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Abstract

We consider regions of images that exhibit smooth statistics, and pose the question of characterizing
the “essence” of these regions that matters for visual recognition. Ideally, this would be a statistic (a
function of the image) that does not depend on viewpoint and illumination, and yet is sufficient for the
task. In this manuscript, we show that such statistics exist. That is, one can compute deterministic
functions of the image that contain all the “information” present in the original image, except for the
effects of viewpoint and illumination. We also show that such statistics are supported on a “thin” (one-
dimensional) subset of the image domain, and thus the “information” in an image that is relevant for
recognition is sparse. Yet, from this thin set one can reconstruct an image that is equivalent to the
original up to a change of viewpoint and local illumination (contrast). Finally, we formalize the notion
of “information” an image contains for the purpose of viewpoint- and illumination-invariant tasks, which
we call “actionable information” following ideas of J. J. Gibson.

1 Introduction: Image Representations for Recognition

Visual recognition is difficult in part because of the large variability that images of a particular object exhibit
depending on extrinsic factors such as vantage point, illumination conditions, occlusions and other visibility
artifacts. The problem is only exacerbated when one considers object categories subject to considerable
intrinsic variability.

Attempts to “learn away” such variability and to tease out intrinsic and extrinsic factors result in explosive
growth of the training requirement, so there is a cogent need to factor out as many of these sources of
variability as possible as part of the representation in a “pre-processing” phase. Ideally, one would want
a representation of the data (images) that is invariant to nuisance factors, intrinsic or extrinsic1 and that
represents a sufficient statistic for the task at hand. The most common nuisances in recognition are (a)
viewpoint, (b) illumination, (c) visibility artifacts such as occlusions and cast shadows, (d) quantization and
noise.2 The latter two are “non-invertible nuisances”, in the sense that they cannot be “undone” in a pre-
processing stage: For instance, whether a region of an image occludes another cannot be determined from
an image alone, but can be ascertained as part of the matching process with a training datum. What about
the former two? Can one devise image representations that are invariant to both viewpoint and illumination,
at least away from visibility artifacts3 such as occlusions and cast shadows?

∗Department of Computer Science, UCLA
†Department of Mathematics, UCLA
‡Department of Computer Science, UCLA
1What constitutes a nuisance depends on the task at hand; for instance, sometimes viewpoint is a nuisance, other times it

is not, as in discriminating “6” from “9”.
2Note that we intend (a) and (b) to be absent of visibility artifacts, that are considered separately in (c).
3The case of visibility and quantization is addressed in [13].
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Figure 1: Regions of an image that exhibit smooth texture gradient are not picked up by local feature
detectors (Harris-affine, SIFT), and are over-segmented by most image segmentation algorithms. How do
we “capture” the essence of these regions that matters for recognizing an object regardless of its viewpoint
and illumination?

Viewpoint? Yes. Contrast? Yes. Both? . . .

The answer to the question above is trivially “yes” as any constant function of the image meets the require-
ment. More interesting is whether there exists an invariant which is non-trivial, and even more interesting
is whether such an invariant is a sufficient statistic, in the sense that it contains all and only the informa-
tion necessary to accomplish the task, regardless of viewpoint and illumination. For the case of viewpoint,
although earlier literature [3] suggested that general-case view-invariants do not exist,4 it has been shown
that it is always possible to construct non-trivial viewpoint invariant image statistics for Lambertian objects
of any shape [14]. For instance, a (properly weighted) local histogram of the intensity values can be shown
to be viewpoint invariant. For the case of illumination, it has been shown [5] that general-case (global)
illumination invariants do not exist, even for Lambertian objects. However, there is a considerable body of
literature dealing with more restricted illumination models that induce a monotonic continuous transforma-
tion of the image intensities, a.k.a. contrast transformation. It has been shown [1] that the geometry of the
level curves (the iso-contours of the image), is contrast invariant, and therefore so is its dual, the gradient
direction.5

But even in this more constrained illumination model, what is invariant to viewpoint is not invariant to
illumination, and vice-versa. So it seems hopeless that we would be able to find anything that is invariant to
both. Even less hopeful that, if we find something, it would be a sufficient statistic! Yet, we will show that
under certain conditions (i) viewpoint-illumination invariants do exist; (ii) they are a “thin set” i.e. they are
supported on a one-dimensional subset of the image domain; finally, despite being thin, (iii) these invariants
are sufficient statistics!

It is intuitive that discontinuities (edges) and other salient intensity profiles such as blobs and ridges are
important, although exactly how important they are for a given recognition task has never been elucidated
analytically.6 But what about regions with smooth statistics? These would include shaded regions (Fig. 1)
as well as texture gradients at scales significantly larger than that of the local detectors employed for the
structures just described. Feature selectors would not fire at these regions, and segmentation or super-pixel
algorithms would over-segment them placing spurious boundaries that change under small perturbations.
So, how can one capture the “information” that smooth statistics contain for the purpose of recognition? We
articulate our contribution in a series of steps:

4The results of [3] refer to statistics of perspective measurements of point ensembles, although they have been subsequently
misinterpreted as referring to image statistics.

5This fact is exploited by the most successful local representations for recognition, such as the scale-invariant feature
transform (SIFT) and the histogram of oriented gradients (HOG).

6Many representations currently used for recognition involve combinations of these structures, such as extrema of difference-
of-Gaussians (“blobs”), non-singularities of the second-moment-matrix (“corners”), sparse coding (“bases”) and segmentation
or other processes to determine region boundaries.

2



1. We assume that some image statistic (intensity, for simplicity, but could be any other region statistic)
is smooth, and model the image as a square-integrable function extended without loss of generality to
the entire real plane or - for convenience - to the sphere S2.

2. Again without loss of generality, we approximate the extended image with a Morse function.

3. We introduce the Attributed Reeb Tree (ART ), a deterministic construction that is uniquely deter-
mined from an image and is a one-dimensional subset of the image.

4. We show that the set of viewpoint changes in space induce the entire set of diffeomorphisms on the
domain of the image.

5. We show that two images that have the same ART are related by a domain diffeomorphism and a
contrast transformation.

6. We conclude that the ART is a viewpoint-illumination invariant.

7. Finally, we show that the ART is a sufficient statistic, in the sense that it is equivalent to the original
image up to an arbitrary domain diffeomorphism and contrast change.7

8. We propose a notion of “actionable information” that measures the complexity not of the image data,
but of that which remains of the data after the effect of the nuisances (viewpoint and illumination) is
removed, i.e., the ART .

Clearly this is only a piece of the puzzle. It would be simplistic to argue that our key assumption, which
we introduce in the next section, is made without loss of generality (Morse functions are dense in C2, which is
dense in L2, and therefore they can approximate any discontinuous, square-integrable function to within an
arbitrarily small error). Co-dimension one extrema (ridges, valleys, edges) in images are qualitatively different
than regions with smooth statistics and should be treated as such, rather than generically approximated.
This is beyond our scope in this paper, where we restrict our analysis away from such structures and only
consider regions with smooth statistics. Our goal here is not to design another low-level image descriptor,
but to show that viewpoint-illumination invariants exist under a precise set of conditions, and to provide a
proof-of-concept construction. Yet it is interesting to notice that some of the most recent face recognition
[12] and shape coding [2] use a representation closely related to the ART .

In the next section, we introduce the mathematical tools that are necessary to characterize the set S ′′ of
viewpoint-illumination invariants.

2 Image Invariants: Viewpoint and Illumination

2.1 Invariance to Viewpoint and Illumination

Let S denote the set of closed, compact, smooth surfaces without boundary. The class S is a representative
of the space of all the boundaries of objects in the real world. We denote by ρS : S → R+, ρS ∈ A a function
representing the albedo of S ∈ S. Our model for the image formation process is the following. Let Ω ⊂ R2

denote the imaging plane. Given a viewpoint g ∈ SE(3) (an element of the special Euclidean group) and an
illumination (contrast) h ∈ H which is a monotonic function h : Ω → R+, we denote the process of image
formation as a function F : S ×A× SE(3)×H → I where I = {I : Ω → R+} is the space of images:

I = F (S, ρs; g, h).

