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Abstract. In [24] we developed a direct discontinuous Gallerkin (DDG) method for diffusion
problems based on a general numerical flux formula for the solution gradient only. In this work,
we introduce a refined DDG method by using interface corrections in place of involving higher
order (≥ 4) derivatives in the numerical flux. This way the optimal (k+1)th order of accuracy is
obtained for any pk elements with a simple form of numerical fluxes. The admissible parameters
in the flux formulation is estimated, and the leading coefficient of the solution jump is shown
to be necessarily large when jump of 2nd order derivatives is not included in the numerical
flux. The refined DDG method is then extended to solve convection diffusion problems in both
one and two dimensional settings. A series of numerical tests are presented to demonstrate the
high order accuracy of the method.
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1. Introduction

In this paper, we continue our study on the direct discontinuous Galerkin (DDG) method for
solving nonlinear diffusion equations of the form

∂tU −∇ · (A(U)∇U) = 0, Ω× (0, T ), (1.1)

where Ω ⊂ Rd, the matrix A(U) = (aij(U)) is symmetric and positive definite, and U is an
unknown function of (x, t). The method will also be applied to convection-diffusion problems by
using some well known flux for the convection.

The Discontinuous Galerkin (DG) method is a finite element method using a completely dis-
continuous piecewise polynomial space for the numerical solution and the test functions. A key
ingredient of this method is the suitable design of the inter-element boundary treatments (the
so-called numerical fluxes) to obtain high order accurate and stable schemes. The DG method
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has been vigorously developed for hyperbolic problems since it was first introduced in 1973 by
Reed and Hill [26] for neutron transport equations. A major development of the DG method is
carried out by Cockburn, Shu, and collaborators in a series of papers [18, 17, 13, 20] for nonlinear
hyperbolic conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [11, 16, 21] for further references.

However, the DG method when applied to diffusion problems encounters subtle difficulties, see
e.g. [28]. There have been various DG methods suggested in the literature to solve the problem,
including the method originally proposed by Bassi and Rebay [4] for compressible Navier-Stokes
equations, its generalization called the local discontinuous Galerkin (LDG) methods introduced
in [19] by Cockburn and Shu and further studied in [7, 12, 15, 8]; as well as the method introduced
by Baumann-Oden [5, 25]. The Baumann-Oden method once written into a primal formulation
is similar to a class of interior penalty methods, independently proposed and studied for elliptic
and parabolic problems in the 1970s; see, e.g., [1, 3, 32]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [2] have set the existing DG methods into a unified
framework with a systematic analysis of these methods via linear elliptic problems. Another
framework using both the equation in each element and continuity relations across interfaces was
recently analyzed in [6].

More recent works such as those by Van Leer and Nomura in [31], Gassner et al. in [22],
and Cheng and Shu in [9] attempt to develop some direct DG methods for diffusion. We note
that these prior works exploit repeated integration by parts for the diffusion term, this brings a
possibility of choosing both solution and its derivatives to contribute to the interface flux.

Our approach beginning in [24] is to propose a path which sticks to the direct weak formulation
of the underlying parabolic equation in each cell and let cells communicate via the numerical flux
ûx only. To illustrate the idea, we simply take the one-dimensional heat equation, ut = uxx, as
an example, and formulate the DDG method as follows,

∫

Ij

utvdx− (̂ux)v|j+
1
2

j− 1
2

+
∫

Ij

uxvxdx = 0,

where Ij is the j − th computational cell, and v is the test function. The numerical flux involves
the average ux and the jumps of even order derivatives of u:

ûx = β0
[u]
∆x

+ ux + β1∆x[uxx] + · · · . (1.2)

It was shown in [24] that there is a large class of numerical fluxes of the form (1.2) being admissible
in the sense that the resulting scheme is stable. For piecewise pk polynomial approximations, kth
order of accuracy is ensured if the numerical flux is admissible.

Numerical experiments in [24] show that in order to achieve the optimal (k + 1)th order of
accuracy, the term (∆x)k−1[∂k

xu] for k = even is necessary. We note that the scheme is sensitive
in term of the choice of βk/2. For example, for k = 2, only β1 = 1

12 with a range of β0 gives
the optimal accuracy. The situation for k = odd is easier in the sense that the optimal order of
accuracy of the DDG scheme can be achieved even with

ûx = β0
[u]
∆x

+ ux (1.3)

provided β0 is suitably large.
However, the DDG method turns to be less practical when k = even ≥ 4 due to involving

4−th (or higher) order solution derivatives in the numerical flux. This problem is amplified when
solving high-dimensional equations. Our goal in this work is to refine the DDG method by using
interface corrections so that an optimal accuracy can be achieved for all k using the numerical
flux (1.2) or just (1.3) with a proper large β0.
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The refined DDG scheme takes the following form
∫

