the following more general minimization

problem, with J(u) some convex functional,

min
u∈Rn
{J(u)|Au = f}. (4.6)

The Bregman distance [151], based on the convex function J , between points

u and v, is defined by

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉 (4.7)

where p ∈ ∂J(v) is an element in the subgradient of J at the point v. In general

Dp
J(u, v) �= Dp

J(v, u) and the triangle inequality is not satisfied, so Dp
J(u, v) is not

a distance in the usual sense. However it does measure the closeness between u

and v in the sense that Dp
J(u, v) ≥ 0 and Dp

J(u, v) ≥ Dp
J(w, v) for all points w on

the line segment connecting u and v. Moreover, if J is convex, Dp
J(u, v) ≥ 0, if J

is strictly convex Dp
J(u, v) > 0 for u �= v and if J is strongly convex, then there

exists a constant a > 0 such that

Dp
J(u, v) ≥ a‖u− v‖2.

To solve (4.6) Bregman iteration was proposed in [138] . Given u0 = p0 = 0,

we define:

uk+1 = arg min
u∈Rn

{
J(u)− J(uk)− 〈u− uk, pk〉+ 1

2
‖Au− f‖2

}
(4.8)

pk+1 = pk − AT (Auk+1 − f).

55

This can be written as

uk+1 = arg min
u∈R2

{
Dpk

J (u, uk) +
1

2
‖Au− f‖2

}
.

It was proven in [138] that if J(u) ∈ C2(Ω) and is strictly convex in Ω, then

‖Auk − f‖ decays exponentially whenever uk ∈ Ω for all k. Furthermore, when

uk converges, its limit is a solution of (4.6). It was also proven in [138] that when

J(u) = ‖u‖1, i.e. for problem (4.2), or when J is a convex function satisfying

some additional conditions, the iteration (4.8) leads to a solution of (4.6) in

finitely many steps.

As shown in [138], see also [146, 149], the Bregman iteration (4.8) can be

written as:

fk+1 = fk + f −Auk

uk+1 = arg min
u∈Rn

{
J(u) +

1

2
‖Au− fk+1‖2

}
(4.9)

This was referred to as “adding back the residual” in [146] . Here f 0 = 0, u0 = 0.

Thus the Bregman iteration uses solutions of the unconstrained problem

min
u∈R

{
J(u) +

1

2
‖Au− f‖2

}
(4.10)

as a solver in which the Bregman iteration applies this process iteratively.

Since there is generally no explicit expression for the solver of (4.8) or (4.9),

we turn to iterative methods. The linearized Bregman iteration which we will

56

analyze, improve and use here is generated by

uk+1 = arg min
u∈Rn

{
J(u)− J(uk)− 〈u− uk, pk〉+ 1

2δ
‖u− (uk − δAT (Auk − f))‖2

}

pk+1 = pk − 1

δ
(uk+1 − uk)− AT (Auk − f). (4.11)

In the special case considered here, where J(u) = μ‖u‖1, then we have the

two line algorithm

vk+1 = vk −AT (Auk − f) (4.12)

uk+1 = δ · shrink(vk+1, μ) (4.13)

where vk is an auxiliary variable

vk = pk +
1

δ
uk (4.14)

and

shrink(x, μ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x− μ, if x > μ

0, if − μ ≤ x ≤ μ

x+ μ, if x < −μ

is the soft thresholding algorithm [152] .

This linearized Bregman iterative algorithm was invented in [137] and then

used and analyzed in [138–140]. In fact it comes from the inner-outer iteration

for (4.8). In [138] it was shown that the linearized Bregman iteration (4.11) is

just one step of the inner iteration for each outer iteration. Here we repeat the

arguments also in [138], which begin by summing the second equation in (4.11)

57

arriving at (using the fact that u0 = p0 = 0):

pk +
1

δ
uk +

∑k−1
j=0 A

T (Auj − f) = pk +
1

δ
uk − vk = 0, for k = 1, 2,

This gives us (4.13), and allows us to rewrite its first equation as:

uk+1 = arg min
u∈Rn

{
J(u) +

1

2δ
‖u− δvk+1‖2

}
(4.15)

i.e. we are adding back the “linearized noise”, where vk+1 is defined in (4.12).

In [138] and [139] some interesting analysis was done for (4.11), (and some

for (4.15)). This was done first for J(u) continuously differentiable in (4.11) and

the gradient ∂J(u) satisfying

‖∂J(u)− ∂J(v)‖2 ≤ β〈∂J(u)− ∂J(v), u− v〉, (4.16)

∀u, v ∈ Rn, β > 0.

In [139] it was shown that, if (4.16) is true, then both of the sequences (uk)k∈N

and (pk)k∈N defined by (4.11) converge for 0 < δ < 2
‖AAT ‖ .

In [140] the authors recently give a theoretical analysis, showing that the

iteration in (4.12) and (4.13) converges to the unique solution of

min
u∈Rn

{
μ‖u‖1 +

1

2δ
‖u‖2 : Au = f

}
(4.17)

They also show the interesting result: let S be the set of all solutions of the Basis

Pursuit problem (4.2) and let

u1 = arg min
u∈S
‖u‖2 (4.18)

58

which is unique. Denote the solution of (4.17) as u∗μ. Then

lim
μ→∞

‖u∗μ − u1‖ = 0. (4.19)

In passing they show that

‖u∗μ‖ ≤ ‖u1‖ for all μ > 0 (4.20)

which we will use below.

Another theoretical analysis on Linearized Bregman algorithm is given by

Yin in [153], where he shows that Linearized Bregman iteration is equivalent to

gradient descent applied to the dual of the problem (4.17) and uses this fact to

obtain an elegant convergence proof. He also proved that u∗μ = u∗ for μ > μ0 and

some μ0 > 0, where u∗ is the optimizer of (4.2).

This summarizes the relevant convergence analysis for our Bregman and lin-

earized Bregman models.

Next we recall some results from [146] regarding noise and Bregman iteration.

For any sequence {uk}, {pk} satisfying (4.8) for J continuous and convex, we

have, for any μ̃

Dpk

J (ũ, uk)−DJp
k−1(ũ, uk−1) ≤ 〈Aũ− f, Auk−1 − f〉 − ‖Auk−1 − f‖2. (4.21)

Besides implying that the Bregman distance between uk and any element

ũ satisfying Aũ = f is monotonically decreasing, it also implies that, if ũ is the

“noise free” approximation to the solution of (4.6), the Bregman distance between

59

uk and ũ diminishes as long as

‖Auk − f‖ > ‖Aũ− f‖ = σ, where σ is some measure of the noise (4.22)

i.e., until we get too close to the noisy signal in the sense of (4.22). Note, in

[146] we took A to be the identity, but these more general results are also proven

there. This gives us a stopping criterion for our denoising algorithm.

In [146] we obtained a result for linearized Bregman iteration, following [154],

which states that the Bregman distance between ũ and uk diminish as long as

‖Aũ− f‖ < (1− 2δ‖AAT‖) ‖Auk − f‖ (4.23)

so we need 0 < 2δ‖AAT‖ < 1.

In practice, we will use (4.22) as our stopping criterion.

4.3 Convergence Analysis of Linearized Bregman Itera-

tions

We begin with the following simple results for the linearized Bregman iteration

or the equivalent algorithm (4.11). Throughout the rest of this section, we shall

focus on the case with J(u) = ‖u‖1, i.e. the problem (4.2).

Theorem 4.3.1. If uk → u∞, then Au∞ = f .

Proof. Assume Au∞ �= f . Then AT (Au∞ − f) �= 0 since AT has full rank. This

means that for some i, (AT (Auk−f))i converges to a nonzero value, which means

that vk+1
i − vk

i does as well. On the other hand {vk} = {uk/δ + pk} is bounded

since {uk} converges and pk ∈ [−μ, μ]. Therefore {vk
i } is bounded, while vk+1

i −vk
i

60

converges to a nonzero limit, which is impossible.

Theorem 4.3.2. If uk → u∞ and vk → v∞, then u∞ minimizes {J(u)+ 1
2δ
‖u‖2 :

Au = f}.

Proof. Let J̃(u) = J(u) + 1
2δ
‖u‖2. then

∂J̃(u) = ∂J(u) +
1

δ
u.

Since ∂J(uk) = pk = vk − uk/δ, we have ∂J̃(uk) = vk. Using the non-negativity

of the Bregman distance we obtain

J̃(uk) ≤ J̃(uopt)− 〈uopt − uk, ∂J̃(uk)〉
= J̃(uopt)− 〈uopt − uk, vk〉

where uopt minimizes (4.6) with J replaced by J̃ , which is strictly convex.

Let k →∞, we have

J̃(u∞) ≤ J̃(uopt)− 〈uopt − u∞, v∞〉

Since vk = AT
∑k−1

j=0 A
T (f − Auj), we have v∞ ∈ range(AT). Since Auopt =

Au∞ = f , we have 〈uopt − u∞, v∞〉 = 0, which implies J̃(u∞) ≤ J̃(uopt).

Equation (4.17) (from a result in [139]) implies that u∞ will approach a

solution to (4.6), as μ approaches ∞.

The linearized Bregman iteration has the following monotonicity property:

Theorem 4.3.3. If uk+1 �= uk and 0 < δ < 2/‖AAT‖, then

‖Auk+1 − f‖ < ‖Auk − f‖.

61

Proof. Let

uk+1 − uk = Δuk, vk+1 − vk = Δvk.

Then the shrinkage operation is such that

Δuk
i = δqk

i Δvk
i (4.24)

with

qk
i

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= 1 if uk+1
i uk

i > 0

= 0 if uk+1
i = uk

i = 0

∈ (0, 1] otherwise

Let Qk = Diag (qk
i). Then (4.24) can be written as

Δuk = δQkΔvk = δQkAT (f − Auk) (4.25)

which implies

Auk+1 − f = (I − δAQkAT)(Auk − f). (4.26)

From (4.24), Qk is diagonal with 0 � Qk � I, so 0 � AQkAT � AAT . If

we choose δ > 0 such that δAAT ≺ 2I, then 0 � δAQkAT ≺ 2I or −I ≺
I − δAQkAT � I which implies that ‖Auk − f‖ is not increasing. To get strict

decay, we need only show that AQkAT (Auk − f) = 0 is impossible if uk+1 �= uk.