We now define an invariant to viewpoint and illumination:
7Note that this does not necessarily mean that a viewpoint-illumination invariant is a unique signature for an object. As

[14] have pointed out, different objects that are diffeomorphically equivalent in 3-D (i.e. they have equivalent albedo profiles)
yield identical viewpoint-invariant statistics. Discriminating objects that differ only by their shape can be done, but not by
comparing viewpoint-invariant statistics, as shown in [14].
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Definition 1. Let V be a set. A functional µ : Range(F ) ⊂ I → V is invariant to the space SE(3) × H
(viewpoint and illumination) provided that for each S ∈ S and ρS ∈ A we have that

µ(F (S, ρS , g, h)) = µ(F (S, ρS , g
′, h′)), for all g, g′ ∈ SE(3), and h, h′ ∈ H.

The set V is called the set of invariants.

Definition 2. A non-trivial invariant µ : Range(F ) ⊂ I → V is an invariant such that there exists
S 6= S′ ∈ S and ρS , ρS′ ∈ S so that µ(F (S, ρS , ·, ·)) 6= µ(F (S′, ρS′ , ·, ·)).

Definition 3. A maximal invariant µ is a (non-trivial) invariant such that µ(F (S, ρS , ·, ·)) 6= µ(F (S′, ρS , ·, ·))
if F (S, ρS , g, h) 6= F (S′, ρ′S , g

′, h′) for all g, g′ ∈ SE(3), h, h′ ∈ H and S, S′ ∈ S.

Remark 1. It is important to note that µ is a functional defined on the set of two-dimensional images.
Because there are infinitely many surfaces S ∈ S that can generate a given image I ∈ Range(F ), it is implicit
in the definition above that µ also be invariant to all possible surfaces that generate image I.

Remark 2. Note that by the definition, the invariant is a property of the object S ⊂ R3. It is impossible
to expect the existence of a non-trivial invariant of an (2-D) image of the entire group SE(3) since for large
g ∈ SE(3), there is a possibility that part of the surface S is occluded from viewpoint g ∈ SE(3). Therefore,
in order to obtain non-trivial invariants, we must take into account occlusions in the definition, which needs
a discussion of image generation and visibility, which we do next.

2.2 Image Formation and Visibility

Our model for image formation will be simple: we assume our imaging device is a pinhole camera.

Definition 4. Given a viewpoint g = (R, T ) ∈ SE(3) (R ∈ SO(3), T ∈ R3) and an object S ∈ S, the pinhole
is at the origin in R3, the imaging plane Ω′ ⊂ R3 (an embedding of Ω ⊂ R2) is at T and its orientation is
determined by R. A point X ∈ Range(S) is visible from viewpoint g and the imaging plane Ω′ if the line
segment from the origin to the point X intersects Ω′ and (the line segment) does not intersect any point in
Range(S)\{X}. A camera projection π from a viewpoint g is a map from the visible points of the object
S to Ω given by the point of intersection described earlier. If the imaging plane, Ω lies on the x − y plane
(coordinates relative to the surface S), then π is given by

π(X) =
1
X3

(X1, X2), where X = (X1, X2, X3) ∈ R2 × R+.

Now we may refine our definition of viewpoint/illumination invariance to take into account visibility.

Definition 5. Let V be a set. A functional µ : Range(F ) ⊂ I → V is invariant to viewpoint/illumination
provided that

µ(F (S, ρS , g, h)) = µ(F (S, ρS , g
′, h′)), for all h, h′ ∈ H,

and for all S ∈ S, g, g′ ∈ SE(3) such that S is visible from g and g′.

Remark 3. The definition of non-trivial and maximal invariant are the same as the definitions that do not
account for visibility except that “for all g, g′ ∈ SE(3)” is replaced by “for all S ∈ S, g, g′ ∈ SE(3) such that
S is visible from g and g′.”

3 Viewpoint Induced Image Transformations

Since a viewpoint/illumination invariant is a function defined on images, we now describe the transformations
between images that is induced by a change in viewpoint.

Let us first start by ignoring visibility, which we will address shortly. In an effort to characterize the
smallest class of domain transformations induced by a change of viewpoint, we consider the subset of general
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diffeomorphisms w : R2 → R2;x 7→ w(x) = [wx(x), wy(x)]T specified by the assumption of Lambertian
reflection and rigidity of the scene.

From the Lambertian assumption we get that, if ρ is the diffuse albedo, then an image I(x) = ρ(p),
were x = π(p), is related to another image J(x) via J(x′) = ρ(p), where x′ = π(gp) .= w(x). Under the
rigidity assumption g = (R, T ) ∈ SE(3), i.e. T ∈ R3 and R ∈ SO(3) is a rotation matrix; more in general,
in the absence of intrinsic calibration data,8 g ∈ A(3), the affine group in R3. Away from occlusions, we
can represent the 3-D shape of the object as the graph of a function, for instance p = x̄Z(x) for a function
Z : R2 → R+, where the bar indicates the homogeneous coordinatization x̄ = [x1, x2, 1]T . Therefore, we
have

x′
.= w(x) = π(Rx̄Z(x) + T ), x ∈ Ω (1)

where x ∈ Ω ⊂ R2 is the domain for which no (self-)occlusions occur. This limits the range of motions (R, T )
depending on the shape Z(·), which is unknown. If we call R1

.= [1 0 0]R, R2 = [0 1 0]R, and similarly
R3, T1, T2, T3, we have, writing explicitly the above equation

[
wx(x)
wy(x)

]
=

[
R1

R2

]
x̄Z(x) +

[
T1

T2

]
R3x̄Z(x) + T3

. (2)

This equation specifies the class of allowable domain diffeomorphisms under changes of viewpoint away from
occlusions, when the scene is rigid and Lambertian, x 7→ w(x|R, T, Z(·)). Thus, once the (positive, scalar-
valued) function Z(·), the matrix R ∈ GL(3) and the vector T ∈ R3 are determined, so is the diffeomorphism
w.

To make more explicit the dependency between w1 and w2, we can imagine choosing w1 arbitrarily, which
in turn determines

Z(x) =
w1(x)T3 − T1

R1x̄− w1(x)R3x̄
,

and after substituting and simplifying, this uniquely determines w2(x) as a function of R and T :

wy(x) = wx(x)
R2x̄T3 −R3x̄T2

R1x̄T3 −R3x̄T1
+
R1x̄T2 −R2x̄T1

R1x̄T3 −R3x̄T1
. (3)

So, of all diffeomorphisms w : R2 → R2, we can consider the class implicitly defined by the constraint

〈w̄(x), [R2x̄T3 −R3x̄T2, −(R1x̄T3 −R3x̄T1), R1x̄T2 −R2x̄T1]T 〉 = 0. (4)

Equivalently, the diffeomorphism w, written in homogeneous coordinates w̄(x) = [w1(x), w2(x), 1] has to
be orthogonal, for all x ∈ R2, to the function

w⊥(x) .=

 R2x̄T3 −R3x̄T2

−(R1x̄T3 −R3x̄T1)
R1x̄T2 −R2x̄T1

 = T̂Rx̄ (5)

where the reader will recognize the latter expression from epipolar geometry [8]. The set of allowable
diffeomorphisms, under no occlusions, Lambertian reflection and rigidity, is therefore

W .= {w : R2 → R2 |〈w̄(x), T̂Rx̄〉 = 0, for some (R, T ) ∈ A(3)}. (6)

The 3× 3 matrix T̂R is a fundamental matrix (it is an essential matrix when the cameras are calibrated and
hence (R, T ) ∈ SE(3)).