Ij

utvdx− (̂ux)v|j+
1
2

j− 1
2

+
∫

Ij

uxvxdx +
1
2
[u](vx)−

j+ 1
2

+
1
2
[u](vx)+

j− 1
2

= 0. (1.4)

Upon summation of (1.4) with numerical flux (1.3) over all j, we find the symmetric Internal
Penalty method originally introduced by Arnold in [1] for elliptic problems, see also [3, 32] (in
the format of so-called primal formulation). It is well known that the penalty parameter (β0 in
(1.3)) is a coefficient depending on the order of the polynomial pk, see e.g. [27]. It has to be large
enough to stabilize the scheme, especially for high order polynomials. For the DDG method with
interface corrections, we obtain a sharp estimate on β0 with the assistance of the admissibility
condition. Furthermore, our numerical results show that including [uxx] term in the numerical
flux ûx (1.2) will relieve the dependency of β0 on k. Namely, we obtain (k+1)th order of accuracy
for all pk polynomial approximations with fixed small β0, e.g. β0 = 2 for pk up to k = 9.

This paper is organized as follows. In §2, we introduce the DDG method with interface
corrections for one-dimensional problems. For this model problem, the main idea of devising
the method and the scheme formulation are presented. We then prove stability of the DDG
scheme for any admissible numerical fluxes. In §3, we extend the DDG method to nonlinear
convection diffusion equations in both one and two-dimensional problems in which U is a scalar
and A = (aij)d×d is a positive and semi-definite matrix. Finally in §4, we present a series of
numerical results to validate the refined DDG method.

2. One dimensional case

Our new DDG algorithm for diffusion consists of an addition of interface corrections, upon
the one proposed in [24], and hence allows a wider choice of numerical fluxes for obtaining the
optimal accuracy. Discretization in time with a matching accuracy is obtained by an appropriate
Runge-Kutta solver.

2.1. Scheme formulation. We begin with the one-dimensional linear diffusion

Ut − Uxx = 0 in Ω× (0, T ), (2.1)

subject to initial data
U(x, 0) = U0(x) on Ω, (2.2)

and periodic boundary conditions.
First we partition the domain Ω into computational cells Ω = ∪N

j=1Ij , with mesh {Ij =
[xj−1/2, xj+1/2]} of uniform size ∆x = xj+1/2 − xj−1/2. We seek an approximation u to U such
that for any time t ∈ [0, T ], u ∈ V∆x,

V∆x := {v ∈ L2(Ω) : v|Ij ∈ P k(Ij), j = 1, · · · , N},
where P k(Ij) denotes the space of polynomials on Ij with degree at most k.

Set

ûxv
∣∣∣
j+ 1

2

j− 1
2

:= (ûx)j+ 1
2
v−

j+ 1
2
− (ûx)j− 1

2
v−

j− 1
2
.

The DDG method introduced in [24] can be written as
∫

Ij

utvdx− ûxv
∣∣∣
j+ 1

2

j− 1
2

+
∫

Ij

uxvxdx = 0, (2.3)

with numerical flux ûx evaluated at x by

ûx = β0
[u]
∆x

+ ux +
bk/2c∑
m=1

βm(∆x)2m−1[∂2m
x u], (2.4)
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where β0, β1, · · · , β[k]/2 are coefficients to be chosen to ensure the stability of the scheme, and the
following notations have been used:

u± = u(x± 0, t), [u] = u+ − u−, u =
u+ + u−

2
.

The admissibility of βi’s and their effects on the numerical accuracy were studied in [24], in which
a numerical flux of the following form was tested

ûx = β0
[u]
∆x

+ ux +
1
12

∆x[uxx]. (2.5)

This scheme with β0 = 1 was numerically shown to produce optimal accuracy of (k + 1)th order
for k ≤ 3, as well as for k = odd(> 3) with a slightly larger β0.

For k ≥ 4, instead of relying on high order terms such as β2[∆x]3[uxxxx], in this paper we turn
to a refined DDG method with inclusion of interface corrections:

∫

Ij

utvdx− ûxv
∣∣∣
j+ 1

2

j− 1
2

+
∫

Ij

uxvxdx +
1
2
[u](vx)−j+1/2 +

1
2
[u](vx)+j−1/2 = 0, (2.6)

∫

Ij

u(x, 0)v(x)dx =
∫

Ij

U0(x)v(x)dx, (2.7)

where the numerical flux ûx is still (2.5) or more general

ûx = β0
[u]
∆x

+ ux + β1∆x[uxx]. (2.8)

We recall that β1 = 1/12 was identified through a procedure suggested in [24] for k = 2, 3: we
used the Stirling interpolation formula based on four symmetric points

xj+ 1
2
± 1

2
∆x, xj+ 1

2
±∆x,

leading to a unique 3rd order polynomial, whose derivative when evaluated at the cell interface
xj+1/2 gives

Dxu =
7
6

[u]
∆x

+ ux +
∆x

12
[uxx]. (2.9)

Therefore in this work we shall use the flux (2.5) for the refined DDG scheme. For non-uniform
mesh, ∆x needs to be understood as (∆xj + ∆xj+1)/2. The 1D scheme is now well defined.