Suppose AQkAT (Auk − f) = 0 holds, then from (4.25) we have:

〈Δuk,Δvk〉 = δ〈AT (f −Auk), QkAT (f − Auk)〉 = 0.

By (4.24), this only happens if uk+1
i = uk

i for all i, which is a contradiction.

62

We are still faced with estimating how fast the residual decays. It turns

out that if consecutive elements of u do not change sign, then ‖Au − f‖ decays

exponentially. By ’exponential’ we mean that the ratio of the residuals of two con-

secutive iteration converges to a constant, this type of convergence is sometimes

called linear convergence. Here we define

Su = {x ∈ Rn : sign(xi) = sign(ui), ∀i} (4.27)

(where sign(0) = 0 and sign(a) = a/|a| for a �= 0). Then we have the following:

Theorem 4.3.4. If uk ∈ S ≡ Suk
for k ∈ (T1, T2), then uk converges to u∗,

where u∗ ∈ arg min{‖Au − f‖2 : u ∈ S} and ‖Auk − f‖2 decays to ‖Au∗ − f‖2

exponentially.

Proof. . Since uk ∈ S for k ∈ [T1, T2], we can define Q ≡ Qk for T1 ≤ k ≤ T2− 1.

From (4.24) we see that Qk is a diagonal matrix consisting of zeros or ones, so

Q = QTQ. Moreover, it is easy to see that S = {x|Qx = x}.

Following the argument in Theorem 4.3.3 we have:

uk+1 − uk = Δuk = δQΔvk = δQAT (f − Auk) (4.28)

Auk+1 − f = [I − δAQAT](Auk − f) (4.29)

and

−I ≺ I − δAQAT � I.

Let Rn = V0 ⊕ V1, where V0 is the null space of AQAT and V1 is spanned

by the eigenvectors corresponding to the nonzero eigenvalues of AQAT . Let

63

Auk − f = wk,0 + wk,1, where wk,j ∈ Vj for j = 0, 1. From (4.29) we have

wk+1,0 = wk,0

wk+1,1 = [I − δAQAT]wk,1

for T1 ≤ k ≤ T2−1. Since wk,1 is not in the null space of AQAT , then (4.28) and

(4.29) imply that ‖wk,1‖ decays exponentially. Let w0 = wk,0, then AQATw0 = 0

AQQATw0 ⇒ QATw0 = 0. Therefore, from (4.28) we have

Δuk = δQTAT (f − Auk) = δQAT (w0 + wk,1) = δQATwk,1.

Thus ‖Δuk‖ decays exponentially. This means {uk} forms a Cauchy sequence in

S, so it has a limit u∗ ∈ S. Moreover

Au∗ − f = lim
k

(Auk − f) = lim
k
wk,0 + lim

k
wk,1 = w0.

Since V0 and V1 are orthogonal:

‖Auk − f‖2 = ‖wk,0‖2 + ‖wk,1‖2 = ‖Au∗ − f‖2 + ‖wk,1‖2,

so ‖Auk − f‖2−‖Au∗− f‖2 decays exponentially. The only thing left to show is

that

u∗ = arg min(‖Au− f‖2 : u ∈ S) = arg min{‖Au− f‖2 : Qu = u}.

This is equivalent to way that AT (Au∗ − f) is orthogonal with the hyperspace

{u : Qu = u}. It’s easy to see that since Q is a projection operator, a vector v

is orthogonal with {u : Qu = u} if and only if Qv = 0, thus we need to show

64

QAT (Au∗ − f) = 0. This is obvious because we have shown that Au∗ − f = w0

and QATw0 = 0. So we find that u∗ is the desired minimizer.

Therefore, instead of decaying exponentially with a global rate, the residual of

the linearized Bregman iteration decays in a rather sophisticated manner. From

the definition of the shrinkage function we can see that the sign of an element of u

will change if and only if the corresponding element of v crosses the boundary of

the interval [−μ, μ]. If μ is relatively large compared with the size of Δv (which is

usually the case when applying the algorithm to a compressed sensing problem),

then at most iterations the signs of the elements of u will stay unchanged, i.e. u

will stay in the subspace Su defined in (4.27) for a long while. This theorem tells

us that under this scenario u will quickly converge to the point u∗ that minimizes

‖Au− f‖ inside Su, and the difference between ‖Au− f‖ and ‖Au∗ − f‖ decays

exponentially. After u converges to u∗, u will stay there until the sign of some

element of u changes. Usually this means that a new nonzero element of u comes

up. After that, u will enter a different subspace S and a new converging procedure

begins.

The phenomenon described above can be observed clearly in Fig 4.1. The

final solution of u contains five non-zero spikes. Each time a new spike appears,

it converges rapidly to the position that minimizes ‖Au− f‖ in the subspace Su.

After that there is a long stagnation, which means u is just waiting there until

the accumulating v brings out a new non-zero element of u. The larger μ is, the

longer the stagnation takes. Although the convergence of the residual during each

phase is fast, the total speed of the convergence suffers much from the stagnation.

The solution of this problem will be described in the next section.

65

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

lo
g

of
 r

es
id

ua
l

Figure 4.1: The left figure presents a simple signal with 5 non-zero spikes. The
right figure shows how the linearized Bregman iteration converges.

4.4 Fast Implementation

The iterative formula in Algorithm 6 below gives us the basic linearized Bregman

algorithm designed to solve (4.6), in particular (4.2).

Algorithm 6 Bregman Iterative Regularization

Initialize: u = 0, v = 0.
while “‖f − Au‖ not converge” do
vk+1 = vk + A
(f −Auk)
uk+1 = δ · shrink(vk+1, μ)

end while

This is an extremely concise algorithm, simple to program, involve only matrix

multiplication and shrinkage. When A consists of rows of a matrix of a fast

transform like FFT which is a common case for compressed sensing, it is even

faster because matrix multiplication can be implemented efficiently using the

existing fast code of the transform. Also, storage becomes a less serious issue.

We now consider how we can accelerate the algorithm under the problem

of stagnation described in the previous section. From that discussion, during a

66

stagnation u converges to a limit u∗ so we will have uk+1 ≈ uk+2 ≈ · · · ≈ uk+m ≈
u∗ for some m. Therefore the increment of v in each step, A
(f − Au), is fixed.

This implies that during the stagnation u and v can be calculated explicitly as

following ⎧⎪⎨
⎪⎩
uk+j ≡ uk+1

vk+j = vk + j · A
(f −Auk+1)

j = 1, · · · , m (4.30)

If we denote the set of indices of the zero elements of u∗ as I0 and let I1 = I0 be

the support of u∗, then vk
i will keep changing only for i ∈ I0 and the iteration

can be formulated entry-wise as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk+j
i ≡ uk+1

i ∀i

vk+j
i = vk

i + j · (A
(f − Auk+1))i i ∈ I0
vk+j

i ≡ vk+1
i i ∈ I1

(4.31)

for j = 1, · · · , m. The stagnation will end when u begins to change again. This

happens if and only if some element of v in I0 (which keeps changing during

the stagnation) crosses the boundary of the interval [−μ, μ]. When i ∈ I0, vk
i ∈

[−μ, μ], so we can estimate the number of the steps needed for vk
i to cross the

boundary ∀i ∈ I0 from (4.31), which is

si =

⌈
μ · sign((A
(f − Auk+1))i)− vk+1

i

(A
(f −Auk+1))i

⌉
∀i ∈ I0 (4.32)

and

s = min
i∈I0
{si} (4.33)

is the number of steps needed. Therefore, s is nothing but the length of the

67

stagnation. Using (4.30), we can predict the end status of the stagnation by

⎧⎪⎨
⎪⎩
uk+s ≡ uk+1

vk+s = vk + s · A
(f − Auk+1)

j = 1, · · · , m (4.34)

Therefore, we can kick u to the critical point of the stagnation when we detect

that u has been staying unchanged for a while. Specifically, we have the following

algorithm: Algorithm 7.

Algorithm 7 Linearized Bregman Iteration with Kicking

Initialize: u = 0, v = 0.
while “‖f − Au‖ not converge” do

if “uk−1 ≈ uk” then
calculate s from (4.32) and (4.33)
vk+1

i = vk
i + s · (A
(f − Auk))i, ∀i ∈ I0

vk+1
i = vk

i , ∀i ∈ I1
else
vk+1 = vk + A
(f − Auk)

end if
uk+1 = δ · shrink(vk+1, μ)

end while

Indeed, this kicking procedure is similar to line search commonly used in

optimization problems and modifies the initial algorithm in no way but just ac-

celerates the speed. More precisely, note that the output sequence {uk, vk} is

a subsequence of the original one, so all the previous theoretical conclusions on

convergence still hold here.

An example of the algorithm is shown in Fig 4.2. It is clear that all the

stagnation in the original convergence collapses to single steps. The total amount

of computation is reduced dramatically.

68

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

lo
g

of
 r

es
id

ua
l

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

lo
g

of
 r

es
id

ua
l

Figure 4.2: The left figure presents the convergence curve of the original lin-
earized Bregman iteration using the same signal as Fig 4.1. The right figure
shows the convergence curve of the linearized Bregman iteration with the kicking
modification.

4.5 Fast Solver for Total Variation (TV) Based Models

via Split Bregman Iterations

Total variation based model was first used in the context of image processing

by Rudin, Osher and Fatemi [148]. After that, numerous TV based models

were introduced for various image processing problem, e.g. denoising, deblurring,

segmentation, inpainting, etc. Interested readers can consult the textbooks [173–

175] and the references there for more details.

The classical and most straightforward way of solving a TV based model is

by gradient descent method, which is very reliable in practice. However, gradient

descent method is very slow computationally and it usually requires huge number

of iterations before convergence. The major difficulty in designing a fast solver

for TV based models is due to the non-differentiability of the TV term. In recent

years, many numerical methods [157–167, 170] are developed to improve the speed

of solving TV based models. One of the most efficient and general method is the

69

split Bregman iterations introduced by Goldstein and Osher [170]. We will recall

their algorithm in this section and use it on medical image analysis in the next

two chapters.