8Assuming calibrated data corresponds to assuming that the camera having captured the training image has the same
calibration, whatever it is, of the camera that captured the test image.
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Remark 4. Note that if W is a group under composition, then the maximal image invariant to view-
point/contrast is the orbit space, S/(H×W). We now note that, in general, W is not a group.

Theorem 1 (Epipolar diffeomorphisms are not a group). Let w1 = w(x|R1, T1, Z1) ∈ W and w2 =
w(x|R2, T2, Z2) ∈ W. Then w3 = w1 ◦ w2 may not be an element of W.

Proof. Assume w3 ∈ W, and therefore there exist R3, T3, Z3 such that w3 = w(x|R3, T3, Z3). Now consider
w1 ◦w2, which can be written as π(R2R1x̄Z1(x)

Z2(π̄(R1x̄Z1(x)+T1))
e3·(R1x̄Z1(x)+T1)

+R2T1
Z2(x)

e3·(R1x̄Z1(x)+T1)
+T2), where it can

be seen that it is not possible to choose a constant T3 unless Z2
e3·(R1x̄Z1(x)+T1)

= 1 for all x, which imposes a
non-generic condition on Z1 and Z2, hence the contradiction.

We now show that the group closure, i.e., the smallest group containing W, under composition is the
general set of diffeomorphisms. First, we introduce a restricted subset of W under which visibility conditions
are satisfied:

W̃ .= {w : Ω ⊂ R2 → R2;x 7→ w(x|R, T, Z) | ∃ Z ′(·) | Rx̄Z(x) + T = w̄(x)Z ′(w(x)) ∀ x ∈ Ω}. (7)

We now show that the group closure of W̃ is the entire set of diffeomorphisms:

Theorem 2. The group closure (i.e., the smallest group containing W̃) is the entire set of (orientation
preserving) diffeomorphisms of the plane.

Proof. We note that orientation preserving diffeomorphisms of the plane can be generated by integrating
time-varying vector fields: {

ẇ(t, x) = v(t, w(t, x)) t ∈ [0, 1], x ∈ R2

w(0, x) = x x ∈ R2

where v, w : [0, 1] × R2 → R2, and w(1, ·) is the generated diffeomorphism. If w1,t, w2,t ∈ W̃ is a family of
diffeomorphisms, then

∂

∂t
w1,t ◦ w2,t = (∂tw1,t) ◦ w2,t + (Dw1,t ◦ w2,t) · ∂tw2,t = v1,t ◦ w2,t + (Dw1,t ◦ w2,t) · v2,t.

Therefore from the previous expression, it is apparent that if the linear span of the vector fields generated
by w ∈ W̃ is all possible smooth vector fields, then the closure of W̃ is the set of orientation preserving
diffeomorphisms.

Let w(·|gt, Z) be a family of diffeomorphisms where t 7→ gt is such that gt ∈ SE(3) corresponds to a path
of viewpoint changes and Z is a fixed surface. We show that

span
({

∂

∂t
w(·|gt, Z) : gt ∈ SE(3), Z satisfies the condition in (7)

})
(8)

is the set of smooth vector fields. Indeed,

∂

∂t
w(·|gt, Z) =

(∂tRtx̄Z(x) + ∂tTt)(R3,t · x̄Z(x) + T3,t) + (Rtx̄Z(x) + Tt)(∂tR3,t · x̄Z(x) + ∂tT3,t)
(R3,t · x̄Z(x) + T3)2

,

where gt = ((Rt, R3,t), (Tt, T3,t)), and that may be expressed in the form

∂

∂t
w(x1, x2|gt, Z)

∣∣∣∣
t=0

=
1

d1x1Z(x) + d2x2Z(x) + d3

[
(a1x

2
1 + a2x1x2 + a3x

2
2)Z

2(x) + (b1x1 + b2x2 + b3)Z(x) + c1
]

where x = (x1, x2), di ∈ R and ai, bi, ci ∈ R2. By choosing gt(0) and ∂gt(0) appropriately, we may obtain
arbitrary coefficients. Therefore, it is apparent that the span in (8) contains both the sets{(

Z1(x1, x2)
0

)
: Z1 : R2 → R

}
and

{(
0
Z2(x1, x2)

)
: Z2 : R2 → R

}
,

which establishes our claim that (8) is the set of smooth vector fields.
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4 Maximal Viewpoint/Contrast Invariant

In this section, we are interested in giving a classification of the set of two-dimensional images under the
equivalence of viewpoint and illumination changes, that is, we classify the set of images in which two images
are equivalent if they are related by a viewpoint and/or illumination change. This is classification is the
maximal viewpoint/illumination invariant.

4.1 Morse Functions As Image Approximations

For simplicity, we will represent an image by a function on the plane: f : R2 → R+.

Definition 6 (Morse function). A Morse function f : R2 → R+;x 7→ f(x) is a C2 smooth function
such that all critical points are non-degenerate. A critical point is a location x ∈ R2 where the gradient
vanishes, ∇f(x) = 0. A non-degenerate critical point is a critical point x where the Hessian is non-singular,
det(∇2f(x)) 6= 0.

Remark 5. Morse functions cannot have ridges, valleys and other critical structures of co-dimension one,
although they can approximate them to an arbitrary degree. We will address the relevance of this restriction
in Remark 14 in Section 4.4.

To further simplify matters in our classification of images, we assume that the functions we consider fall
in the following class

Definition 7 (F). A function f : R2 → R+ is in class F (f ∈ F) iff

1. f is Morse

2. the critical values of f (corresponding to critical points of f) are distinct

3. each level set (i.e. La(f) = {x ∈ R2 : f(x) = a} for a ∈ R+) of f is compact,

4. lim|x|→+∞ f(x) > f(y)∀y ∈ R2 or lim|x|→+∞ f(x) < f(y)∀y ∈ R2,

5. there exists an a ∈ R+ so that La(f) is a simple closed contour that encloses all critical points of f

Remark 6. If f ∈ F , then we may identify f with a Morse function f̃ : S2 → R+ defined on the sphere,
S2 via the inverse stereographic projection from the north pole, p. We then extend f̃ to the south pole, −p,
by defining f̃(−p) = lim|x|→+∞ f(x), which will be either the global minimum or maximum of f̃ . From now
on in this article, we make this identification and any f ∈ F will be represented as a Morse function on S2

such that its global minimum or maximum is at the south pole.
Conditions 1 and 2 make the class F stable under small perturbations (e.g. noise in images); we will

make this notion of stability more precise in Remark 13 in Section 4.4.

Remark 7. Images (e.g. the continuum version of digital images) are usually defined on a compact rectan-
gular domain (e.g. [0, 1]×[0, 1]). We may extend such a Morse function, g : [0, 1]×[0, 1] → R+ (with minimal
distortion), to one that satisfies Condition 3-5 as follows. Let c ⊂ [0, 1]× [0, 1] denote a smooth simple closed
curve that is arbitrarily close (say wrt a geometric L∞ distance) to the boundary ∂([0, 1] × [0, 1]). Define
b : R → R as

bε(x) =

{
exp

(
− ε2

x2

)
x > 0

x exp
(
− 1

x2

)
x < 0.

Then the extended function f : R2 → R+ is

f(x) =

{
g(x)bε(distc(x)) x is inside c
bε(−distc(x)) x is outside c

where distc(x) is the distance from x to the curve c.
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Now consider the set of surfaces that are the graph of a function in F ,

S .= {{(x, f(x))|x ∈ S2} | f ∈ F}. (9)

The set of monotonic continuous functions, also called contrast functions in [4], is indicated by

H .= {h ∈ C2(R+; R+) | 0 <
dh

dt
<∞, t ∈ R+}. (10)

Contrast functions form a group under function composition, and therefore each surface in S that is the graph
of a function f forms an orbit (equivalence class) of surfaces that are different from the original one, but
related via a contrast change. We indicate this equivalence class by [f ]H = {h ◦ f | h ∈ H}. The topographic
map of a surface is the set of connected components of its level curves, S ′ .= {x | f(x) = λ, λ ∈ R+}; it
follows from Proposition 1 and Theorem 1 on page 11 of [4] that the orbit space of surfaces S modulo H is
given by their topographic map,

S ′ = S/H. (11)

In other words, the topographic map is a sufficient statistic of the surface that is invariant to contrast
changes. Or, all surfaces that are equivalent up to a contrast change have the same topographic map. Or,
given a topographic map, one can uniquely reconstruct a surface up to a contrast change [4].