We prove in next section that a large class of β′i exists for the stability of the DDG method.
Note that the scheme (2.6) with (2.8) when β1 = 0 becomes the classical symmetric DG method,
and in such a case sufficiently large β0 is indeed needed to penalize the interface jumps [1], see
Lemma 2.2 below.

2.2. Admissibility and stability. As usual for the DG method the guiding principle for the
choice of numerical flux is the stability requirement. Following [24] we adopt the following ad-
missibility criterion:

Definition 2.1. (Admissibility) We call a numerical flux ûx of the form (2.8) admissible if there
exists a γ ∈ (0, 1) and 0 < α ≤ 1 such that

γ

N∑

j=1

∫

Ij

u2
x(x, t)dx +

N∑

j=1

ûxj+1/2[u]j+1/2 +
N∑

j=1

[u]j+1/2uxj+1/2 ≥ α

N∑

j=1

[u]2j+1/2

∆x
(2.10)

holds for any piecewise polynomials of degree k, i.e. u ∈ V∆x.

This admissibility ensures the stability of the DDG method.
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Theorem 2.1. (Energy stability) Consider the DDG scheme (2.6)-(2.7). If the numerical flux
(2.8) is admissible as described in (2.10), then we have

1
2

∫ 1

0

u2(x, T )dx + (1− γ)
∫ T

0

N∑

j=1

∫

Ij

u2
x(x, t)dxdt + α

∫ T

0

N∑

j=1

[u]2

∆x
dt ≤ 1

2

∫ 1

0

U2
0 (x)dx. (2.11)

This can be proved by summation of (2.6) with v = u over j ∈ {1, · · ·N}, and using the
admissibility condition (2.10).

In the following two lemmas we show that there is indeed a large set of β′i, making admissible
fluxes (2.8) for polynomial approximations of any given degree k.

Lemma 2.1. Consider the one-dimensional linear diffusion (2.1). The numerical flux (2.8) is
admissible for any piecewise polynomial of degree k ≥ 0 provided (β0, β1) = (1, 0) when k = 0,
and for any k > 0

β0 ≥ α +
1
γ

M(k, β1),

where

M(k, β1) = max
u∈P k(Ij)

∆x
∑

j(ux + β1
2 ∆x[uxx])2∑

j

∫
Ij

u2
xdx

.

Proof. Note for k = 0, (β0, β1) = (1, 0) is admissible since β0 ≥ α. For admissibility condition
to hold when k ≥ 1, it suffices to select (β0, β1) so that the underlying flux (2.8) is admissible
locally around each cell, i.e.,

γ∆x

∫

Ij

u2
xdx + (2ux + β1∆x[uxx])[u]∆x + (β0 − α)[u]2 ≥ 0, k ≥ 1.

This is ensured to hold for all u|Ij ∈ P k(Ij) provided

(2ux + β1∆x[uxx])2(∆x)2 − 4(β0 − α)γ∆x

∫

Ij

u2
xdx ≤ 0.

Summation of this inequality over all index j ∈ {1, · · ·N} yields

β0 ≥ α +
1
γ

∆x
∑

j(ux + β1
2 ∆x[uxx])2∑

j

∫
Ij

u2
xdx

.

Maximization of the right hand side over all u|Ij ∈ P k(Ij) gives

β0 ≥ α +
M(k, β1)

γ
.

¤

In the numerical flux (2.8) the β1 term provides a leverage to compensate the β0 term. Indeed
we show below that when β1 = 0, a larger β0 in terms of k is needed for the flux to be admissible.

Lemma 2.2. For a given k ≥ 1, (2.8) with β1 = 0 is admissible if

β0 ≥ α +
1
4γ

λmax(H−1/2OH−1/2),

where H is the Hilbert matrix H =
(

1
m+l−1

)
of size k and O is a k × k matrix with each entry

to be 1.

Proof. From the proof in Lemma 2.1 we have

M(k, 0) = max
u∈P k(Ij)

∆x
∑

j u2
x∑

j

∫
Ij

u2
xdx

= max
v∈P k−1(Ij)

∆x
∑

j v2

∑
j

∫
Ij

v2dx
.
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k 1 2 3 4 5 6 7 8 9
β0 2 4 6 10 14 20 26 34 42

Table 1. analytical estimation on β0(k).

Set v|Ij
=

∑k
m=1 aj

mξm−1
j with base functions chosen to be ξj = x−xj−1/2

∆x for x ∈ Ij . Here aj
m is

the coefficient of the base function in cell Ij . Thus the average of v at the interface x = xj+1/2 is

v̄
∣∣∣
xj+1/2

=
1
2

(
k∑

m=1

aj
m · 1m−1 +

k∑
m=1

aj+1
m · 0m−1

)
=

1
2

k∑
m=1

aj
m.