Consider the following general TV based variational model

minimize E(u) :=

∫
Ω

g(x)|∇u(x)|dx+ c1‖u− f‖1 + c2‖Au− f‖2, (4.35)

where Ω is the computation domain e.g. image domain, ci, i = 1, 2 are constant

parameters, g(x) is some weight function, and f is the observed image. When

g(x) ≡ 1, c1 = 0 and A = I, (4.35) becomes the standard ROF model [148];

when g(x) ≡ 1, c1 = 0 and A is some convolution operator, (4.35) becomes a

model used for image deblurring (see e.g. [146]); when g(x) ≡ 1 and c2 = 0,

(4.35) becomes the TV-L1 model [168, 177]; when c2 = 0, then (4.35) becomes

the snake model considered in [169].

Now let d1 = ∇u, d2 = u− f and d := (dT
1 , d2)

T . Define

|d(x)|∗ := g(x)‖d1‖+ c1|d2| and Ψu := (∇uT , u)T .

Then the optimization (4.35) can be transformed to the following equivalent form

Minimizeu,d

∫
|d|∗ + c2‖Au− f‖2

s.t. d = Ψu− (0, f)T =: Fu.

(4.36)

Since the above optimization problem is a special case of the general model (4.6),

70

we can use Bregman iterations, as described in section 1.2, to solve it:

(uk+1, dk+1) = arg min
u,d

∫
|d|∗ + c2‖Au− f‖2 +

μ

2
‖d− Fu− bk‖22

bk+1 = bk +
(
Fuk+1 − dk+1

)
.

(4.37)

As one can see, the first step in the above scheme is the crucial step, where we

need to solve the minimization problem for both variables u and d. It is suggested

by [170] that one can minimize it alternatively in u and d, i.e. minimize the

functional by fixing d and u alternatively. Here we shall skip the details and leave

them to [170] (not exactly in the same format as (4.37), but the idea applies). In

Chapter 5, we will derive the detailed scheme from (4.37) for the snake model,

i.e. the case c2 = 0.

4.6 Numerical Results

In this section, we demonstrate the effectiveness of the Algorithm 7 in solving

the standard �1-minimization (4.2) and some related problems.

4.6.1 Efficiency

Consider the constrained minimization problem

min ‖u‖1 s.t. Au = f,

where the constraints Au = f are under-determined linear equations with A an

m × n matrix, and f generated from a sparse signal ū that has a number of

nonzeros κ < m.

Our numerical experiments use two types of A matrices: Gaussian matrices

71

whose elements were generated from i.i.d. normal distributionsN (0, 1) (randn(m,n)

in MATLAB), and partial discrete cosine transform (DCT) matrices whose k

rows were chosen randomly from the n × n DCT matrix. These matrices are

known to be efficient for compressed sensing. The number of rows m is chosen

as m ∼ κ log(n/κ) for Gaussian matrices and m ∼ κ logn for DCT matrices

(following [143]).

The tested original sparse signals ū had numbers of nonzeros equal to 0.05n

and 0.02n rounded to the nearest integers in two sets of experiments, which

were obtained by round(0.05*n) and round(0.02*n) in MATLAB, respec-

tively. Given a sparsity ‖ū‖0, i.e., the number of nonzeros, an original sparse

signal ū ∈ R
n was generated by randomly selecting the locations of ‖ū‖0 nonze-

ros, and sampling each of these nonzero elements from U(−1, 1) (2*(rand-0.5)

in MATLAB). Then, f was computed as Aū. When ‖ū‖0 is small enough, we

expect the �1-minimization problem, which we solved using our fast algorithm,

to yield a solution u∗ = ū from the inputs A and f .

Note that partial DCT matrices are implicitly stored fast transforms for which

matrix-vector multiplications in the forms of Ax and A
x were computed by the

MATLAB commands dct(x) and idct(x), respectively. Therefore, we were able

to test on partial DCT matrices of much larger sizes than Gaussian matrices.

The sizes m-by-n of these matrices are given in the first two columns of Table

4.1.

Our code was written in MATLAB and was run on a Windows PC with a

Intel(R) Core(TM) 2 Duo 2.0GHz CPU and 2GB memory. The MATLAB version

is 7.4.

The set of computational results given in Table 4.1 was obtained by using the

72

stopping criterion
‖Auk − f‖
‖f‖ < 10−5, (4.38)

which was sufficient to give a small error ‖uk − ū‖/‖ū‖. Throughout our experi-

ments in Table 4.1, we used μ = 1 to ensure the correctness of the results.

Table 4.1: Experiment results using 10 random instances for each configuration
of (m,n, ‖ū‖0), with nonzero elements of ū come from U(−1, 1).

Results of linearized Bregman-L1 with kicking
Stopping tolerance. ‖Auk − f‖/‖f‖ < 10−5

Gaussian matrices
stopping itr. k relative error ‖uk − ū‖/‖ū‖ time (sec.)

mean std. max mean std. max mean std. max
n m ‖ū‖0 = 0.05n

1000 300 422 67 546 2.0e-05 4.3e-06 2.7e-05 0.42 0.06 0.51
2000 600 525 57 612 1.8e-05 1.9e-06 2.1e-05 4.02 0.45 4.72
4000 1200 847 91 1058 1.7e-05 1.7e-06 1.9e-05 25.7 2.87 32.1

n m ‖ū‖0 = 0.02n
1000 156 452 98 607 2.3e-05 2.6e-06 2.6e-05 0.24 0.06 0.33
2000 312 377 91 602 2.0e-05 4.0e-06 2.9e-05 1.45 0.38 2.37
4000 468 426 30 477 1.6e-05 2.1e-06 2.0e-05 6.96 0.51 7.94

Partial DCT matrices
n m ‖ū‖0 = 0.05n

4000 2000 71 6.6 82 9.1e-06 2.5e-06 1.2e-05 0.43 0.06 0.56
20000 10000 158 14.5 186 6.2e-06 2.1e-06 1.1e-05 3.95 0.36 4.73
50000 25000 276 14 296 6.8e-06 2.6e-06 1.0e-05 17.6 0.99 19.2

n m ‖ū‖0 = 0.02n
4000 1327 52 7.0 64 8.6e-06 1.3e-06 1.1e-05 0.27 0.04 0.35

20000 7923 91 10.3 115 7.2e-06 2.2e-06 1.1e-05 2.36 0.30 3.02
50000 21640 140 9.7 153 5.9e-06 2.4e-06 1.1e-05 8.53 0.66 9.42

4.6.2 Robustness to Noise

In real applications, the measurement f we obtain is usually contaminated by

noise. The measurement we have is:

f̃ = f + n = Aū+ n, n ∈ N (0, σ).

73

To characterize the noise level, we shall use SNR (signal to noise ratio) instead

of σ itself. The SNR is defined as follows

SNR(u) := 20 log10(
‖ū‖
‖n‖).

In this section we test our algorithm on recovering the true signal ū from A and

the noisy measurement f̃ . As in the last section, the nonzero entries of ū are

generated from U(−1, 1), and A is either a Gaussian random matrix or a partial

DCT matrix. Our stopping criteria is given by

std
(
Auk − f̃)

< σ, and Iter. < 1000,

i.e. we stop whenever the standard deviation of residual Auk − f̃ is less than σ

or the number of iterations exceeds 1000. Table 4.2 shows numerical results for

different noise level, size of A and sparsity. We also show one typical result for a

partial DCT matrix with size n = 4000 and ‖ū‖0 = 0.02n = 80 in Figure 4.3.

0 500 1000

−0.2

−0.1

0

0.1

0.2

0.3
Noisy Measurements, SNR = 23.1084

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1
Iterations = 102, Final Error = 0.020764

Figure 4.3: The left figure presents the clean (red dots) and noisy (blue circles)
measurements, with SNR=23.1084; the right figure shows the reconstructed signal
(blue circles) v.s. original signal (red dots), where the relative error=0.020764,
and number of iterations is 102.

74

Table 4.2: Experiment results using 10 random instances for each configuration
of (m,n, ‖ū‖0).

Results of linearized Bregman-L1 with kicking
Stopping criteria. std(Auk − f) < σ.

Gaussian matrices
stopping itr. k relative error ‖uk − ū‖/‖ū‖ time (sec.)

mean std. max mean std. max mean std. max
Avg. SNR (n,m) ‖ū‖0 = 0.05n

26.12 (1000,300) 420 95 604 0.0608 0.0138 0.0912 0.33 0.09 0.53
25.44 (2000,600) 206 32 253 0.0636 0.0128 0.0896 1.49 0.22 1.79
26.02 (4000,1200) 114 11 132 0.0622 0.0079 0.0738 3.32 0.31 3.81

Avg. SNR (n,m) ‖ū‖0 = 0.02n
27.48 (1000,156) 890 369 1612 0.0456 0.0085 0.0599 0.42 0.17 0.73
25.06 (2000,312) 404 64 510 0.0638 0.0133 0.0843 1.37 0.23 1.74
26.04 (4000,468) 216 35 267 0.0557 0.0068 0.0639 3.29 0.55 4.13

Partial DCT matrices
Avg. SNR (n,m) ‖ū‖0 = 0.05n

23.97 (4000, 2000) 151 9.2 170 0.0300 0.0028 0.0332 0.94 0.07 1.03
24.00 (20000,10000) 250 14 270 0.0300 0.0010 0.0318 7.88 0.62 8.86
24.09 (50000,25000) 274 9.9 295 0.0304 0.0082 0.0315 20.4 0.74 20.1

Avg. SNR (n,m) ‖ū‖0 = 0.02n
24.29 (4000,1327) 130 11 157 0.0223 0.0023 0.0253 0.79 0.08 1.00
24.37 (20000,7923) 223 14 257 0.0204 0.0025 0.0242 6.89 0.53 8.15
24.16 (50000,21640) 283 19 311 0.0193 0.0012 0.0207 21.5 1.68 24.1

75

4.6.3 Recovery of Signal with High Dynamical Range

In this section, we test our algorithm on signals with high dynamical ranges.

Precisely speaking, let MAX = max{|ūi| : i = 1, . . . , n} and MIN = min{|ui| :

ui �= 0, i = 1, . . . , n}. The signals we shall consider here satisfy MAX
MIN ≈ 1010.

Our ū is generated by multiplying a random number in [0, 1] with another one

randomly picked from {1, 10, . . . , 1010}. Here we adopt the stopping criteria

‖Auk − f‖
‖f‖ < 10−11

for the case without noise (Figure 4.4) and the same stopping criteria as in the

previous section for the noisy cases (Figures 4.5-4.7). In the experiments, we take

the dimension n = 4000, the number of nonzeros of ū to be 0.02n, and μ = 1010.