Remark 8. In the context of image analysis, where the domain of the image is a rectangle (for instance a
continuous approximation of the discrete lattice D = [0, 640]× [0, 480] ⊂ Z2) and f(x) is the intensity value
recorded at the pixel in position x ∈ D, usually between 0 and 255, contrast changes in the image are often
considered as a first-order approximation of illumination changes in the scene away from visibility artifacts
such as cast shadows. Therefore, the topographic map, or dually the gradient direction ∇f

‖∇f‖ , is equivalent
to the original image up to contrast changes, and represents a sufficient statistic that is invariant to h.

Now consider the set of domain diffeomorphisms of functions in F :

W .= {w ∈ C2(R2; R2) : a diffeomorphism} ∼=
{w ∈ C2(S2; S2) : a diffeomorphism s.t. w(σ) = σ, σ is the south pole } (12)

which is a group under composition, and therefore each surface determined by f generates an orbit [f ]W =
{f ◦ w | w ∈ W}. If we consider the product group of contrast functions and domain diffeomorphisms we
have the orbits [f ] = {h ◦ f ◦w | h ∈ H, w ∈ W}. The goal of this manuscript is to characterize these
equivalence classes. In other words, we want to characterize the orbit space

S ′′ .= S ′/W = S/{H ×W} (13)

of surfaces that are equivalent up to domain diffeomorphisms and contrast functions.

Remark 9. In the above it is important to note that the orbit space above is defined algebraically, and that
the group H×W acts on the set S. Therefore, the quotient we seek above is just a set, and we do not seek
to characterize the topology of the resulting quotient.

Remark 10. As one can check easily, it turns out that the orbit space S/{H ×W} is the maximal view-
point/illumination invariant according to our definition of illumination change (a contrast change). See
Definition 3 to recall the definition of maximal invariant.

Remark 11. The quotient above – if it is found to be non-trivial – is a sufficient statistic of the image that
is invariant to viewpoint and illumination.
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4.2 Reeb Graphs: Towards Viewpoint/Contrast Invariants

We now introduce Reeb graphs [10], and their basic properties. Reeb graphs, as will be apparent in the next
sections, will be the basis for the construction of viewpoint/contrast invariants of images.

Definition 8 (Reeb Graph of a Function). Let f : S2 → R be a function. We define

Reeb(f) = {[(x, f(x))] : x ∈ S2}

where

(y, f(y)) ∈ [(x, f(x))] iff f(x) = f(y) and there is a continuous path from x to y in f−1(f(x)).

In other words, the Reeb graph of a function f is the set of connected components of level sets of f (with the
additional information of the function value of each level set). We now recall some basic facts about Reeb
graphs.

Lemma 1 (Reeb graph is connected). If f : S2 → R is a function, then Reeb(f) is connected.

Proof. Reeb(f) is the quotient space of S2 under the equivalence relation defined in Definition 8. Therefore,
by definition we have a surjective continuous map π : S2 → Reeb(f), and connectedness is preserved under
continuous maps.

Lemma 2 (Reeb Tree). The Reeb graph of a surface in S that is the graph of a function f does not contain
cycles.

Proof. Let π : S2 → Reeb(f) be the quotient map. We prove that Reeb(f) has no cycles. Assume Reeb(f)
has a cycle, i.e., there exists γ : [0, 1] → Reeb(f), continuous with γ(0) = γ(1), and we can assume that γ is
one-to-one. We may then lift γ to a continuous path, γ̂ : [0, 1] → S2 that satisfies γ̂(0) = γ̂(1) and π ◦ γ̂ = γ.

1. If γ̂(0) 6= γ̂(1), then since (γ̂(0), f(γ̂(0))) ∈ [γ̂(1), f(γ̂(1))], we have that there must exist a continuous
path p : [1, 2] → S2 such that p(1) = p(0) and f ◦ p = f(γ̂(0)) = f(γ̂(1)). Then γ̃ : [0, 2] → S2 where

γ̃(t) =
{
γ̂(t) t ≤ 1
p(t) t > 1

satisfies γ̃(0) = γ̃(2).

2. We show that γ̂ can be chosen so that it is continuous. We may assume that γ passes through the critical
points (of f), γ(t1), . . . , γ(tN ) in that order. Thus, we divide the path γ into the sub-paths γ(0) → γ(t1),
γ(t1) → γ(t2), . . ., that do not contain critical points in the intervals (0, t1), (t1, t2), . . . , (tN , 1). To
construct γ̂ in each interval [ti, ti+1], we choose a point xi ∈ π−1(γ((ti + ti+1)/2)) ⊂ S2. Then γ̂ in
(ti, (ti + ti+1)/2) is defined as the path solving

ẏ = ∇f(y), y(0) = xi ∈ S2

and in ((ti + ti+1)/2, ti+1) as
ẏ = −∇f(y), y(0) = xi ∈ S2

clearly, these paths are continuous and we therefore have that γ̂ is continuous, and π(γ̂) = γ.

Now that we have a continuous loop γ̂ : [0, 1] → S2 we may contract γ̂ to a point via a retraction,
F : [0, 1]× [0, 1] → S2, such that F (0, t) = γ̂(t) and F (1, t) = ˆγ(0). Then π ◦ F is a retraction of γ to γ(0),
which is impossible unless γ = γ(0), in which case we did not have a loop. A retraction of a loop (one-to-one
path with endpoints the same) in Reeb(f) is impossible.
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4.3 Attributed Reeb Trees (ART)

We now introduce the definition of Attributed Reeb Trees (ART), which we will show in the next section
is the maximal invariant to viewpoint/contrast. To introduce the definition of ART, we must start with a
series of intermediate definitions.

Definition 9 (Attributed Graph). Let G = (V,E) be a graph (V is the vertex set and E is the edge set),
and L be a set (called the label set). Let a : V → L be a function (called the attribute function). We define
the attributed graph as AG = (V,E, L, a).

Definition 10 (Attributed Reeb Tree of a Function). Let f ∈ F . Let V be the set of critical points of f .
Define E to be

E = {(vi, vj) : i 6= j, ∃ a continuous map γ : [0, 1] → Reeb(f) such that
γ(0) = [(vi, f(vi))], γ(1) = [(vj , f(vj))] and γ(t) 6= [(v, f(v))] for all v ∈ V and all t ∈ (0, 1)}. (14)

Let L = R+, and
a(v) = f(v)

Note that the south pole vsp ∈ S2, is a critical point, and we include that in our definition. We define

ART (f) := (V,E, L, a, vsp).

Note that the above definition encodes the type of critical point of each vertex v ∈ V :

Definition 11 (Index of a Vertex of an Attributed Tree). Let T = (V,E,R+, a) be an attributed tree, we
define the map ind : V → {0, 1, 2} as follows:

1. ind(v) = 2 if a(v) < a(v′) for any v′ such that (v, v′) ∈ E

2. ind(v) = 0 if a(v) > a(v′) for any v′ such that (v, v′) ∈ E

3. ind(v) = 1 if the above two conditions are not satisfied.