On the other hand we have
∫

Ij

v2dx = ∆x

∫ 1

0

(
k∑

m=1

aj
m · ξm−1

)2

dξ = ∆x

k∑

m,l=1

aj
maj

l

1
m + l − 1

.

These together lead to

M(k, 0) =
1
4

max
aj

m,m=1···k

∑N
j=1

∑k
m,l=1 aj

maj
l∑N

j=1

∑k
m,l=1 aj

maj
l

1
m+l−1

=
1
4

max
aj∈Rk

∑N
j=1 aj ·Oaj

∑N
j=1 aj ·Haj

,

where
aj = (aj

1, · · · , aj
k)>, Om,l = 1, Hm,l =

1
m + l − 1

.

This is clearly bounded from above by

1
4

max
a∈Rk

a ·Oa

a ·Ha
=

1
4

max
y∈Rk

y · (H−1/2OH−1/2
)
y

‖y‖22
,

where we have used the fact that the Hilbert matrix H is symmetric and positive definite to
transform a via y = H1/2a. Due to symmetry of the matrix H−1/2OH−1/2, the induced spectral
norm is just the largest eigenvalue of this matrix, as claimed. ¤

From this result we now specify the choice of β0 for each fixed k, and compare with our
numerical results. For instance, we take α = 1 and γ = 1/2, and let β0 to be an integer as

β0 =
[
1
2
λmax

(
H−1/2OH−1/2

)]
+ 2, (2.12)

where [·] denotes the integer part. Some calculation for k up to 9 shows that β0 = [k2/2] + 2,
which is summarized in Table 1.

The numerical results for β1 = 0 is consistent with those given in Table 1. With β1 non-
vanishing we numerically show that (k + 1)th order of accuracy is obtained for pk polynomials
with a fixed β0. For instance, optimal accuracy is observed for all k up to 9 when taking (β0, β1) =
(2, 1

12 ) in our numerical tests.

Remark 2.1. A similar calculation for M(k, β1) yields an estimate about as (2.12) but with O
replaced by

Oml =
(

1− β1

2
(m− 1)

)(
1− β1

2
(l − 1)

)
.

For some β1 > 0 this indeed leads to a smaller β0 than (2.12).

3. Extensions

In this section we extend the refined DDG method to nonlinear convection diffusion problems
and multi-dimensional problems.
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3.1. One dimensional convection diffusion equations. We consider the nonlinear convection
diffusion equation,

Ut + f(U)x − (a(U)Ux)x = 0 in Ω× (0, T ), (3.1)

subject to initial data U(x, 0) = U0(x) and periodic boundary conditions. The diffusion coefficient
a(U) > 0 is non-negative.

Take v ∈ V∆x as the test function, the DDG scheme with interface correction is defined as the
following,
∫

Ij

utvdx+(f̂(u)−â(u)ux)v
∣∣∣
j+ 1

2

j− 1
2

−
∫

Ij

(f(u)−a(u)ux)vxdx+
1
2
[b(u)](vx)−j+1/2+

1
2
[b(u)](vx)+j−1/2 = 0,

(3.2)
where b(u) =

∫ u

0
a(s)ds, f̂(u)− â(u)ux is the numerical flux to be chosen.

For the convection part we may choose any entropy satisfying numerical flux, for example, the
Lax-Friedrichs flux,

f̂(u) = f̂(u−, u+) =
1
2

(
f(u−) + f(u+)− θ(u+ − u−)

)
, (3.3)

where θ = maxu∈[u−,u+] |f ′(u)|.
For the diffusion part, the numerical flux is chosen as

â(u)ux = β0
[b(u)]
∆x

+ b(u)x + β1∆x[b(u)xx]. (3.4)

Here β0 and β1 are taken the same as those for the linear case.

3.2. Multi-dimensional extensions. We now formulate the refined DDG method for multi-D
problems. Since numerical flux for convection can be treated via dimension-wise extension, we
present schemes only for nonlinear diffusion problems, for simplicity, in two-dimensional setting.
Let J1 = a11(U)Ux + a12(U)Uy and J2 = a21(U)Ux + a22(U)Uy. Then two-dimensional problem
can be written as

Ut − ∂xJ1 − ∂yJ2 = 0, in Ω = [0, 1]2 ⊂ R2, (3.5)

subject to initial data U(x, y, 0) = U0(x, y) and periodic boundary conditions. The diffusion
coefficient matrix (aij) is assumed to be symmetric and positive definite.