Here μ is chosen to be much larger than before, because the dynamical range of

ū is large. Figure 4.4 shows results for the noise free case, where the algorithm

converges to a 10−11 residual in less than 300 iterations. Figures 4.5-4.7 show

the cases with noise (the noise is added the same way as in previous section).

As one can see, if the measurements are contaminated with less noise, signals

with smaller magnitudes will be recovered well. For example in Figure 4.5, the

SNR≈ 118, and the entries of magnitudes 104 are well recovered; in Figure 4.6,

the SNR≈ 97, and the entries of magnitudes 105 are well recovered; and in Figure

4.7, the SNR≈ 49, and the entries of magnitudes 107 are well recovered.

4.6.4 Recovery of Sinusoidal Waves in Huge Noise

In this section we consider

ū(t) = a sin(αt) + b cos(βt),

76

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

9 Iter= 298.

1000 2000 3000 4000
0

0.5

1

1.5

2
Zoom−In

0 100 200 300
−12

−10

−8

−6

−4

−2

0

Decay of log
10

(||Auk−f||/||f||)

lo
g 10

(r
es

id
ua

l)

Iterations
0 100 200 300

−12

−10

−8

−6

−4

−2

0

Decay of log
10

(||u−u
true

||/||u
true

||)

lo
g 10

(e
rr

or
)

Iterations

Figure 4.4: Upper left, true signal (red dots) v.s. recovered signal (blue circle);
upper right, one zoom-in to the lower magnitudes; lower left, decay of residual

log10
‖Auk−f‖

‖f‖ ; lower right, decay of error to true solution log10
‖uk−ū‖

‖ū‖ .

77

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

9

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

4

SNR = 117.8948, Iter = 181, Error = 3.4312e−007

Figure 4.5: Noisy case. Left figure, true signal (red dots) v.s. recovered signal
(blue circle); right figure, one zoom-in to the magnitude≈ 105. The error is

measured by ‖uk−ū‖
‖ū‖ .

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

9

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

5

SNR = 96.9765, Iter = 148, Error = 2.6386e−006

Figure 4.6: Noisy case. Left figure, true signal (red dots) v.s. recovered signal
(blue circle); right figure, one zoom-in to the magnitude≈ 106. The error is

measured by ‖uk−ū‖
‖ū‖ .

78

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

9

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

7

SNR = 49.289, Iter = 90, Error = 0.00067413

Figure 4.7: Noisy case. Left figure, true signal (red dots) v.s. recovered signal
(blue circle); right figure, one zoom-in to the magnitude≈ 108. The error is

measured by ‖uk−ū‖
‖ū‖ .

where a, b, α and β are unknown. The observed signal ũ is noisy and has the

form ũ = ū + n with n ∼ N (0, σ). In practice, the noise in ũ could be huge,

i.e. possibly have a negative SNR, and we may only be able to observe partial

information of ũ, i.e. only a subset of values of ũ is known. Notice that the signal

is sparse (only four spikes) in frequency domain. Therefore, this is essentially

a compressed sensing problem and �1-minimization should work well here. Now

the problem can be stated as reconstructing the original signal ū from random

samples of the observed signal ũ using our fast �1-minimization algorithm. In our

experiments, the magnitudes a and b are generated from U(−1, 1); frequencies α

and β are random multiples of 2π
n

, i.e. α = k1
2π
n

and α = k2
2π
n

, with ki taken from

{0, 1, . . . , n− 1} randomly and n denotes the dimension. We let I be a random

subset of {1, 2, . . . , n} and f = ũ(I), and take A and A
 to be the partial matrix

of inverse Fourier matrix and Fourier matrix respectively. Now we perform our

algorithm adopting the same stopping criteria as in section 4.6.2, and obtain

a reconstructed signal denoted as x. Notice that reconstructed signal x is in

79

Fourier the domain, not in the physical domain. Thus we take an inverse Fourier

transform to get the reconstructed signal in physical domain, denoted as u∗. Since

we know a priori that our solution should have four spikes in Fourier domain,

before we take the inverse Fourier transform, we pick the four spikes with largest

magnitudes and set the rest of the entries to be zero. Some numerical results are

given in Figure 4.8-4.11. Our experiments show that the larger the noise level

is, the more random samples we need for a reliable reconstruction, where reliable

means that with high probability (>80%) of getting the frequency back exactly.

As for the magnitudes a and b, our algorithm cannot guarantee to recover them

exactly (as one can see in Figure 4.8-4.11). However, frequency information

is much more important than magnitudes in the sense that the reconstructed

signal is less sensitive to errors in magnitudes than errors in frequencies (see

bottom figures in Figure 4.8-4.11). On the other hand, once we recover the right

frequencies, one can use hardware to estimate magnitudes accurately.

80

0 100 200 300 400 500
−3

−2

−1

0

1

2

3
Orignal and Noisy Waves, SNR = 2.6185

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
Physical Domain

0 200 400
0

50

100

150

200

250
Frequency Domain

0 50 100

−1.5

−1

−0.5

0

0.5

1

1.5

One Zoom−In

Figure 4.8: Reconstruction using 20% random samples of ũ with SNR= 2.6185.
The upper left figure shows the original (red) and noisy (blue) signals; the upper
right shows the reconstruction (blue circle) v.s. original signal (red dots) in
Fourier domain in terms of their magnitudes (i.e. |û∗| v.s. |̂̄u|); bottom left
shows the reconstructed (blue) v.s. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.

81

0 100 200 300 400 500
−3

−2

−1

0

1

2

3
Orignal and Noisy Waves, SNR = −4.7836

0 100 200 300 400 500
−1

−0.5

0

0.5

1
Physical Domain

0 200 400
0

50

100

150
Frequency Domain

0 20 40 60

−1

−0.5

0

0.5

1

One Zoom−In

Figure 4.9: Reconstruction using 40% random samples of ũ with SNR= −4.7836.
The upper left figure shows the original (red) and noisy (blue) signals; the upper
right shows the reconstruction (blue circle) v.s. original signal (red dots) in
Fourier domain in terms of their magnitudes (i.e. |û∗| v.s. |̂̄u|); bottom left
shows the reconstructed (blue) v.s. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.

82

0 100 200 300 400 500
−4

−2

0

2

4
Orignal and Noisy Waves, SNR = −6.7908

0 100 200 300 400 500
−1

−0.5

0

0.5

1
Physical Domain

0 200 400
0

50

100

150
Frequency Domain

0 20 40

−1

−0.5

0

0.5

1

One Zoom−In

Figure 4.10: Reconstruction using 60% random samples of ũ with SNR= −6.7908.
The upper left figure shows the original (red) and noisy (blue) signals; the upper
right shows the reconstruction (blue circle) v.s. original signal (red dots) in
Fourier domain in terms of their magnitudes (i.e. |û∗| v.s. |̂̄u|); bottom left
shows the reconstructed (blue) v.s. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.

83

0 100 200 300 400 500
−6

−4

−2

0

2

4

6

8
Orignal and Noisy Waves, SNR = −11.0016

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
Physical Domain

0 200 400
0

50

100

150

200

250
Frequency Domain

0 20 40

−1

−0.5

0

0.5

1

One Zoom−In

Figure 4.11: Reconstruction using 80% random samples of ũ with
SNR= −11.0016. The upper left figure shows the original (red) and noisy (blue)
signals; the upper right shows the reconstruction (blue circle) v.s. original signal
(red dots) in Fourier domain in terms of their magnitudes (i.e. |û∗| v.s. |̂̄u|);
bottom left shows the reconstructed (blue) v.s. original (red) signal in physical
domain; and bottom right shows one close-up of the figure at bottom left.

84

CHAPTER 5

Application of �1-Minimizations to Needle

Localization in Ultrasound Images

5.1 Medical Background

Image guided interventions have become the standard of care for many surgical

procedures. Optimal visualization of the object of interest and biopsy needle in

ultrasound images requires the use of specialized biopsy needles and high cost,

cart-based ultrasound units. The success of image guided interventions is de-

pendent on anatomic knowledge, visualization, and precise tracking and control

of the biopsy needle. A majority of medical care-providers utilize low resolu-

tion ultrasound units. In addition, many office-based or emergency department

procedures are performed using generic (non-specialized) needles. Unfortunately,

the quality of the imagery obtained by most ultrasound units does not allow for

clear and concise visualization of a regular needle during many needle-based pro-

cedures. The inability to clearly see the tip of a needle in relation to the object

of interest (e.g., a vein, artery, or mass) makes such image guided interventions

less accurate.

In view of the inadequacy of ultrasound technology identifying inserted needles

with desired resolution, a new and improved system for tracking such needles

needs to be developed. A more accurate method for localizing the distal tip of

85

inserted needles will greatly improve the efficacy and safety of ultrasound image-

guided interventions. In this chapter, we shall employ the TV-based model (4.35)

(or equivalently (4.36)), and the split Bregman iterations (4.37) to solve the needle

tracking problem for ultrasound images.

5.2 Mathematical Model

We denote the video frames of ultrasound images as I(x, t) with 0 ≤ I(x, t) ≤ 1,

and define the integrated difference of frames as

f(x, τ) :=

∫ τ

τ−δ

∣∣Gσ(x) ∗ ∂tI(x, t)
∣∣dt, (5.1)

where Gσ is Gaussian with standard deviation σ. If the motions of the needle,

e.g. jiggling or insertion, are different from the motions of the tissues and organs,

which is usually the case, then in f(x, τ) we can see regions with such motions

highlighted. However these regions in f(x, τ) are usually not very clear and have

noisy boundaries. Therefore, a robust and efficient segmentation on f(x, τ) for

each τ is needed. Since we will focus on the segmentation of f(x, τ) for each fixed

τ , we will omit the variable τ and denote f(x, τ) as f(x) for simplicity.

There are numerous image segmentation methods in the literature [108, 169,

171–177]. Since the image f(x) defined in (5.1) is close to binary, we consider

the following energy introduced in [169]

E(u) =

∫
g(x)|∇u(x)|dx+ λ

∫
|u(x)− f(x)|dx. (5.2)

It is shown in [169] that for any minimizer u of (5.2) and for almost all threshold

86

μ ∈ [0, 1], the characteristic function

1Ω(μ)={x:u(x)>μ}(x)

is a global minimizer of the corresponding geometric active contour model (see

[169] for more details). Therefore, a segmentation of f(x) can be obtained by

first computing a minimizer of (5.2) and then letting Ω := {x : u(x) > 0.5}. Now

the key issue here is to minimize (5.2) efficiently.