Definition 12 (Equivalence of Attributed Trees). Let T1 = (V1, E1,R+, a1, vsp,1) and T2 = (V2, E2,R+, a2, vsp,2)
be attributed trees. Then we say that T1 is equivalent to T2 denoted T1

∼= T2 if the trees (V1, E1) and (V2, E2)
are isomorphic via a graph isomorphism, φ : V1 → V2, and the following properties are satisfied:

• if a1(v) > a1(v′) then a2(φ(v)) > a2(φ(v′)) for all v, v′ ∈ V1

• φ(vsp,1) = vsp,2.

Definition 13 (Degree of a Vertex). Let G = (V,E) be a graph, and v ∈ V , then the degree of a vertex,
deg(v), is the number of edges that contain v.

Definition 14 (T , a Collection of Attributed Trees). Let T ′ denote the subset of attributed trees (V,E,R+, a, vsp)
satisfying the following properties:

1. (V,E) is a connected tree

2. If v ∈ V and ind(v) 6= 1 then deg(v) = 1

3. If v ∈ V and ind(v) = 1, then deg(v) = 3

4. n0 − n1 + n2 = 2 where n0, n1 and n2 are the number of vertices of index 0, 1, and 2.

We define T to be the set T ′ under the equivalence defined in Definition 12.

Fig. 2 shows an example of constructing an ART from an image (in this case the lip part of the image in
Fig. 1). We will show in the next section that ART (F) = T .
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S

Figure 2: The lip region of Fig. 1, its level lines, the level lines marked with extrema, and a graphical
depiction of the ART (note that the height of the vertex is proportional to the attribute value).

Figure 3: The Morse Lemma states that in a neighborhood of a critical point of a Morse function, the level
sets are topologically equivalent to one of the three forms (left to right: maximum, minimum, and saddle
critical point neighborhoods).

4.4 ART is the Maximal Viewpoint/Contrast Invariant

In this section, we show that S ′′ = T . Clearly ART (f) is invariant with respect to domain diffeomorphisms
and contrast changes, i.e. h ◦ f ◦w, since the latter do not change the topology of the level curves. However,
it is less immediate to see that the Attributed Reeb tree is a sufficient statistic, or that it is equivalent to
the surface that generated it up to a domain diffeomorphism and contrast transformation.

We start by stating a fact from Morse theory [9] that we exploit in our argument:

Lemma 3 (Morse Lemma). If f : S2 → R is a Morse function, then for each critical point pi of f , there is
a neighborhood Ui of pi and a chart ψi : Ũi ⊂ R2 → Ui ⊂ S2 so that

f(x̂, ŷ) = f(pi) +


−(x̂2 + ŷ2) if pi is a maximum point
x̂2 + ŷ2 if pi is a minimum point
x̂2 − ŷ2 if pi is a saddle point

where (x̂, ŷ) = ψi(x, y) and (x, y) ∈ S2 are the natural arguments of f .

Figure 3 shows the three canonical forms stated in the previous lemma.

Lemma 4 (Degree of Vertices in ART ). Let f ∈ F , and ART (f) = (V,E, L, a, vsp), then

1. if v ∈ V and ind(v) 6= 1, then deg(v) = 1

2. if v ∈ V and ind(v) = 1, then deg(v) = 3.

11



Proof. The first assertion (the case when v is a maximum or minimum) follows directly from the Morse
Lemma. The second may be proved using the two relations

n0,2 − n1 = 2 and n0,2 + n1 − |E| = 1 (15)

where n0,2 denotes the number of vertices of degree 0 or 2, n1 is the number of vertices of degree 1, and |E|
is the number of edges. The first is relation is a fact from Morse Theory [9], and the second is simply the
relation for trees that |V | − |E| = 1. Noting that for any graph,∑

v∈V

deg(v) = 2|E| or n0,2 +
∑

v∈V,ind(v)=1

deg(v) = 2|E|, (16)

and combining with (15), we find that ∑
v∈V,ind(v)=1

deg(v) = 3n1, (17)

but according to the Morse Lemma and the fact that critical points have distinct values (by definition of F),
deg(v) > 2 and deg(v) ≤ 4 if ind(v) = 1. These facts and (17) mean that deg(v) = 3 if ind(v) = 1.

Lemma 5 (Global Topology of Connected Level Sets). Let f ∈ F , and πf : R2 → Reeb(f) be the natural
quotient map. Then π−1

f ([x, f(x)]) for each x ∈ R2 is topologically the same as one of the following:

Figure 4: The possible connected components of a level set of a function. Left to right: a regular point’s
level set, a minimum or maximum point, a Type 1 saddle point, and a Type 2 saddle point level set. Note
that the last two are indistinguishable on the sphere, but not on the plane (as in the case of interest).

Proof. There are three cases: either x ∈ R2 is a critical point (saddle or min/max) or a regular point.
Note that because we are working with the class F of functions, π−1

f ([x, f(x)]) is compact, and not other
critical point may have the value f(x). By the Morse Lemma, if x is a regular point, then π−1

f ([x, f(x)]) is
topologically a circle, and if x is a min/max, then π−1

f ([x, f(x)]) is a point. The only case that remains is
the saddle. For x a saddle π−1

f ([x, f(x)]) is compact and must cross at an ’X’, there are only two possible
topologies for π−1

f ([x, f(x)]), and they are the latter two cases.

By the previous Lemma and the Morse Lemma, it is easy to see that in thickening around π−1
f ([x, f(x)])

(x a saddle), the level sets are topologically equivalent to the cases in Fig. 5 for Type 1 saddles, and in Fig. 6
for Type 2 saddles.

Lemma 6. Let f1, f2 ∈ F and ART (f1) ∼= ART (f2). Let φ be a graph isomorphism between the trees in
ART (f1) and ART (f2) satisfying Def. 12. If v ∈ V1 and v′ ∈ V2 where v is a Type 1 saddle and v′ is a Type
2 saddle, then φ(v) 6= v′.

Proof. We proceed by induction on n, the number of saddles of f1 (or f2). If n = 1, then the Attributed
Reeb Trees must have one of the forms in Fig. 7. Note that vsp is the south pole vertex (of S2), which is
equivalent to the point at infinity in R2. Because vsp must be preserved by φ (that is, the points at infinity

12



− −

+

+ +

−

Figure 5: Level sets in a thickening of a Type 1 saddle connected component, π−1
f ([x, f(x)]). The plus/minus

indicates that the level sets are above/below the value of the saddle point.

+
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Figure 6: Level sets in a thickening of a Type 2 saddle connected component, π−1
f ([x, f(x)]). The plus/minus

indicates that the level sets are above/below the value of the saddle point.

in the domains of f1 and f2 must be mapped to each other), a Type 1 saddle (on the left in Fig. 7) may not
be mapped to a Type 2 saddle (on the right in Fig. 7).

Next assume that for all f ′1, f
′
2 that have n− 1 saddles, we have that φ′(v) 6= v′ where v ∈ V1 and v′ ∈ V2

are different saddle types for any valid graph isomorphism φ′. Now let f1, f2 have n saddles. Choose a
saddle point vs of f1 that is adjacent to two vertices that are not saddle points, and let v′s = φ(vs). We
claim that vs and v′s are saddles of the same type. Indeed, the Attributed Reeb trees around the vs and v′s
are in Figure 8, where the label S denotes a vertex that is a saddle point and the others denote maxima
or minima. Clearly, φ may not map vs to v′s if they are of different types. Now we reduce ART (f1) and
ART (f2) to have trees with n− 1 saddles by removing the maxima/minima adjacent to vs and v′s (and their
edges). Note that vs and v′s now become a maximum or minimum. The resulting attributed trees have n−1
saddles and result from functions f ′1 and f ′2 that are obtained by coarsening f1 and f2 near vs and v′s (note
that we may also apply Lemma 8 to obtain f ′1 and f ′2). Now the restriction of φ to ART (f ′1) and ART (f ′2)
is a valid equivalence. But by the inductive hypothesis, φ does not map different types of saddles to each
other.

