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Abstract Measurements in nanoscopic imaging suf-
fer from blurring effects modeled with different point

spread functions (PSF). Some apparatus even have PSFs

that are locally dependent on phase shifts. Additionally,
raw data are affected by Poisson noise resulting from

laser sampling and ”photon counts” in fluorescence mi-

croscopy. In these applications standard reconstruction
methods (EM, filtered backprojection) deliver unsat-

isfactory and noisy results. Starting from a statistical

modeling in terms of a MAP likelihood estimation we

combine the iterative EM algorithm with total varia-
tion (TV) regularization techniques to make an efficient

use of a-priori information. Typically, TV-based meth-

ods deliver reconstructed cartoon images suffering from
contrast reduction. We propose extensions to EM-TV,

based on Bregman iterations and primal and dual in-

verse scale space methods, in order to obtain improved
imaging results by simultaneous contrast enhancement.

Besides further generalizations of the primal and dual

scale space methods in terms of general, convex vari-

ational regularization methods, we provide error esti-
mates and convergence rates for exact and noisy data.

We illustrate the performance of our techniques on syn-

thetic and experimental biological data.
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1 Introduction

Image reconstruction is a fundamental problem in many

fields of applied sciences, e.g. nanoscopic imaging, med-
ical imaging or astronomy. Fluorescence microscopy for

example is an important imaging technique for the in-

vestigation of biological (live-) cells, up to nano-scale.
In this case image reconstruction arises in form of de-

convolution problems. Undesirable blurring effects can

be ascribed to a diffraction of light.

Mathematically, image reconstruction in such appli-
cations can often be formulated as the computation of

a function ũ ∈ U(Ω) from the operator equation

Kũ = g . (1)

Typically, this is a Fredholm integral equation of the

first kind with given exact data g ∈ V(Σ) and the de-

sired exact solution ũ.
Here, K denotes a linear and compact operator

K : U(Ω) → V(Σ) and U(Ω) and V(Σ) are Banach

spaces of functions on bounded and compact sets Ω

respectively Σ. In the case of nanoscopic imaging ũ is

a convolution operator

(Ku)(x) = (k ∗ u)(x) =

∫

Ω

k(x − y)u(y) dy ,

where k is a convolution kernel, describing the blurring
effects caused by a nanoscopic apparatus.

Since K cannot be inverted continuously (due to

the compactness of the forward operator), most inverse
problems are ill-posed. Furthermore, in real-life appli-

cations the exact data g are usually not available, but

a noisy version f instead. Hence, we need to compute
approximations to the ill-posed problem

Ku = f (2)
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instead of (1), with u ∈ U(Ω) and f ∈ V(Σ).

Since direct inversion of K is not suitable, regu-
larization techniques are needed to produce reasonable

reconstructions. A frequently used way to realize the

latter is the Bayesian model, whose aim is the com-
putation of an estimate u of the unknown object by

maximizing the a-posteriori probability density p(u|f)

with measurements f . The latter is given according to
Bayes formula

p(u|f) =
p(f |u) p(u)

p(f)
. (3)

This approach is called maximum a-posteriori probabil-
ity (MAP) estimation. If the measurements f̃ are given,

we describe the density p(u|f) as the a-posteriori likeli-

hood function which depends on u only. The Bayesian

approach (3) has the advantage that it allows to in-
corporate additional information about u via the prior

probability density p(u) into the reconstruction pro-

cess. The most frequently used prior densities are Gibbs
functions

p(u) ∼ e−α J(u) , (4)

where α is a positive parameter and J a convex regu-
larization energy J : W(Ω) → R ∪ {∞}. Since stochas-

tic modeling is often done in discrete terms based on

the modeling of random variables, we introduce a semi-
discrete, linear and compact operator

K : U(Ω) → D(Σ) , (5)

with a finite-dimensional range D(Σ), to be able to de-

rive corresponding continuum models. Typical models

for the probability density p(f |u) in (3) are Gaussian-

, Poisson- or Multiplicative-distributed data f , i.e.

p(f |u) ∼ e−
‖Ku−f‖2

L2(Σ)

2σ2 (Gaussian)

p(f |u) =
∏

i

(Ku)fi

i

fi!
e−(Ku)i (Poisson)

p(f |u) =
∏

i

nn

(
Ku

)n

i
Γ (n)

fn−1
i e

−n
fi

(Ku)i (Multipl.),

(6)

where K̄ is a semi-discrete operator derived from sam-

pling K.