To minimize the energy (5.2) efficiently, we adopt the idea of the split Breg-

man method introduced in [170]. The derivation is essentially the same as that

in Section 4.5 (which is a more general version). Here we shall repeat it for

completeness. Define

|d|∗ := g(x)
√
d2

1 + d2
2 + λ|d3| and Fu := (∇uT , u− f)T ,

then minimizing energy (5.2) is equivalent to

Minimize

∫
|d|∗

s.t. d = Fu.

(5.3)

After “Bregmanizing” the constrained optimization problem (5.3), we obtain the

following algorithm which minimizes the original energy (5.2) rather efficiently

(the derivation is similar to that in [170]),

(uk+1, dk+1) = arg min
u,d

∫
|d|∗ +

μ

2
‖d− Fu− bk‖22

bk+1 = bk +
(
Fuk+1 − dk+1

)
.

(5.4)

For convenience, we denote d̄ = (d1, d2)
T and hence d = (d̄, d3)

T . Similarly, we

87

can define b̄ and b. Then we introduce the following algorithm to solve (5.4):

Algorithm 1. We start with d0 = 0 and b0 = 0.

1. First update u by solving

(−∇2 + I)uk+1 = ∇ · (b̄k − d̄k) + dk
3 + f − bk3;

2. Then update d by

dk+1
1 = max(sk − g(x)

μ
, 0) · u

k
x + bk1
sk

,

dk+1
2 = max(sk − g(x)

μ
, 0) · u

k
y + bk2
sk

,

dk+1
3 = shrink(uk − f + bk3,

λ

μ
),

where sk = |∇uk + b̄k|.

3. Finally update bk+1 by

bk+1 = bk +
(
F (uk+1)− dk+1

)
;

4. If ‖uk+1−uk‖
‖uk‖ > tol, go back to step 1 and repeat.

The Algorithm 1 is very efficient in terms of total number of iterations and the

cost for each iteration. According to our experiments, it usually only takes about

30 iterations until ‖uk+1−uk‖
‖uk‖ ≈ 10−3. For each iteration in Algorithm 1, the major

calculation is in step 1, where the PDE can be solved rather efficiently by either

FFT, for periodic boundary condition, or multigrid method, for Neumann and

Dirichlet boundary conditions. An example is given in the following Figure 5.1

88

where noise was added to the original image. We note that the image is provided

by Laboratory of Neural Imaging, Center for Computational Biology, UCLA.

For the special image f(x) obtained from frames of ultrasound images by (5.1),

the object of interest in f(x) is either a needle or the tip of the needle, which

are both simple geometric objects. Therefore, we can stop our iteration at an

even earlier stage (e.g. in our experiments, we only perform two iterations) and

the segmentation results would not change much if more iterations were carried

out. The efficiency of Algorithm 1 ensures that the entire needle localization

procedure can be finished in real-time. To be precise, by “real-time” we mean

that the total time spent by the entire numerical procedure is no greater than

that spent by the ultrasound machine in acquiring each image frame. A detailed

description of the needle localization procedure will be given in next section.

5 10 15 20 25 30

10
−2

10
−1

5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

Figure 5.1: The left figure shows segmentation result using Algorithm 1; the

middle one is the decay of ‖d−Fuk‖
‖d‖ ; and the right one is the decay of ‖uk+1−uk‖

‖uk‖ .

5.3 Schematic Descriptions of Needle Detection and Track-

ing Procedure

The entire needle localization procedure can be decomposed into two phases. The

first phase is to locate the needle in the images at the very beginning, based on a

few seconds’ image frames. During this phase, one can jiggle the needle or gently

89

poke the tissues to help our algorithm locate the needle fast and accurately. The

second phase is to track the motion of the tip of the needle when it moves.

5.3.1 Phase I

To locate the needle when it is first inserted into the tissue, we perform the

following operations:

1. Obtain f(x) using (5.1) based on the previous 1-2 seconds’ frames, denoted

as I(x, t);

2. Segment the regions using (5.4) via the Algorithm 1 (with 2 iterations);

3. Regularize the region obtained by step 2 via Algorithm 3, the fast area

preserving mean curvature motion proposed by [87–89];

4. Obtain the skeleton of the regularized region which represents the needle,

and then the tip of the needle can be located.

To help localize the needle based on f(x), one could gently jiggle the needle, in

order to differentiate its motion from that of the tissues or organs. The following

Figure 5.2 illustrates the four steps described above. We first note that it is

obviously crucial to consider f(x) instead of any single frame in order to rule

out other regions with comparable intensities as the needle (e.g. some tissues or

organs). The left two figures in Figure 5.3 show that if we perform segmentation

directly on a single frame, we will capture several regions besides the needle. We

also note that the third step above is important because otherwise, we may not

get a single line representing the needle, but several branches (see the right figure

in Figure 5.3). In step 4, there is always an ambiguity of the tip (it could be

the alternative end of the line). However the ambiguity can be easily removed

90

whenever the needle starts moving. Therefore, here and in the experiments below,

we assume the tip is picked up correctly.

Figure 5.2: The four figures from left to right describes the four steps, and the
four images are the same one f(x) obtained by (5.1).

Figure 5.3: Left figure shows direct segmentation of one single frame; middle
one shows the skeletons extracted from the segmented regions; right one shows
the importance of step 3 in Phase I, where the blue curve is represented by the
solution u obtained form step 2, and the red one is the skeleton by step 4.

5.3.2 Phase II

The second phase is to track the movements of the tip of the needle starting from

the location we obtained from Phase I. We perform the following operations:

1. Obtain f(x) using (5.1) based on the current and the previous 1-2 frames;

2. Segment the regions using (5.4) via the Algorithm 1 (with 2 iterations);

3. Regularize the region obtained by step 2 via Algorithm 3, the fast area

preserving mean curvature motion proposed by [87–89];

91

4. Shrink the region, which possibly has disconnected components, to points

and then choose one point from the set of points that is closest to the

previous tracked location.

The following Figure 5.4 illustrates the four steps described above. We note

that when the noise level is high or some irregular motions exist in tissues or

organs, multiple locations may be captured in step 3, most of which are false

detections. Therefore, step 4 affects the smoothness of the overall tracking. Evi-

dently, we can use other ways to estimate the tip of needle based on the multiple

locations captured in step 3. For example, if we know a priori that the needle

moves in a regular fashion, then we can estimate the location of the tip based

on the current multiple choices and the previously chosen locations such that the

overall motion curve is smooth. For our experiments in Section 5.4, we only use

the simpler operation described in step 4 because the needle moves in an irregular

fashion. However, the result of the overall tracking is still quite satisfactory. We

also note that in step 1, instead of considering the entire image f(x), we can just

consider a patch of f(x) that centered at the previously located point (location

of the tip in the previous frame). In this way, we can save some computations

and also increase the smoothness of the overall tracking. Again, this only works

when the motion of the needle is not too fast. For this reason, we will still use

the entire image f(x) in our experiments in Section 5.4.

Figure 5.4: The four figures from left to right describes the four steps.

92

5.4 Numerical Results

All of the frames of ultrasound images are obtained by a Sonosite (Titan) ultra-

sound machine. The ultrasound machine captures 20 frames per second. In our

following experiments, 120 frames are used, including 20 frames in Phase I and

100 frames in Phase II. Each image is of size 251× 251. In Figure 5.5 we present

5 of the 20 frames in Phase I, and in Figure 5.7 we present 12 of the 100 frames

in Phase II.

The numerical results for Phase I are given in Figure 5.6, and those for Phase

II are given in Figure 5.8. We note that the PDE in (1) of Algorithm 1 is

solved by FFT. Here we also provide a ground truth in Figure 5.9 as validation

of our results, where we manually selected the positions of the needle based on

neighboring frames. We note that for almost all of the frames during Phase II,

the tracking is rather accurate. However for some of the frames, the localization

is not very accurate, for example the fourth figure in the first row of Figure 5.8.

The reason is because of acoustic shadows in some image frames, which appear in

f(x) with high intensities and conceal the movement of the tip of the needle (see

the middle figure of Figure 5.10). However, an acoustic shadow only seems to

appear in f(x) occasionally when we extract the needle, instead of inserting the

needle, and an accurate tracking of the needle is only required during insertion.

Therefore in practice, this error is not an issue and will not affect the safety

concerns during image guided surgical operations.

93

Figure 5.5: Images from left to right are 5 sample frames among total 20 frames
of ultrasound images during Phase I.

Figure 5.6: Left figure is f(x) obtained from the 20 frames; middle one shows
the result of localization of the body of the needle; right one shows the result of
localization on the first image frame in Figure 5.5, where the blue dot indicates
the tip of the needle.

Figure 5.7: Images above are 12 sample frames among total 100 frames of ultra-
sound images during Phase II.

94

Figure 5.8: Tracking results of the 12 sample frames in Phase II shown in Figure
5.7.

Figure 5.9: Manual segmentation results of the 12 sample frames in Phase II
shown in Figure 5.7.

95

Figure 5.10: First figure is the current frame as shown in the fourth figure in first
row of Figure 5.7; second figure is the previous frame of the first figure; third
figure shows the corresponding f(x) obtained from the first two figures and the
red dot is the tracking result; the last one shows the tracking result on the current
frame which is the same figure as in the upper fight figure of Figure 5.8.

96

Bibliography

[1] A. Buades, B. Coll, and J-M. Morel. On image denoising methods, Multiscale

Model. Simul., 4(2), 490–530, 2005.

[2] A. Buades and B. Coll and J-M. Morel. Neighborhood filters and PDE’s,

Numer. Math. 105(1), 1–34, 2006.

[3] M. Burger, G. Gilboa, S. Osher and J. Xu. Nonlinear inverse scale space

methods, Commun. Math. Sci., 4(1), 179–212, 2006.

[4] P. Bhat, S. Ingram and G. Turk. Geometric texture synthesis by example,

Second Eurographics Symposium on Geometry Processing, 2004.

[5] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic diffusion in surface

processing, T. Ertl, B. Hamann, and A. Varshney, editors, Proc. IEEE Vis.,

397–405, 2000.

[6] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Implicit fairing of irregular

meshes using diffusion and curvature flow, ACM SIGGRAPH 1999.