We now move to the core part of our argument:

Lemma 7. Let f1, f2 ∈ F be functions that generate two surfaces. Then

ART (f1) ∼= ART (f2) ⇔ ∃ h ∈ H, w ∈ W such that f1 = h ◦ f2 ◦ w. (18)

Note that the diffeomorphism w and contrast function h are not necessarily unique.

Proof. Let ART (f1) = (V1, E1,R+, a1) and ART (f2) = (V2, E2,R+, a2). We construct w to be a C1 diffeo-
morphism, but similar reasoning can be used to obtain a C2 diffeomorphism. We prove the forward direction
in steps (the steps are pictorially shown in Fig. 9):

1. We may associate critical points pi of f1 to corresponding critical points p̃i of f2 via the graph isomor-
phism φ : V1 → V2.
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vsp

vsp vsp

vsp

Figure 7: If n = 1, then the ART (f) must be equivalent to the Type 1 saddles (left) or the Type 2 saddles
(right), and the two types are not equivalent since vsp must be preserved under φ.

S

S

S

S
S

S

S

S

Figure 8: Attributed Reeb trees of Type 1 (left) and Type 2 (right) saddles which are adjacent to two vertices
that are not saddles.

2. Using the Morse Lemma, there exist neighborhoods Ui, Ũi ⊂ S2 and diffeomorphisms wi : Ui → Ũi

where pi ∈ Ui is a critical point of f1 and p̃i ∈ Ũi is the corresponding critical point of f2 such that

f1|Ui = hi ◦ f2 ◦ wi|Ui

for some contrast change hi : f2(Ũi) → f1(Ui). We may assume that {Ui} are disjoint as are {Ũi}.
We may also assume that f1(Ui) ∩ f1(Uj) = ∅ and f2(Ũi) ∩ f2(Ũj) = ∅ for i 6= j since critical values
are assumed to be distinct (by definition of F). Note that wi = ψ̃−1

i ◦ ψi where ψi and ψ̃i given from
applying the Morse Lemma to f1 and f2 around the critical points pi and p̃i, respectively.

3. Let π1 : S2 → Reeb(f1) and π2 : S2 → Reeb(f2) be the natural quotient maps. For each pi and p̃i, that
correspond to minima or maxima (i.e., ind(pi) = ind(p̃i) 6= 1), we may choose Wi ⊂ Ui and W̃i ⊂ Ũi

that are open such that ∂(Wi) = π−1
1 ([q, f1(q)]), ∂(W̃i) = π−1

2 ([wi(q), f2(wi(q))]) for some q ∈ Ui, and
wi(Wi) = W̃i. We define ŵi = wi|Wi.

wi

Ui

Ũi

ŵi

Wi

W̃i

Xij

X̃ij

ŵij

Figure 9: Illustration of Steps 2, 3, and 4, respectively, of the proof of Lemma 7. Note that by Lemma 6
Type 1 and 2 saddles are preserved under the map w, and thus a similar picture would follow for Type 2
saddles.
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Now we consider each pi that is a saddle point (i.e., ind(pi) = 1). By choosing an appropriate subset
of Ui and Ũi (which for simplicity are denoted by Ui and Ũi), we may assume that π−1

1 ([q, f1(q)])∩Ui

and π−1
2 ([wi(q), f2(wi(q))])∩ Ũi each have at most two connected components for q ∈ Ui. For example,

we can choose Ui = ψ−1
i (Bε(0)) and Ũi = ψ̃−1

i (Bε(0)) for ε0 small and B denotes the disc in R2.

We now extend each wi : Ui → Ũi to ŵi : Wi → W̃i where

Wi =
⋃

q∈Ui\{pi}

π−1
1 ([q, f1(q)])

W̃i =
⋃

q∈Ũi\{p̃i}

π−1
2 ([q, f2(q)])

We define ŵi as follows:

• Note that each π−1
1 ([q, f1(q)]) (q ∈ Ũi\{p̃i}) and π−1

2 ([wi(q), f2(wi(q))]) are both diffeomorphic to
the circle (since q is not a critical point), and therefore diffeomorphic to themselves.

• Let us consider the case when π−1
1 ([q, f1(q)])∩Ui consists of two connected components (the case of

one connected component is done similarly). Let A,B,C,D denote points of ∂(π−1
1 ([q, f1(q)])∩Ui)

and let A′ = wi(A), B′ = wi(B), C ′ = wi(C), D′ = wi(D). We assume that A→ B → C → D →
A traverses π−1

1 ([q, f1(q)]). Assume A → B and C → D specifies the parts of π−1
1 ([q, f1(q)])

where wi is defined. Let c1, c2 : [0, 1] → R2 be parameterized by arc-length parameter (and whose
orientation is consistent with the orientation of A → B → C → D and A′ → B′ → C ′ → D′) of
π−1

1 ([q, f1(q)]) and π−1
2 ([wi(q), f2(wi(q))]). We define ϕ : [0, 1] → [0, 1] to be such that

– ϕ(0) = 0, ϕ(1) = 1 and ϕ′(0) = ϕ′(1)
– Define ϕ(ξ) so that Ξ = c1(ξ) and Ξ′ = c2(ϕ(ξ)) for ξ = 0, b, c, d, 1, Ξ = A,B,C,D,A, resp.
– Define ϕ′(ξ) so that ∇wi(c1(ξ)) · c′1(ξ) = c′2(ϕ(ξ))ϕ′(ξ) where ξ = 0, b, c, d, 1.
– Naturally, we may define ϕ in the intervals [0, b] and [c, d] as satisfying wi(c1(ξ)) = c2(ϕ(ξ)).
– We define

ϕ(x) = ϕ(b) +
∫ x

b

g(ξ) dξ, for x ∈ (b, c)

where g : [b, c] → R+ satisfies∫ c

b

g(x) dx = ϕ(c)− ϕ(b), g(b) = ϕ′(b), g(c) = ϕ′(c)

and is continuous with respect to b, c, ϕ′(b), ϕ′(c) and x. We may similarly define ϕ|[d,1].

Next we define ŵi by setting
ŵi(c1(ξ)) = c2(ϕ(ξ)).

• Note that ŵi : Wi → W̃i is a diffeomorphism because

– ŵi|Ui = wi is a diffeomorphism by the previous step
– By Lemma 6, wi does not map a type 1 saddle to a type 2 saddle and vice-versa, and so
ŵi|(Wi\Ui) will be a diffeomorphism, details of which follow.

– ŵi|(Wi\Ui) is a diffeomorphism: for the region

{π−1
1 ([q, f1(q)]) : q ∈ Ui\{pi}, π−1

1 ([q, f1(q)]) ∩ Ui has 2 connected components}

and (each connected component of) the region

{π−1
1 ([q, f1(q)]) : q ∈ Ui\{pi}, π−1

1 ([q, f1(q)]) ∩ Ui has 1 connected component}

the parameterization of these regions by the family of c1 and c2 are differentiable, and so is
the family of ϕ. Therefore, ŵi is a differentiable as is its inverse.
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– Dwi|∂Ui = Dŵi|∂(Wi\Ui): this is by construction of ϕ in the previous step to be differen-
tiable, and differentiable in its boundary conditions.

4. Finally, we extend the diffeomorphisms ŵi to form a diffeomorphism w : S2 → S2. Define w on the
neighborhoods Wi so that w|Wi = ŵi. In the following, we define w in the region S2\ ∪i Wi.

Let pi and pj be critical points of f1 with corresponding vertices vi, vj ∈ V1 such that (vi, vj) ∈ E1; also
let p̃i, p̃j be the corresponding critical points of f2 and v′i, v

′
j ∈ V2 (with (v′i, v

′
j) ∈ E2) corresponding

vertices. Let γij : [0, 1] → Reeb(f1) be a continuous path such that γij(0) = [(pi, f1(pi))] and γij(1) =
[(pj , f1(pj))]. Similarly, let γ̃ij : [0, 1] → Reeb(f2) be a continuous path such that γ̃ij(0) = [(p̃i, f2(p̃i))]
and γ̃ij(1) = [(p̃j , f2(p̃j))]. We define

Xij = π−1
1 (γij([0, 1]))\(Wi ∪Wj)

X̃ij = π−1
2 (γ̃ij([0, 1]))\(W̃i ∪ W̃j).