Most works deal with the case of Gaussian distributed
noise so far. However, in real-life there are several ap-

plications, in which different types of noise are of a cer-

tain interest, such as Positron Emission Tomography

(PET), Microscopy, CCD cameras, or radar. For in-
stance, in addition to fluorescence microscopy, Poisson

noise appears also in PET in medical imaging. Other

non-Gaussian noise models are salt and pepper noise or

the different types of multiplicative noise, for example

appearing in Synthetic Aperture Radar (SAR) imag-
ing to reduce speckle noise. In [AA08], Aubert and Au-

jol assumed η in f = (Ku)η to follow a gamma law

with mean one and derived the conditional probability
p(f |u) above. For such cases different variational mod-

els (fidelities related to the log-likelihood of the noise

distribution) can be derived in the framework of MAP
estimation, which need different analysis than in the

case of Gaussian distributed noise.

In the canonical case of additive Gaussian noise (see

(6)), the minimization of the negative log likelihood
function (3) leads to classical Tikhonov regularization

[BLZ08] based on minimizing a functional of the form

min
u≥0

{
1

2
‖Ku − f‖

2
L2(Σ) + α J(u)

}

. (7)

The first term, the so-called data-fidelity term, penal-

izes the deviation from equality in (1) whereas R is
a regularization term as in (4). If we choose K = Id

and the total variation (TV) regularization technique

J(u) := |u|BV , we obtain the well-known ROF-model
[ROF92] for image denoising. The additional positiv-

ity constraint is necessary in typical applications as the

unknown represents a density image.

In nanoscopic imaging measured data are stochastic
and pointwise, more precisely, the data are called ”pho-

ton counts”. This property refers to laser scanning tech-

niques in fluorescence microscopy. Consequently, the
random variables of measured data are not Gaussian-

but Poisson-distributed (see (6)), with expected value

given by (Ku)i. Hence a MAP estimation via the neg-
ative log likelihood function (3) leads to the following

variational problem [BLZ08]

min
u≥0

{ ∫

Σ

(Ku − f log Ku) dµ + α J(u)

}

. (8)

Up to additive terms independent of u, the data-fidelity

term is the so-called Kullback-Leibler functional (also
known as cross entropy or I-divergence) between the

two probability measures f and Ku. A particular com-

plication of (8) compared to (7) is the strong nonlin-

earity in the data fidelity term and resulting issues in
the computation of minimizers.

The specific choice of the regularization functional R

in (8) is important for how a-priori information about
the expected solution is incorporated into the recon-

struction process. Smooth, in particular quadratic reg-

ularizations have attracted most attention in the past,

mainly due to the simplicity in analysis and computa-
tion. However, such regularization approaches always

lead to blurring of the reconstructions, in particular

they cannot yield reconstructions with sharp edges.
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Recently, singular regularization energies, in partic-

ular those of ℓ1 or L1-type, have attracted strong at-
tention. In this work, we introduce an approach which

uses total variation (TV) as the regularization func-

tional. TV regularization has been derived as a denois-
ing technique in [ROF92] and generalized to various

other imaging tasks subsequently. The exact definition

of TV [AV94], used in this paper, is

J(u) := |u|BV = sup
g∈C∞

0 (Ω;Rd)
||g||∞≤1

∫

Ω

u divg , (9)

which is formally (true if u is sufficiently regular) |u|BV =
∫

Ω
|∇u|. The motivation for using TV is the effective

suppression of noise and the realization of almost ho-

mogeneous regions with sharp edges. These features are

attractive for nanoscopic imaging if the goal is to iden-
tify object shapes that are separated by sharp edges

and shall be analyzed quantitatively.

Unfortunately, images reconstructed by methods us-
ing TV regularization suffer from loosing contrast. In

this paper, we suggest to extend EM-TV by iterative

regularization to Bregman-EM-TV, attaining simulta-

neous contrast enhancement. More precisely, we apply
total variation inverse scale space methods by employ-

ing the concept of Bregman distance regularization.