Let a partition of Ω be denoted by rectangular meshes

Ω =
N,M∑

j,k

Ij,k, Ij,k = Ij × Ik = [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
]

of uniform mesh sizes ∆ = max(∆x,∆y). We denote the finite element space by

V∆ =
{
v : v|Ij,k

∈ P k, ∀Ij,k ⊂ Ω
}

, (3.6)

where P k is a polynomial of degree at most k.
Set bij(u) =

∫ u

0
aij(s)ds. Then the DDG scheme on each computational cell can be written as

∫∫

Ij,k

utvdxdy −
∫

Ik

Ĵ1v
∣∣xj+ 1

2
x

j− 1
2

dy −
∫

Ij

Ĵ2v
∣∣yk+ 1

2
y

k− 1
2

dx +
∫∫

Ij,k

(J1vx + J2vy)dxdy + B = 0, (3.7)

∫∫

Ij,k

u(x, y, 0)v(x, y)dxdy =
∫∫

Ij,k

U0(x, y)v(x, y)dxdy, (3.8)

where the boundary correction is

B =
1
2

{∫

Ik

([b11(u)]v−x )x
j+ 1

2
+ ([b11(u)]v+

x )x
j− 1

2
dy +

∫

Ij

([b22(u)]v−y )y
k+ 1

2
+ ([b22(u)]v+

y )y
k− 1

2
dx

}
.
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Here and below [u]x
j+ 1

2
:= u(x+

j+ 1
2
, y, t)−u(x−

j+ 1
2
, y, t) and [u]y

k+ 1
2

= u(x, y+
k+ 1

2
, t)−u(x, y−

k+ 1
2
, t).

The numerical flux Ĵi is defined by

Ĵ1

∣∣∣
x

j+ 1
2

= β0
[b11(u)]

∆x
+ b11(u)x + b12(u)y + β1∆x[b11(u)xx], (3.9)

Ĵ2

∣∣∣
y

k+ 1
2

= β0
[b22(u)]

∆y
+ b21(u)x + b22(u)y + β1∆y[b22(u)yy], (3.10)

where we take (β0, β1) as obtained for one-dimensional case. The 2D algorithm is now well
defined.

An appropriate choice of (β0, β1) is to ensure the L2-stability of the method.

Theorem 3.1. (Energy stability) Assume that for p ∈ R, ∃γ and γ∗ such that the eigenvalues
of matrix (aij(p)) lie between [γ, γ∗]. Consider the refined DDG scheme with numerical flux
(3.9)-(3.10). Then the numerical solution satisfies

∫∫

Ω

u2(x, y, T )dxdy +
∫ T

0

∑

Ij,k

∫∫

Ij,k

(J1ux + J2uy)dxdydt

+ γβ0

∫ T

0


∑

Ij

∫

Ij

M∑

k=1

[u]2yk+1/2

∆y
dx +

∑

Ik

∫

Ik

N∑

j=1

[u]2xj+1/2

∆x
dy


 dt ≤

∫∫

Ω

U2
0 (x, y)dxdy,

(3.11)

provided β0 is suitably large.

This stability result can be proved by following the similar argument as that explored in [24].
Details are omitted.

Up to now, we have taken the method of lines approach and have left t continuous. For
time discretization we use the explicit third order TVD Runge-Kutta method [30, 29] to match
accuracy in space.

4. Numerical examples

In this section we provide a few numerical examples to illustrate the accuracy and capacity of
the DDG method with interface corrections. We would like to illustrate the high order accuracy
of the method through these numerical examples from one-dimensional to two-dimensional linear
and nonlinear problems.

Example 4.1. lD heat equation.

Ut − Uxx = 0, x ∈ (0, 2π) (4.1)
with initial condition U(x, 0) = sin(x) and periodic boundary conditions. In this example we
will use this model equation to test the performance of the new DDG method. Two different
numerical fluxes are investigated, one is to take β1 = 0 and the other is to take β1 6= 0 in (2.8).

The numerical flux (2.8) with β1 = 0 reduces to the following,

ûx = β0
[u]
∆x

+ ux. (4.2)

In light of the admissibility studies in §2 we know that β0 is a parameter depending on the degree
of the approximation polynomial. We need to choose β0 big enough to stabilize the scheme for
high order approximations. We refer to Table 1 for suitable choices of β0 with different k. The
DDG method based on pk polynomial approximations with k = 0, 1, 2, 3, 4 are tested and (k+1)th
order of accuracy is obtained. L2 and L∞ errors are listed in Table 2. Note that in this and the
remaining examples, L∞ error is obtained by evaluating on 200 sample points per cell.
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k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 4.86e-02 2.38e-02 1.03 1.19e-02 1.00 5.90e-03 1.00
L∞ 1.17e-01 5.80e-02 1.02 2.89e-02 1.00 1.45e-02 1.00