Note that Xij and X̃ij are both diffeomorphic to an annular region in R2. Therefore, ∂Xij = ∂inXij ∪
∂outXij where ∂inXij denotes the inner boundary of Xij and ∂outXij denotes the outer boundary.9

We define ŵij , wij : Xij → X̃ij as follows:

• We define ζij : ∂inXij × R+ → S2 and ζ̂ij : ∂inX̃ij × R+ → S2 as

∂tζij(x, t) = ±∇f1(ζij(x, t)), ζij(x, 0) = x ∈ ∂inXij

∂tζ̂ij(x, t) = ±∇f2(ζ̂ij(x, t)), ζ̂ij(x, 0) = x ∈ ∂inX̂ij

where we use the positive gradient direction if f1(∂inXij) < f1(∂outXij) otherwise negative. Note
that ζij(∂inXij , t) (ζ̃ij(∂inX̃ij , t)) is a level set of f1 (f2) for each t since ∂inXij (∂inX̃ij) is a level
set of f1 (f2). Also in finite time, T (T̃ ), ζij(∂inXij , T ) = ∂outXij (ζ̃ij(∂inX̃ij , T̃ ) = ∂outX̃ij).

• Note that ζij(∂inXij , [0, T ]) = Xij and ζ̃ij(∂inX̃ij , [0, T̃ ]) = X̃ij . We define wij : Xij → X̃ij as

wij(ζij(x, t)) =

{
ζ̃ij(wi(x), hij(t)) x ∈ cl(Wi)
ζ̃ij(wj(x), hij(t)) x ∈ cl(Wj)

, for x ∈ ∂inXij , t ∈ [0, T ]. (19)

where hij : [0, T ] → [0, T̃ ] is chosen to be smooth, satisfies the conditions

hij(0) = 0, hij(T ) = T̃ , h′ij(0) = h′i(f2 ◦ wi(∂inXij)), h′ij(T ) = h′j(f2 ◦ wj(∂outXij)),

and is such that h : f2(S2) → f1(S2) with the conditions

h(f1(∂inXij)) = f2(∂inX̃ij), h′(f1(∂inXij)) = h′ij(0)

h(f1(∂outXij)) = f2(∂outX̃ij), h′(f1(∂inXij)) = h′ij(T )

h(v) = hi(v) for v ∈ f2(Ũi)

is smooth. Note that h is the contrast change that we have been seeking in (18).

• It is clear that wij : Xij → X̃ij is a diffeomorphism; however it may not be the case that

Dwij |∂Xij(x) =

{
Dwi|∂Wi(x) x ∈ ∂Wi

Dwj |∂Wj(x) x ∈ ∂Wj

. (20)

9Note that a simple curve in S2 does not define an inside and outside; however, we are identifying S2 with R2 by specifying
that the south pole of S2 is mapped to infinity.
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Indeed by Step 3, recall that we have

f1(x) = hi ◦ f2 ◦ wi(x) for x ∈ Ui

and so by differentiating, we have

∇f1(x) = hi(f2 ◦ wi(x))Dwi(x) · ∇f2(wi(x)),

or
Dwi(x) · ∇f1(x) = hi(f2 ◦ wi(x))Dwi(x)DwT

i (x)∇f2(wi(x)). (21)

Next by differentiating (19), we have that

Dwij · ∂tζij(x, t) = ∂tζ̃ij(wi(x), hij(t))h′ij(t)

that is
Dwij · ∇f1(ζij(x, t)) = h′ij(t)∇f2(ζ̃ij(wi(x), hij(t))).

In order to “adjust” wij so that (20) holds, we define a new map ŵij as follows. Let us abuse the
notation and let ∂inXij , ∂inX̃ij : S1 → R2 denote smooth parameterizations of the corresponding
sets so that wi(∂inXij(u)) = ∂inX̃ij(u) for all u ∈ S1. Define c1, c2 : S1 × [0, 1] → R2 as

c1(u, v) = ζ(∂inXij(u), vT )

c2(u, v) = ζ̃(∂inX̃ij(u), h(vT )).

Observe that wij(c1(u, v)) = c2(u.v) for all (u, v) ∈ S1 × [0, 1]. We now define ϕ : S1 × [0, 1] → S1

so that the map ŵij : Xij → X̃ij defined by

ŵij(c1(u, v)) = c2(ϕ(u, v), v) (22)

satisfies (20). Computing derivatives of (22) we have

∂

∂v
ŵij(c1(u, v)) = ∂uc2(ϕ(u, v), v)ϕv(u, v) + ∂vc2(ϕ(u, v), v).

Note that by definition of c2

∂uc2(ϕ(u, v), v) = A(u, v)(∇f2(c2(ϕ(u, v), v)))⊥

where x⊥ means counterclockwise rotation by π/2, and A is a scalar-valued function. Next, we
have that

∂vc2(ϕ(u, v), v) = B(u, v)∇f2(c2(ϕ(u, v), v))

for a scalar-valued function B. Now for v ∈ {0, 1} we must have that ϕ satisfies the conditions

ϕ(u, 0) = u, ϕ(u, 1) = u

A(u, v)(∇f2(c2(ϕ(u, v), v)))⊥ϕv(u, v) +B(u, v)∇f2(c2(ϕ(u, v), v)) =
1
T
Dwi(c1(u, v)) · ∇f1(c1(u, v))

where Dwi(c1(u, v)) ·∇f1(c1(u, v)) is specified in (21). In other words, we must choose ϕ to satisfy
the boundary conditions

ϕ(u, 0) = u, ϕ(u, 1) = u

ϕv(u, 0) = E(u), ϕv(u, 1) = F (u)

where E,F : S1 → R+ are specified. Note that in the interior of S1 × [0, 1], we need the mono-
tonicity condition that

ϕu > 0.

We may specify ϕ in the interior of S1 × [0, 1] to, for example, satisfy:

ϕuuuu + ϕvvvv = 0.
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Figure 10: This figure shows the importance of the structure of the ART in determining whether two functions
are in the same equivalence class. The figure shows the level sets of two functions and their corresponding
Reeb trees. In this case, each function has the same number of min/max/saddles, and values, but the ARTs
are different and the functions are not equivalent via a viewpoint/contrast change.

Now w|Xij = ŵij and w|Wi = ŵi specifies a diffeomorphism w : S2 → S2.

Remark 12. Note that there is no subset (in general) of the attributed Reeb tree that is sufficient to determine
the domain diffeomorphism w. In other words the vertices, their values and their indices are not a sufficient
statistic to determine a domain diffeomorphism, w. To see this, we give an example of two attributed Reeb
trees that have the same number and types of critical points and values, but are not equivalent (see Figure 10).

Remark 13. Condition 2 in Definition 7 ensures that ART (f) does not change under small perturbations
of f , e.g., f + εg for small ε. This property is important in image analysis since the presence of noise in
images is common, and thus, we are interested in a class of functions that are stable under small amounts
of noise.

To demonstrate this point, consider the following function with two saddle points that have the same
function value and belong to the same connected component of a level set:

f(x, y) = exp
[
−(x2 + y2)

]
+ exp

[
−((x− 3)2 + y2)

]
+ exp

[
−((x+ 3)2 + y2)

]
;

the function and its attributed Reeb tree is plotted in the top of Figure 11. Now consider a slightly perturbed
version of f :

g(x, y) = exp
[
−(x2 + y2)

]
+ exp

[
−(1 + 2ε)((x− 3)2 + y2)

]
+ exp

[
−(1 + ε)((x+ 3)2 + y2)

]
,

where ε > 0; the function is plotted in the bottom of Figure 11. Although f only differs from g by a slight
perturbation, the attributed Reeb trees are not equivalent. Indeed f is not a stable function under small
perturbations, while the function g is stable.