[7] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Anisotropic featurep-

reserving denoising of height fields and bivariate data, Graphics Interface,

2000.

[8] M. Elsey and S. Esedoglu, Analogue of the Total Variation Denoising Model

in the Context of Geometry Processing, CAM-Report 07–31, 2007.

[9] A. Elmoataz and O. Lezoray and S. Bougleux, Nonlocal discrete regulariza-

tion on weighted graphs: a framework for image and manifold processing,

preprint, 2007.

97

[10] R. Gal and D. Cohen-Or. Salient geometric features for partial shape match-

ing and similarity, under revision for ACM TOG 2005.

[11] T. Gatzke, C. Grimm, M. Garland and S. Zelinka. Curvature maps for local

shape comparison, Shape Modeling International (SMI), 244–256, 2005.

[12] G. Gilboa and S. Osher, Nonlocal Linear Image Regularization and Super-

vised Segmentation, Multiscale Model. Simul., 6(2), 595–630, 2007.

[13] G. Gilboa and S. Osher, Nonlocal Operators with Applications to Image

Processing, CAM-Report 07–23, 2007.

[14] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J.

Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruction, ACM

SIGGRAPH, 295–302, 1994.

[15] S. Kindermann, S. Osher and P. W. Jones, Deblurring and Denoising of

Images by Nonlocal Functionals, Multiscale Model. Simul., 4(4), 1091–1115,

2005.

[16] P. Perona and J. Malik, Scale space and edge detection using anisotropic

diffusion, IEEE Trans. Patt. Anal. Mach. Intell., 12, 629-639, 1990.

[17] A. Sharf, M. Alexa and D. Cohen-Or. Context-based surface completion,

ACM Trans. Graph., 23(3), 878–887. Proceedings of ACM SIGGRAPH 2004.

[18] R. Tsai, L.-T. Cheng, S. J. Osher, and H. K. Zhao. Fast sweeping method for

a class of Hamilton-Jacobi equations, SIAM J. Numer. Analy., 41, 673–694,

2003.

[19] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,

Sixth International Conference on Computer Vision, 839–46, 1998.

98

[20] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface

processing via normal maps, ACM Trans. Graph., 22, 1012–1033, 2003.

[21] T. Tasdizen, R. T. Whitaker, P. Burchard, and S. Osher. Geometric surface

smoothing via anisotropic diffusion of normals, Proc. IEEE Vis., 125–132,

2002.

[22] S. Yoshizawa, A. Belyaev and H. P. Seidel, Smoothing by Example: Mesh

Denoising by Averaging with Similarity-based Weights, IEEE International

Conference on Shape Modeling and Applications, 38–44, 2006.

[23] J. Xu and S. Osher, Iterative regularizaiton and nonlinear inverse scale space

applied to wavelet based denoising, IEEE Image Proc., 16(2), 534–544, 2007.

[24] S. Zelinka and M. Garland. Similarity-based surface modelling using geodesic

fans, Second Eurographics Symposium on Geometry Processing, 209–218,

2004.

[25] D. Zhou and B. Scholkopf, A regularization framework for learning from

graph data, ICML workshop on Statistical Relation Learning and Its Con-

nections to Other Fields, 2004.

[26] N. F. Kassell and J. C. Torner, Aneurysmal rebleeding: a preliminary report

from the Cooperative Aneurysm Study, Neurosurgery, 13(5), 479–81, 1983.

[27] Unruptured intracranial aneurysms–risk of rupture and risks of surgical in-

tervention, by International Study of Unruptured Intracranial Aneurysms

Investigators, N Engl J Med, 339(24), 1725–33, 1998.

[28] D. O. Wiebers, J. P. Whisnant, J. 3rd. Huston, I. Meissner, R.D. Jr. Brown,

D. G. Piepgras, G. S. Forbes, K. Thielen, D. Nichols, W. M. O’Fallon, J.

99

Peacock, L. Jaeger, N. F. Kassell, G. L. Kongable-Beckman and J. C. Torner,

Unruptured intracranial aneurysms: natural history, clinical outcome, and

risks of surgical and endovascular treatment, Lancet 362(9378): 103-10, 2003.

[29] Marieke J.H. Wermer, Irene C. van der Schaaf, Ale Algra, and Gabriël J.E.

Rinkel., Risk of rupture of unruptured intracranial aneurysms in relation to

patient and aneurysm characteristics, Stroke, 38, 1404–1410, 2007.

[30] G. Kanizsa, Organization in Vision, Praeger, New York, 1979.

[31] D. Kersten, High-level vision and statistical inference, In M. S. Gazzaniga,

editor, The New Cognitive Neurosciences, 353–363. The MIT Press, Cam-

bridge, MA, USA.

[32] D. C. Knill and D. Kersten, Apparent surface curvature affects lightness

perception, Nature, 351, 228–230, 1991.

[33] D. Geiger, H. K. Pao and N. Rubin, Salient and Multiple illusory surfaces,

IEEE Computer Society Conference on Conputer Vision and Pattern Recog-

nition, San Barbara, CA, June 1998.

[34] A. Sarti and G. Citti, Subjective surfaces and Riemann mean curvature

flow of graphs, Acta Math. Univ. Comenianae, Vol. LXX, 1(2001), 85-103,

Proceedings of Algoritmy 2000.

[35] A. Sarti, R. Malladi and J. A. Sethian, Subjective surfaces: A geometric

model for boundary completion, Intl J. Comp. Vision, 46(3), 201–221, 2002.

[36] W. Zhu and T. F. Chan, Capture illusory contours: A level set based ap-

proach, UCLA CAM Report 03-65, 2003.

100

[37] W. Zhu and T. F. Chan, Illusory contours using shape information. UCLA

CAM Tech. Report, 03-09, 2005.

[38] Y. M. Jung and J. Shen, First-order modeling and stability analysis of illu-

sory contours, Journal of Visual Communication and Image Representation

archive, 19(1), 42–55, 2008.

[39] P. J. Yim, J. J. Cebral, R. Mullick, H. B. Marcos and P. L. Choyke, Vessel

surface reconstruction with a tubular deformable model, Medical Imaging,

IEEE Transactions on, 20(12), 1411–1421, 2001.

[40] J. Chen and A. A. Amini, Quantifying 3-D vascular structures in MRA im-

ages using hybrid PDE and geometric deformable models, Medical Imaging,

IEEE Transactions on, 23(10), 1251–1262, 2004.

[41] A. Buades, A. Chien, J. M. Morel and S. J. Osher, Topology preserving

linear filtering applied to medical imaging, SIAM J. Imaging Sci., 1(1), 26–

50, 2008.

[42] B. Dong, J. Ye, S. J. Osher and I. Dinov, Level set based nonlocal surface

restoration, Multiscale Model. Simul., 7(2), 589–598, 2008.

[43] H. K. Zhao, T. F. Chan, B. Merriman and S. J. Osher, A variational level

set approach to multiphase motion, J. Comput. Phys., 127, 179–195, 1996.

[44] D. Peng, B. Merriman, S. J. Osher, H. K. Zhao and M. Kang, A PDE-based

fast local level set method, J. Comput. Phys., 155, 410–438, 1999.

[45] R. Goldman, Curvature formulas for implicit curves and surfaces, Computer

Aided Geometric Design, 22, 632–658, 2005.

101

[46] L. Regli, A. Uske and N. de Tribolet, Endovascular coil placement compared

with surgical clipping for the treatment of unruptured middle cerebral artery

aneurysms: a consecutive series, J. Neurosurg, 90, 1025–1030, 1999.

[47] L. Alvarez, F. Guichard, P-L Lions and J.M. Morel, Axioms and fundamental

equations of image processing. Archive for Rational Mechanics and Analysis.,

16(9), 200–257, 1993.

[48] Frédéric Guichard and Jean-Michel Morel, Image Analysis and P.D.E.’s,

IPAM GBM Tutorials, March 27 - April 6, 2001.

http://www.ipam.ucla.edu/publications/gbm2001/gbmtut_jmorel.pdf

[49] Martin Reuter, Franz-Erich Wolter and Niklas Peinecke, Laplace-Beltrami

spectra as Shape-DNA of surfaces and solids, Computer-Aided Design, vol.

38 (4), 342–366, April 2006.

[50] F. Arandiga, R. Donat and A. Harten. Multiresolution based on weighted

averages of the hat function I: Linear Reconstruction Techniques. UCLA

CAM Reports 96-25, Aug. 1996.

[51] S. Buss and J. Fillmore. Spherical averages and applications to spherical

splines and interpolation. ACM Transactions on Graphics, 20(2), 95–126,

2001.

[52] D. L. Collins, P. Neelin, T. Peters, A. C. Evans. Automatic 3D intersub-

ject registration of MR volumetric data in standardized Talairach space. J.

Comput. Assist. Tomogr. 18 (2), 192–205, 1994.

[53] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Lecture Notes nr. 61,

SIAM, 1992.

102

[54] S. Mallat. A Wavelet Tour of Signal Processing. 2nd ed. New York: Aca-

demic, 1999.

[55] I. D. Dinov, J. W. Boscardin, M. S. Mega, E. L. Sowell, A. W. Toga. A

Wavelet-Based Statistical Analysis of fMRI data: I. Motivation and Data

Distribution Modeling, NeuroInformatics, Humana Press, 3(4), 319–343,

2005.

[56] A. C. Evans, D. L. Collins, P. Neelin, D. MacDonald, M. Kamber, T. S.

Marrett. Three-dimensional correlative imaging: applications in human

brain mapping. In: Thatcher, R.W., Hallett, M., Zeffiro, T., John, E.R.,

Huerta, M. (Eds.), Functional Neuroimaging: Technical Foundations. Aca-

demic Press, San Diego, 145–162, 1994.

[57] J. D. Gibbons. Nonparametric Statistical Inference, 2nd Ed., M. Dekker,

1985.

[58] X. Gu, Y. Wang, T. F. Chan, P.M. Thompson and S.-T. Yau. Genus Zero

Surface Conformal Mapping and Its Application to Brain Surface Mapping.

IEEE Transaction on Medical Imaging, 23(8), 949–958, Aug. 2004.

[59] Y. Wang, X. Gu, T. F. Chan, P. M. Thompson and S.-T. Yau, ” Intrinsic

Brain Surface Conformal Mapping using a Variational Method”, Medical

Imaging 2004: Image Processing, J. M. Fitzpatrick and M. Sonka (Eds.)