1 L2 5.36E-03 1.41e-03 1.93 3.57e-04 1.98 8.96e-05 1.99
L∞ 1.03e-02 2.87e-03 1.84 7.46e-04 1.94 1.88e-04 1.98

2 L2 3.21e-04 3.73e-05 3.10 4.56e-06 3.02 5.68e-07 3.00
L∞ 1.31e-03 1.60e-04 3.03 1.98e-05 3.00 2.48e-06 3.00

3 L2 2.48e-05 1.56e-06 3.98 9.78e-08 3.99 6.11e-09 3.99
L∞ 5.47e-05 3.60e-06 3.92 2.31e-07 3.96 1.45e-08 3.99

4 L2 4.03e-07 1.03e-08 5.29 3.01e-10 5.09 9.24e-12 5.02
L∞ 1.83e-06 5.62e-08 5.02 1.75e-09 5.00 5.46e-11 5.00

Table 2. 1D heat equation with numerical flux (4.2). L2 and L∞ errors at
t = 1.0. pk polynomial approximations with k = 0, 1, 2, 3, 4 .

The second test is to use numerical flux (2.8) with β1 6= 0. As suggested in §2 we use the
following numerical flux in the DDG scheme (2.6),

ûx = 2
[u]
∆x

+ ux +
∆x

12
[uxx]. (4.3)

pk polynomial approximations with k = 2, · · · , 9 are tested and again optimal (k + 1)th order of
accuracy is obtained. To save the space here we only list the errors and orders for k = 2, 3, 4, 5, 6, 7
in Table 3. Note including term [uxx] in the numerical flux does relieve the dependence of β0 on
k. We use fixed β0 = 2 for all pk polynomial approximations up tp k = 9. We also investigate
this scheme on nonuniform mesh and still (k + 1)th order of accuracy is obtained. Errors and
orders are listed in Table 4. For the nonuniform mesh, the partition of the domain [0, 2π] consists
of repeated pattern of 1.1∆x and 0.9∆x for odd and even number of index i = 1, ...N , where
∆x = 2π/N with even number N .

The above comparison indicates that the term [uxx] is important for the scheme to remain
accurate for high order approximations with a fixed β0. Hence in the rest examples we use
numerical flux (4.3) only.

Example 4.2. 1D fully nonlinear equation.

Ut + UUx − 1
2
(UUx)x = 0 x ∈ (0, 1) (4.4)

with initial condition U(x, 0) = ex and boundary condition U(0, t) = 1 and U(1, t) = e. The
exact solution is given as U(x, t) = ex.

For the nonlinear diffusion term (a(u)ux)x = b(u)xx we use the following numerical flux,

b̂(u)x = 2
[b(u)]
∆x

+ b(u)x +
∆x

12
[b(u)xx].

In this example b(u) = 1
2u2. We conduct the DDG scheme on this fully nonlinear equation. We

obtain (k +1)th order of accuracy for pk approximations. Errors and orders are listed in Table 5.
Example 4.3. 2D linear convection diffusion equation.

Ut + c(Ux + Uy)− µ(Uxx + Uyy) = 0 (x, y) ∈ (0, 2π)× (0, 2π) (4.5)

with initial condition U(x, y, 0) = sin(x+y) and periodic boundary condition. The exact solution
is U(x, y, t) = e−2µtsin(x + y − 2ct). In this example we take c = 1 and µ = 1. Accuracy test is
performed on a N ×N rectangular mesh. DDG scheme with interface correction is implemented
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k N=10 N=20 N=40 N=80
error error order error order error order

2 L2 3.73e-04 4.65e-05 3.00 5.80e-06 3.00 7.25e-07 3.00
L∞ 7.21e-04 9.11e-05 2.98 1.14e-05 2.99 1.43e-06 2.99

3 L2 2.59e-05 1.58e-06 4.03 9.80e-08 4.00 6.12e-09 4.00
L∞ 6.17e-05 3.72e-06 4.05 2.33e-07 3.99 1.46e-08 3.99

4 L2 2.13e-06 7.60e-08 4.80 2.47e-09 4.94 7.79e-11 4.98
L∞ 6.74e-06 2.46e-07 4.77 8.03e-09 4.93 2.54e-10 4.98

N=4 N=8 N=12 N=16
5 L2 1.13e-05 1.88e-07 5.91 1.67e-08 5.96 3.00e-09 5.98

L∞ 1.97e-05 3.39e-07 5.86 3.03e-08 5.96 5.42e-09 5.98
6 L2 7.30e-07 4.22e-09 7.43 2.34e-10 7.14 3.07e-11 7.05

L∞ 1.23e-06 1.09e-08 6.82 7.25e-10 6.67 1.02e-10 6.83
7 L2 8.43e-08 3.87e-10 7.77 1.57e-11 7.91 1.75e-12 7.63

L∞ 1.28e-07 5.92e-10 7.76 2.40e-11 7.91 2.65e-12 7.65

Table 3. 1D heat equation with numerical flux (4.3). pk polynomial approxi-
mations with k = 2, 3, 4, 5, 6, 7.