Further, Condition 2 simplifies our classification of the equivalence of functions under contrast and view-
point changes. Indeed, the attributed Reeb tree may not contain enough information to determine a domain
diffeomorphism w between two functions with same Reeb tree in the case of multiple saddles belonging to the
same connected component of a level set. In such a case, multiple saddle points of a function coalesce to a
single point in the ART. The graph isomorphism φ in the proof of Lemma 7 may not be enough to determine
the correspondence between saddles of f1 and those of f2 in this case since φ only associates the group of
coalesced saddles of f1 to the group of coalesced saddles of f2.
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Figure 11: Top: A Morse function (its level sets, surface, and attributed Reeb tree, respectively) of a function
with multiple saddles on the same connected component of a level set. Bottom: a slightly perturbed version
of the above Morse function. The attributed Reeb tree of the function on the top is not stable under small
perturbations; while the one on the bottom is stable.

Lemma 8. For each T ∈ T , there exists a Morse function f ∈ F so that ART (f) = T .

Proof. Let T ′ ∈ T ′ be any representative of T . We apply the following algorithm to obtain the level sets of
f in R2 so that ART (f) = T .

• Choose a radius r > 0, and the level sets of f outside the circle of radius r at the origin are concentric
circles centered at the origin. Define R to be the region inside the circle.

• Set v to be the vertex adjacent to vsp.

• SubAlgorithm(v,R)

– If there are no vertices adjacent to v that have not been visited, then within R we place level sets
that are diffeomorphic to concentric circles within a circular region.

– Let v1, v2 be the two vertices adjacent to v that have not been visited.
∗ If a(v1), a(v2) > a(v) or a(v) > a(v1), a(v2), then v must be a Type 1 saddle point. Place the

level sets, call them R′ in Figure 5 inside R so that cl(R′) ⊂ R.
∗ If a(v1) > a(v) > a(v2) or a(v1) < a(v) < a(v2), then v must be a Type 2 saddle point. Place

the level sets, call them R′ in Figure 6 inside R so that cl(R′) ⊂ R.
∗ Between ∂R and ∂R′, we may place the collection of level sets that are diffeomorphic to an

annular region.
∗ Repeat SubAlgorithm(v1,R1), SubAlgorithm(v2,R2) where R1 and R2 are the two regions

with consistent signs for Type 1 saddles (Fig. 5) and the two inner regions of opposite sign
for Type 2 saddles (Fig. 6).

• The values of the level sets are chosen so as to be consistent with the attributes of the ART .

Collecting all these results together, we have the following result.

Theorem 3. The attributed Reeb tree of a surface uniquely determines it up to a contrast change and domain
diffeomorphism. Equivalently, the orbit space of surfaces that are graphs of Morse functions, F , under the
action of contrast and domain diffeomorphisms, H×W, is

S ′′ = T (23)
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Remark 14. The results above do not cover the case of surfaces that are not graphs of Morse functions.
In the context of image analysis we always deal with surfaces that are graphs (the intensity values), but in
general they are neither smooth nor have isolated extrema. Lack of smoothness is caused by discontinuities
for instance due to occlusions and material boundaries. Therefore, the analysis above applies only to a
segment (a sub-set) of the image domain, which can be mapped without loss of generality to the unit square.
Non-isolated extrema such as ridges and valleys are also commonplace in images, but they are accidental in
the sense that a ridge with constant height can be turned into a Morse function by slightly perturbing it, thus
generating a maximum along the ridge. The ART is stable with respect to such perturbations, although one
could question the loss of discriminative power of the representation of ridges as “thin blobs” that renders
them indistinguishable from other blobs, regardless of their shape.

5 Where is the “Information” in an image?

The traditional notion of information pioneered by Wiener and Shannon, and later Kolmogorov, quantifies
the information content in the data as their “complexity” regardless of the use of the data. More specifically,
the underlying “task” implicit in traditional Information Theory is that of reproducing an exact replica of
the data after it has been corrupted by accidents, typically additive noise, when passing through a “channel”.
In other words, Information Theory was built specifically for the task of “transmitting” or “compressing”
data, rather than using it for recognition or inference.

But in the context of recognition, much of the complexity in the data is due to spurious factors, such
as viewpoint, illumination and clutter. Following ideas of Gibson [7], we propose to quantify “actionable
information” in an image not as the complexity of the data itself, but as the complexity of the quotient of
the data with respect to nuisance factors.

In the case of smooth regions of the image undergoing changes in contrast and viewpoint, considered in
this manuscript, this means that the information content of the data is the complexity, or coding length, of
the ART corresponding to the given region:

I(f) = 6(#max+ #min)− 7. (24)

Note that the above is the coding length of the ART , which would include codes for each minimum, maximum,
saddle, their values, and the edge set. The number of maxima and minima completely determine the number
of saddles (by the constraints imposed by the Betti numbers [9]), and edges (since ART is a tree).

The information content I(f) measures the discriminative power of a portion of an image. To see this,
consider a recognition problem where a test image is given that either contains a specific object (ω = 1)
or not (ω = 0). Assume that P (ω), the probability of the event ω, is given, for instance equal to 1/2. Let
f ∈ F be a test image, and consider the decision function (classifier) α : F → {0, 1} and a loss function
λ : {0, 1}2 → R+, for instance the standard 0-1 loss λ(αi, ωj) = δij . Ideally, we want to find the function α
that minimizes the conditional risk

R(α|f) .=
∑

j

λ(α|ωj)P (ωj |f) (25)

for any choice of f . The conditional risk can be used as a discriminant function, and it can be shown that this
choice minimizes the expected risk R(α) .=

∫
R(α|f)dP (f). We say that a statistic φ : F → F is sufficient

for the particular decision represented by the expected risk R(·) if

R(α) = R(α ◦ φ) (26)

Note that, in general, R(α) ≤ R(α ◦ φ), that is, we cannot “create information by manipulating the data.”
If we wish to compute the optimal decision function using a training set D = {(ωi, fi)}i=1,...N , using Bayes’
rule we can express the discriminant R(α|f) in terms of the likelihood p(f |ω,D). If we isolate the role of the
nuisance factors h (contrast) and w (viewpoint), we have that

p(f |ω,D) =
∫
p(f |ω, h,w,D)dP (h,w) (27)
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where the measure dP (·) is degenerate (uninformative) and therefore it does not depend on the training set.
Nevertheless, the training set is necessary in order to perform the above marginalization and “learn away”
the nuisance variables.

If, on the other hand, we consider the modified decision problem where the data f is “pre-processed” to
obtain ART = φ(f), then to minimize R̃(α̃|f) .= R(α|φ ◦ f) we must compute

p(φ ◦ f |ω,D) =
∫
p(ART |ω, h,w,D)dP (h,w) =

∫
p(ART |ω,D)dP (h,w) = p(ART |ω). (28)

In other words, by using ART instead of the raw data f we can significantly reduce the complexity of the
classifier, including reducing the size of the training set to one sample,10 while at the same time keeping
the conditional risk unchanged. The classifier α ◦ φ, following the invariance properties of φ, is also called
equivariant, and it can be shown to achieve the optimal (Bayesian) risk [11].

Now, if we restrict the classifier to only use a subset of the ART of a given complexity K, we have a
nested chain of classifiers R̃K(α̃|f) .= R(α|φ ◦ f ; I(f) ≤ K),

R̃K+1 ≤ R̃K (29)

and therefore the discriminative power of the statistic φ ◦ f increases monotonically with the actionable
information content I(f) of the ART .
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