Proceedings of SPIE, Vol. 5370, 241–252, 2004.

[60] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson and S.-T. Yau. Brain Surface

Conformal Mapping. Human Brain Mapping, 2003.

[61] M. Jin, F. Luo and X. Gu. Computing General Geometric Structures on

103

Surfaces Using Ricci Flow. Computer-Aided Design, Vol. 39 (8), 663–675,

August 2007.

[62] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro and M. Halle.

Conformal surface parameterization for texture mapping. IEEE Trans Vis

Comput Graph, 6(2):181-9, 2000.

[63] C. Gotsman, X. Gu and A. Sheffer. Fundamentals of spherical parameteri-

zation for 3D meshes. ACM Trans Graph, 22(3):358-63, 2003.

[64] X. Gu and S.-T. Yau. Global conformal parameterization. Symposium on

geometry processing, 127-37, 2003.

[65] M. Jin, Y. Wang, S.-T. Yau and X. Gu. Optimal global conformal surface

parameterization. IEEE Visualization, 267C74, 2004.

[66] D. Nain, S. Hacker, A. Bobick and A. Tannenbaum. A multiscale 3D shape

analysis using spherical wavelets. Proc MICCAI, 459–467, Oct 26-29 2005.

[67] D. Nain, S. Hacker, A. Bobick and A. Tannenbaum. A shape-driven 3D

segmentation using spherical wavelets. Proc MICCAI, Oct 2-5, 2006.

[68] D. MacDonald, A method for identifying geometrically simple surfaces from

three dimensional images. PhD thesis, McGill University, 1998.

[69] Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster J, Zilles K, Woods

RP, Paus T, Simpson G, Pike B, Holmes CJ, Collins DL, Thompson PM,

MacDonald D, Schormann T, Amunts K, Palomero-Gallagher N, Parsons

L, Narr KL, Kabani N, A probabilistic atlas and reference system for the

human brain: International Consortium for Brain Mapping. Philos Trans R

Soc Lond B Biol Sci 356: 1293-1322, 2001.

104

[70] E. Praun and H. Hoppe, Spherical parametrization and remeshing. ACM

Trans. Gr. Vol. 22 (3), July 2003.

[71] W. Sweldens. The lifting scheme: A construction of second generation

wavelets. SIAM J. Math. Anal., Vol 29 (2), 511–546, 1997.

[72] P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing

functions on the sphere. Computer Graphics Proceedings, (SIGGRAPH 95),

161–172, 1995.

[73] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, R. M.

Leahy. Magnetic resonance image tissue classification using a partial volume

model. NeuroImage 13: 856–876, 2001.

[74] Y. Shi, P. M. Thompson , G. I. de Zubicaray, S. Rose, Z. Tu, I. Dinov, A. W.

Toga, Direct mapping of hippocampal surfaces with intrinsic shape context,

NeuroImage, 37(3), 792-807, 2007.

[75] Y. Shi, P. M. Thompson, I. Dinov, S. Osher, A. W. Toga, Direct cortical

mapping via solving partial differential equations on implicit surfaces, Med-

ical Image Analysis, 11(3), 207–223, 2007

[76] J. G. Sled, A. P. Zijdenbos, A. C. Evans. A non-parametric method for

automatic correction of intensity non-uniformity in MRI data. IEEE Trans.

Med. Imag. 17, 87–97, 1998.

[77] Paul M. Thompson, Arthur W. Toga. A Framework for Computational

Anatomy. Springer Berlin / Heidelberg, vol 5, no. 1, 2002.

[78] Paul M. Thompson, Agatha D. Lee, Rebecca A. Dutton, Jennifer A. Geaga,

Kiralee M. Hayashi, Mark A. Eckert, Ursula Bellugi, Albert M. Galaburda,

105

Julie R. Korenberg, Debra L. Mills, Arthur W. Toga, and Allan L. Reiss.

Abnormal Cortical Complexity and Thickness Profiles Mapped in Williams

Syndrome. The Journal of Neuroscience, vol. 25 no. 16, 2005.

[79] Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple

J, Herman D, Hong MS, Dittmer S, Doddrell DM, Toga AW. Dynamics of

gray matter loss in Alzheimer’s disease. J Neurosci 23: 994-1005, 2003

[80] Paul M. Thompson, Kiralee M. Hayashi, Greig I. de Zubicaray, Andrew L.

Janke, Stephen E. Rose, James Semple, Michael S. Hong, David H. Her-

man, David Gravano, David M. Doddrell and Arthur W. Toga, Mapping

hippocampal and ventricular change in Alzheimer disease, Neuroimage, vol

22, no. 4, 1754-1766, 2004.

[81] Z. Tu, S. Zheng, A. Yuille, A. Reiss, R. Dutton, A.Lee, A.Galaburda, I.

Dinov, P. Thompson, A. Toga, Automated Extraction of the Cortical Sulci

Based on a Supervised Learning Approach, IEEE Tran. on Medical Imaging,

vol. 26, no. 4, April, 2007

[82] L. Bronsard and B. Stoth, Volume preserving mean curvature flow as a limit

of nonlocal Ginsburg-Landau equation. Technical Report 94-NA-008, Center

for Nonlinear Analysis, Charnigie Mellon University, 1994.

[83] D. Levin, Mesh-independent surface interpolation. Geometric Modeling for

Scientific visualization, Springer-Verlag, 37–50, 2003.

[84] H. Ishii. A generalization of the Bence, Merriman and Osher algorithm for

motion by mean curvature. In A. Damlamian, J. Spruck, and A. Visintin,

editors, Curvature Flows and Related Topics, 111–127, Gakkôtosho, Tokyo,

1995.

106

[85] J.-P. Pons, G. Hermosillo, R. Keriven and O. Faugeras, Maintaining the

point correspondence in the level set framework. J. Comput. Phy. Vol 220

(1), Dec. 2006.

[86] M. Pauly, L. Kobbelt and M. Gross, Point-based multiscale surface repre-

sentation. ACM Trans. on Graph., Vol. 25 (2), 177–193, Apr. 2006.

[87] B. Merriman, J. Bence and S. Osher, Motion of multiple junctions, a level

set approach, J. Comput Phys, Vol. 112, 334–363, 1994.

[88] B. Merriman, J. Bence and S. Osher, Diffusion generated motion by mean

curvature. In J.E. Taylor, editor, Computational Crystal Growers Workshop,

AMS, Rhode Island, 73–83, 1992.

[89] S. Ruuth and B. Wetton, A simple scheme for volume preserving motion by

mean curvature, J. Sci Comput, vol. 19, 373–384, 2003.

[90] S. Ruuth, Efficient Algorithms for diffusion-generated motion by mean cur-

vature. Ph.D. thesis, University of British Columbia, Vancouver, Canada,

1996.

[91] S. Ruuth and B. Merriman, Convolution generated motion and generalized

Huygens’ principles for interface motion. SIAM J. Appl. Math., 60 (3), 868–

890, 2000.

[92] S. Ruuth, B. Merriman and S. Osher, Convolution generated motion as a

link between cellular automata and continuum pattern dynamics. J. Coput.

Phys., 151, 836–861, 1999.

[93] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and

nuleation, IMA J. Appl. Math. 48, 248–264, 1992.

107

[94] W. Sweldens, The lifting scheme: A construction of second generation

wavelets. SIAM J. Math. Anal., Vol 29 (2), 511–546, 1997.

[95] S. Osher and J. Sethian, Fronts propagting with curvature-dependent speed:

Algorithm based on Hamilton-Jacobi formulation. J. Computat. Physics, 79,

12–49, 1988.

[96] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equa-

tions, Trans. Amer. Math. Soc., 277, 1–42, 1983.

[97] M. G. Crandall and P. L. Lions, Two approximations of solutions of

Hamilton-Jacobi equations, Math. Comput., 43(167), 1–19, 1984.

[98] M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity

solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282, 487–

502, 1984.

[99] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. J.

Differential Geom., 33(3), 635–681, 1991.

[100] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. II.

Trans. Amer. Math. Soc., 330(1), 321–332, 1992.

[101] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. III. J.

Geom. Anal., 2(2):121C150, 1992.

[102] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. IV. J.

Geom. Anal., 5(1), 77–114, 1995.

[103] Y. G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity

solutions of generalized mean curvature flow equations. J. Differential Geom.,

33(3), 749–786, 1991.

108

[104] Y. Giga. Surface evolution equationsCa level set method. Vorlesungsreihe,

44. Rheinische Friedrich-Wilhelms-Universität, Bonn, 2002.

[105] J. Escher and G. Simonett, The volume preserving mean curvature flow

near spheres. Proc. Amer. Math. Soc., 126(9), 2789–2796, 1998.

[106] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions

of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.),

27(1), 1–67, 1992.

[107] H.K. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and non-

parametric shape reconstruction from unorganized points using variational

level set method, Computer Vision and Image Understanding, 80 (3), 295–

319 2000.

[108] T. Goldstein, X. Bresson and S. Osher. Geometric Applications of the Split

Bregman Method: Segmentation and Surface Reconstruction. CAM-Report

09-06, 2009.

[109] S. Chen, B. Merriman, S. Osher and P. Smereka. A Simple Level Set Method

for Solving Stefan Problems, J. Comp. Phys., 135 (1), 8–29, 1997.

[110] M. Bertalmoio, L.T. Cheng, G. Sapiro and S. Osher. Variational problems

and partial differential equations on implicit surfaces, J. Comp. Phys., 174

(2), 759–780, December 2001.

[111] I. Ur-Raman, I. Drori, V. Stodden, D. Donoho and P. Schroeder, Multiscale

representations of manifold-valued data. Multiscale Modeling & Simulation,

Vol. 4 (4), 2005.

[112] K. Ni, D. Roble and T. Chan, A Texture Synthesis Approach to Elastica

Inpainting, ACM SIGGRAPH 2007.

109

[113] T. F. Chan, S. H. Kang and J. Shen. Eulers elastica and curvature based

inpainting. SIAM journal on Applied Mathematics 63(2), 564–592, 2002.

[114] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester. Image inpainting.

SIGGRAPH, Computer Graphics Proceedings, 417–424, 2000.

[115] M. Bertalmio, A. L. Bertozzi and G. Sapiro. Navier-stokes, fluid dynamics,

and image and video inpainting. Proceedings of the International Conference

on Computer Vision and Pattern Recognition, 355–362, 2001.