k N=10 N=20 N=40 N=80
error error order error order error order

2 L2 4.07e-04 5.04e-05 3.01 6.29e-06 3.00 7.86e-07 3.00
L∞ 9.37e-04 1.19e-04 2.97 1.50e-05 2.99 1.88e-06 3.00

3 L2 3.10e-05 1.91e-06 4.02 1.19e-07 4.00 7.43e-09 4.00
L∞ 8.84e-05 5.46e-06 4.01 3.44e-07 3.99 2.16e-08 3.99

4 L2 4.07e-06 1.69e-07 4.59 5.76e-09 4.87 1.84e-10 4.97
L∞ 1.39e-05 5.89e-07 4.56 2.02e-08 4.87 6.46e-10 4.96

Table 4. 1D heat equation with numerical flux (4.3) on none uniform mesh. pk

approximations with k = 2, 3, 4 .

k N=10 N=20 N=30 N=40
error error order error order error order

0 L2 1.08e-01 5.54e-02 0.97 3.72e-02 0.98 2.81e-02 0.98
L∞ 2.11e-01 1.08e-01 0.97 7.24e-02 0.98 5.45e-02 0.99

1 L2 1.19e-03 2.99e-04 1.99 1.33e-04 2.00 7.49e-05 2.00
L∞ 3.13e-03 8.40e-04 1.90 3.83e-04 1.94 2.18e-04 1.96

2 L2 1.02e-05 1.28e-06 2.99 3.80e-07 3.00 1.60e-07 3.00
L∞ 2.15e-05 2.72e-06 2.99 8.06e-07 3.00 3.40e-07 3.00

3 L2 5.95e-08 3.72e-09 4.00 7.35e-10 3.98 2.34e-10 3.99
L∞ 1.39e-07 8.88e-09 3.97 1.77e-09 3.92 5.74e-10 3.95

Table 5. 1D fully nonlinear equation (4.4). L2 and L∞ errors at t = 0.5. pk

polynomial approximation with k = 0, 1, 2, 3, 4 .
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k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 8.58e-02 4.74e-02 0.86 2.50e-02 0.92 1.28e-02 0.96
L∞ 2.23e-01 1.22e-01 0.88 6.26e-02 0.96 3.17e-02 0.98

1 L2 1.11e-02 2.73e-03 2.02 6.71e-04 2.02 1.66e-04 2.01
L∞ 5.49e-02 1.39e-02 1.98 3.49e-03 1.99 8.84e-04 1.98

2 L2 1.13e-03 1.40e-04 3.01 1.74e-05 3.00 2.18e-06 3.00
L∞ 7.64e-03 9.58e-04 2.99 1.17e-04 3.03 1.46e-05 3.00

3 L2 1.33e-04 8.16e-06 4.02 5.06e-07 4.01 3.15e-08 4.00
L∞ 7.03e-04 4.49e-05 3.97 2.87e-06 3.97 1.82e-07 3.98

Table 6. 2D linear convection diffusion equation (4.5). L2 and L∞ errors at
t = 0.5. pk polynomial approximation with k = 0, 1, 2, 3 .

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 2.03e-01 1.07e-01 0.92 5.56e-02 0.95 2.88e-02 0.95
L∞ 6.10e-01 3.12e-01 0.97 1.60e-01 0.96 8.09e-02 0.98

1 L2 3.62e-02 9.44e-03 1.94 2.39e-03 1.98 5.93e-04 2.00
L∞ 2.26e-01 6.11e-02 1.88 1.54e-02 1.99 3.78e-03 2.02

2 L2 3.90e-03 4.48e-04 3.12 5.50e-05 3.02 6.69e-06 3.03
L∞ 3.44e-02 4.29e-03 3.00 5.02e-04 3.09 5.75e-05 3.12

3 L2 4.44e-04 2.51e-05 4.14 1.55e-06 4.02 9.51e-08 4.02
L∞ 3.49e-03 2.72e-04 3.68 1.46e-05 4.21 7.86e-07 4.20

Table 7. 2D anisotropic case (4.6). L2 and L∞ errors at t = 0.3. pk polynomial
approximations with k = 0, 1, 2, 3.

at t = 0.5. Similar to 1D problems, we choose fixed β0 = 2 in the numerical flux for all pk

polynomials. In the x-direction, we take

ûx|xj+1/2 =
(

2
[u]
∆x

+ ux +
∆x

12
[uxx]

)
|xj+1/2 .

Similar formula in the y-direction is applied. Again (k + 1)th order of accuracy is obtained with
piecewise pk polynomial approximations. L2 and L∞ errors and orders are listed in Table 6.

Example 4.4. 2D anisotropic diffusion equation.

Ut + c(Ux + Uy)− µ(Uxx + Uyy + Uxy) = 0 (x, y) ∈ (0, 2π)× (0, 2π) (4.6)

with initial condition U(x, y, 0) = sin(x+y) and periodic boundary condition. The exact solution
is U(x, y, t) = e−3µtsin(x + y − 2ct). We use this example to test the DDG scheme for diffusion
problem with non-isotropic term. For the mixed term uxy we use numerical flux (3.9) on rect-
angular mesh. In this example we take c = 1 and µ = 0.01. pk polynomial approximations with
k = 0, 1, 2, 3 are tested and (k + 1)th order of accuracy is obtained. Errors and orders are listed
in Table 7.

Example 4.5. 2D incompressible Navier-Stokes equation in vorticity formulation.
In this example we consider two-dimensional incompressible Navier-Stokes equation in vorticity
based formulation.

ωt +∇ · (uω) =
1

Re
4ω (x, y) ∈ (0, 2π)× (0, 2π) (4.7)
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k N=16 N=32 N=64 N=128
error error order error order error order

1 L2 2.19e-02 5.13e-03 2.09 1.25e-03 2.04 3.06e-04 2.02
L∞ 1.16e-01 2.59e-02 2.16 6.25e-03 2.05 1.47e-03 2.09

2 L2 1.34e-03 1.55e-04 3.11 1.85e-05 3.06 2.19e-06 3.07
L∞ 1.10e-02 1.19e-03 3.20 1.32e-04 3.17 1.49e-05 3.14

3 L2 3.23e-04 1.07e-05 4.91 4.62e-07 4.52 2.33e-08 4.31
L∞ 2.09e-03 5.73e-05 5.18 2.30e-06 4.63 1.18e-07 4.28

Table 8. 2D Navier-Stokes equation in vorticity formulation (4.7). L2 and L∞

errors at t = 1.0. pk approximations with k = 1, 2, 3 .

Again we use this example to check the high order accuracy of the DDG method. To sim-
plify the computation, we take incompressible velocity field u = (u, v) as a given function.
Here (u(x, y, t), v(x, y, t)) = e−

2t
Re (−cos x sin y, sinx cos y) and the exact solution is known as

ω(x, y, t) = 2e−
2t
Re cos x sin y, see [10]. Periodic boundary conditions are applied and we take the

Reynolds number Re = 100. We compute the solution at time t = 1. L2 and L∞ errors are listed
in Table 8 and we obtain (k + 1)th order of accuracy with pk polynomial approximations.

Example 4.6. 2D Buckley-Leverett equation.
Finally, we consider the two dimensional convection diffusion equation [23]

ut + f(u)x + g(u)y = ε(uxx + uyy) (x, y) ∈ (−1.5, 1.5)× (−1.5, 1.5). (4.8)
The nonlinear convection terms are given as

f(u) =
u2

u2 + (1− u)2
,

g(u) = f(u)(1− 5(1− u)2),
and the initial condition is taken as

u(x, y, 0) =
{

1, x2 + y2 < 0.5,
0, otherwise. (4.9)

This is the two-dimensional Buckley-Leverett equation with small diffusion. Essentially it is a
convection dominated problem with non-convex flux functions. Here we take ε = 0.01. We
compute the DDG solution with p1 polynomial approximation up to t = 0.5 with mesh size
N ×N = 100× 100. In Figure 1 we show the solution slice at y = 0.75 and the solution contours
in (0, 1). Figure 2 shows the 3D outlook of the solution.

In our simulation we observed that when ε is relatively large, say ε = 0.1, the scheme is stable
and accurate. When smaller ε is used, we observe some instability phenomena which is related to
the steep shock fronts. Here we use sloper limiters as introduced in [14] to stabilize the scheme.
Again, the DDG method shows its capability to obtain high resolution solutions across sharp
transition areas and gives satisfactory results.

5. Concluding remarks

Built upon the DDG method introduced in [24], we have developed a refined direct discon-
tinuous Galerkin(DDG) method for diffusion problems. We include extra interface corrections in
the scheme formulation with numerical flux involving only up to second order derivatives of the
numerical solution. The refined DDG scheme has the advantage of obtaining optimal accuracy
of (k + 1)th order for all pk elements. We prove that there exists a large class of coefficients
(β0, β1) in the numerical flux formulation, ûx = β0[u]/∆x + ux + β1∆x[uxx], ensuring the sta-
bility of the scheme. We also prove that when β1 = 0, β0 has to be big enough to guarantee
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Figure 1. 2D Buckley-Leverett equation (4.8). Left: solution slice at y = 0.75.
Right: solution contours.
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Figure 2. 2D Buckley-Leverett equation (4.8). solution at t = 0.5 on 100x100 mesh.

the scheme stability; actually we estimate the precise dependence of β0 on the polynomial degree
k. Extensions of the method to convection diffusion problems in both one and two dimensional
settings are given. Finally we carry out a series of numerical tests from linear to nonlinear, one
dimensional to two dimensional problems to demonstrate the high order accuracy of the method.
Our numerical results show that β1 6= 0 does provide a leverage to compensate the β0 term, thus
a fixed β0 can be used for all pk polynomials.
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