[116] T. Chan and J. Shen, Variational image inpainting, Communications on

Pure and Applied Mathematics, 58, 579–619, 2005.

[117] A. Bertozzi, S. Esedoglu and A. Gillette. Inpainting of binary images using

the cahn-hilliard equation. IEEE Trans. Image Proc. 60(2), 285–291, 2007.

[118] A. Bertozzi, S. Esedoglu and A. Gillette. Analysis of a two-scale cahn-

hilliard model for image inpainting. Multiscale Modeling and Simulation

6(3), 913–936, 2007.

[119] S. Esedoglu and J. Shen. Digital inpainting based on the mumford-shah-

euler image model. European J. Appl. Math. 13, 353–370, 2002.

[120] J. A. Dobrosotskaya and A. Bertozzi. A wavelet-laplace variational tech-

nique for image deconvolution and inpainting. IEEE Trans. Imag. Proc.

17(5), 657–663, 2008.

[121] M. Bertalmio, L. Vese, G. Sapiro and S. Osher. Simultaneous texture and

structure image inpainting. Proceedings of the International Conference on

Computer Vision and Pattern Recognition, 707–712, 2003.

110

[122] J. Cai, R. Chan, L. Shen and Z. Shen, Convergence analysis of tight framelet

approach for missing data recovery, Advances in Computational Mathemat-

ics, preprint.

[123] J. Cai, R. Chan and Z. Shen, A framelet-based image inpainting algorithm,

Applied and Computational Harmonic Analysis, 24, 131–149, 2008.

[124] M. Elad, J.-L. Starck, P. Querre, and D. Donoho, Simultaneous cartoon and

texture image inpainting using morphplogical component analysis (MCA),

Applied and Computational Harmonic Analysis, 19, 340–358, 2005.

[125] T. F. Chan, J. Shen and H.-M. Zhou, Total variation wavelet inpainting,

J. Math. Imaging Vision, 25, 107–125, 2006.

[126] J. Davis, S. Marschner, M. Garr and M. Levoy. Filling holes in complex

surfaces using volumetric diffusion. First International Symposium on 3D

Data Processing, Visualization, and Transmission, June 2002.

[127] J. Verdera, V. Caselles, M. Bertalmio and G. Sapiro. Inpainting surface

holes. Proc. Intl Conf. Image Processing, 2003.

[128] N. Amenta, M. Bern, M. Kamvysselis. A New Voronoi-Based Surface Re-

construction Algorithm. Proc. SIGGRAPH’98, ACM, 1998.

[129] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and G. Taubin. The

Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on

Visualization and Computer Graphics, October-December, 1999.

[130] R. Whitaker. A Level-set Approach to 3D Reconstruction from range data.

International Journal of Computer Vision, Vol. 29, No. 3, October, 1998.

111

[131] M.D. Wheeler, Y. Sato, K. Ikeuchi. Consensus Surfaces for Modeling 3D

Objects from Multiple Range Images. Proc. ICCV’98, 1998.

[132] E. Tadmor, S. Nezzar and L. Vese. A Multiscale Image Representation

Using Hierarchical (BV,L2) Decomposition. Multiscale Modeling and Sim-

ulation: A SIAM Interdisciplinary Journal, Volume 2, Number 4, 554-579,

2004.

[133] E. Tadmor, S. Nezzar and L. Vese, Multiscale Hierarchical Decomposition

of Images with Applications to Deblurring, Denoising and Segmentation,

CAM-Report 08-05, February 2008.

[134] S. Mallat and Z. Zhang, Matching pursuit in a time-frequency dictionary,

IEEE Trans. Signal Process., vol. 41, no. 12, 3397–3415, Dec. 1993.

[135] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching

pursuit: Recursive function approximation with applications to wavelet de-

composition, presented at the 27th Annu. Asilomar Conf. Signals, Systems,

and Computers, 1993.

[136] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by

basis pursuit, SIAM Rev., vol. 43, no. 1, 129–59, 2001.

[137] J. Darbon and S. Osher. Fast discrete optimizations for sparse approxima-

tions and deconvolutions. preprint 2007.

[138] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algo-

rithms for compressed sensing and related problems. SIAM J. Imaging Sci-

ences 1(1)., pages 143–168, 2008.

[139] J. Cai, S. Osher, and Z. Shen. Linearized Bregman iterations for compressed

sensing. Math. Comp., 2008. to appear, see also UCLA CAM Report 08-06.

112

[140] J. Cai, S. Osher, and Z. Shen. Convergence of the linearized Bregman iter-

ation for �1-norm minimization. UCLA CAM Report 08-52, 2008.

[141] E. Candes, T. Tao, Decoding by Linear Programming, IEEE Inf. Theory

51, 4203–4215, 2005.

[142] E. J. Candès and T. Tao. Near-optimal signal recovery from random pro-

jections: universal encoding strategies. IEEE Trans. Inform. Theory, 52,

5406–5425, 2006.

[143] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: ex-

act signal reconstruction from highly incomplete frequency information.

52(2):489–509, 2006.

[144] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–

1306, 2006.

[145] S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Reconstruction and sub-

gaussian operators in Asymptotic Geometric Analysis, Geometric and Func-

tional Analysis, 17(4), 1248–1282, 2007.

[146] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative reg-

ularization method for total variation based image restoration. Multiscale

Model. Simul, 4(2):460–489, 2005.

[147] E. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for

�1-regularization with application to compressed sensing. CAAM Technical

Report TR07-07, Rice University, Houston, TX, 2007.

[148] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise

removal algorithms. Phys. D, 60:259–268, 1992.

113

[149] T-C. Chang, L. He, and T. Fang. Mr image reconstruction from sparse

radial samples using bregman iteration. Proceedings of the 13th Annual

Meeting of ISMRM, 2006.

[150] Y. Li, S. Osher, and Y.-H. Tsai. Recovery of sparse noisy date from solutions

to the heat equation. in preparation.

[151] L.M. Bregman. The relaxation method of finding the common point of

convex sets and its application to the solution of problems in convex pro-

gramming. USSR Computational Mathematics and Mathematical Physics,

7(3):200–217, 1967.

[152] D.L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. The-

ory.

[153] W. Yin. On the linearized bregman algorithm. private communication.

[154] M. Bachmayr. Iterative total variation methods for nonlinear inverse prob-

lems. Master’s thesis, Johannes Kepler Universität, Linz, Austria, 2007.

[155] I. Ekeland and R. Témam, Convex Analysis and Variational Problems,

Classics in Applied Mathematics, SIAM, Philadelphia, 1999.

[156] J. Cai, E. Candès and Z. Shen, A singular value thresholding algorithm for

matrix completion.

[157] P. Blomgren, T. F. Chan, P. Mulet, L. Vese and W. L. Wan. Variational

PDE models and methods for image processing, in: Research Notes in Math-

ematics, 420 (2000), 43–67, Chapman and hall/CRC.

[158] A. Chambolle, Total Variation minimization and a class of binary MRF

models, In Springer-Verlag, (ed.), 5th International Workshop on En-

114

ergy Minimization Methods in Computer Vision and Pattern Recogni-

tion(EMMCVPR), Vol. LNCS 3757, 136–152, 2005.

[159] T. F. Chan, G. H. Golub and P. Mulet. A nonlinear primal dual method

for total variation based image restoration, SIAM J. Sci. Comput. 20, 1964–

1977, 1999.

[160] T. F. Chan, H. M. Zhou and R. H. Chan, Continuation Method for Total

Variation Denoising Problems, UCLA CAM Report 95-28, 1995.

[161] J. Darbon and M. Sigelle. Exact optimization of discrete constrained total

variation minimization problems. In: R. Klette and J. Zunic, editors, Tenth

International Workshop on Combinatorial Image Analysis, volume 3322 of

LNCS, 548–557, 2004.

[162] J. Darbon and M. Sigelle. A fast and exact algorithm for total variation

minimization. In: J. S. Marques, N. Prez de la Blanca, and P. Pina, editors,

2nd Iberian Conference on Pattern Recognition and Image Analysis, volume

3522 of LNCS 351–359, 2005.

[163] D. Goldfarb and W. Yin. Second-order cone programming methods for total

variation-based image restoration, SIAM J. Sci. Comput. 27, 622–645, 2005.

[164] D. Goldfarb and W. Yin. Parametric Maximum Flow Algorithmsfor Fast

Total Variation Minimization. Rice CAAM Report TR 07-09.

[165] B. Zalesky, Network Flow Optimization for Restoration of Images. Journal

of Applied Mathematics, Vol. 2, No. 4, 199–218, 2002.

[166] M. Zhu and T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm

for Total Variation Image Restoration, CAM-Report 08-34, May 2008.

115

[167] M. Zhu, S. J. Wright and T. Chan, Duality-Based Algorithms for Total

Variation Image Restoration, CAM-Report 08-33, May 2008.

[168] T. Chan and S. Esedoglu. Aspects of total variation regularized L1 function

approximation. SIAM Journal on Applied Mathematics, 65:5, 1817–1837,

2005.

[169] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran and S. Osher, Fast

Global Minimization of the Active Contour/Snake Model, Journal of Math-

ematical Imaging and Vision, 2007.

[170] Tom Goldstein and Stanley Osher, The Split Bregman Algorithm for L1

Regularized Problems, CAM-Report 08-29, April 2008.

[171] M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active Contour Models,

International Journal of Computer Vision, 321–331, 1987.

[172] V. Caselles, R. Kimmel and G. Sapiro, Geodesic Active Contours, Interna-

tional Journal of Computer Vision, Vol. 22(1), 61–79, 1997.

[173] G. Sapiro, Geometric Partial Differential Equations and Image Analysis,

Chambridge U. Press, 2001.

[174] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces.

Springer-Verlag, New York, 2003.

[175] T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE,

Wavelet, and Stochastic Methods. Society for Industrial and Applied Math-

ematics (SIAM), 2005.

[176] T. Chan and L. Vese, Active Contours Without Edges, IEEE Transactions

on Image Processing, Vol. 10(2), 266–277, 2001.

116

[177] T. F. Chan, S. Esedoglu and M. Nikolova, Algorithms for finding global

minimizers of denoising and segmentation models, SIAM J. Appl. Math.

Vol. 66, 1632–1648, 2006.

117