The latter has been derived in [OBG+05] with a de-
tailed analysis for Gaussian-type problems (7). Fur-

thermore, it has been generalized to time-continuity

[BGO+06] and Lp-norm data fitting terms [BFO+07].
Here, in the case of Poisson-type problems, the method

consists in computing a minimizer u1 of (8) with J(u) :=

|u|BV first. Updates are determined successively by com-

puting

ul+1 = arg min
u∈BV (Ω)

{∫

Σ

(Ku − f log Ku) dµ

+ α ( |u|BV − 〈pl, u〉 )
}

, (10)

with pl as an element of the subgradient of the total
variation semi norm in ul. Introducing the Bregman

distance with respect to | · |BV defined via

D
p

|·|BV
(u, v) = |u|BV − |v|BV − 〈p, u − v〉 (11)

with p ∈ ∂|v|BV ⊆ BV ∗(Ω), where 〈·, ·〉 denotes the

duality product, allows to characterize ul+1 in (10) as

ul+1 = arg min
u∈BV (Ω)

{∫

Σ

(Ku − f log Ku) dµ

+ α D
pl

|·|BV
(u, ul)

}

, (12)

with an appropriate update formula for ul. In the case

of a Gaussian-noise model with corresponding L2 data

fidelity, i.e. (7), the iterative Bregman regularization

strategy reads as follows,

ul+1 = arg min
u∈BV (Ω)

{
1

2

∥
∥Ku − vl − f

∥
∥

2

L2(Σ)

+α D
pl

|·|BV
(u, ul)

}

, (13)

with the update formula

vl+1 = vl − (Kul+1 − f) v0 = 0 ,

using the setting pl = 1
α
K∗vl ∈ ∂J(ul). To derive the

dual counterpart of the primal inverse scale space strat-
egy in (12), one can take the dual formulation of (8) and

replace the resulting dual regularization term by the

corresponding iterative Bregman regularization. This
sequence yields a dual inverse scale space strategy. In-

terestingly, the once more bidual formulation reads as

follows

ul+1 = arg min
u∈BV(Ω)

{∫

Σ

(Ku + rl − f log(Ku + rl)) dµ

+ α |u|BV } ,

with the update of the residual function rl

rl+1 = rl + Kul+1 − f , r0 = 0 .

In comparison to (13) this dual scale space method also

has a very simple structure and a nice interpretation

in terms of a dynamically changing background model
based on the residual function rl. In this work we will

see, that primal and dual inverse scale space strate-

gies can noticeably improve reconstructions for inverse
problems with Poisson statistics like optical nanoscopy.

In the following section we will study primal and
dual inverse scale space methods for general, convex

variational regularization methods based on Bregman

distances. In the dual perspective, we are going to pro-
vide general error estimates and convergence rates for

the cases of exact and noisy data. In Section 3 we will

apply the proposed scale space strategies to Poisson
noise modeling and to regularization with TV. Partic-

ularly, we will classify the latter in context of EM-TV

based reconstruction methods. Subsequently we will il-

lustrate the performance of the proposed techniques by
application to synthetic and experimental optical na-

noscopy data. In the last section we will conclude and

formulate open questions.
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2 Inverse Scale Space Methods

In the following we present primal and dual inverse

scale space strategies for solving inverse problems such

as (2) described in the introduction. These techniques
are based on iterative Bregman distance regularization

for general, convex functionals and arise in the over-

smoothed limit. From a dual view point of the varia-
tional model we also derive a dual inverse scale space

flow, which coincides with the primal one in the case of

the Gaussian noise case. In more general cases of fideli-
ties, the dual flow appears to be easier with respect to

analysis and even allows us to derive error estimates. In

the course of this work we use the following definitions:

K : U(Ω) → V(Σ)

denotes a linear and compact operator where U(Ω) and

V(Σ) are Banach spaces of functions on bounded and
compact sets Ω respectively Σ.

Hf : V(Σ) → R ∪ {∞}

is a convex data fidelity using the operator K. In order
to guarantee that the data fidelity is centered at zero,

we use Ku− f as the argument, i.e. Hf (Ku− f) = 0 if

Ku = f . This notation is particularly useful for duality
arguments. Moreover

J : W(Ω) ⊂ U(Ω) → R ∪ {∞}

denotes a convex regularization functional. Furthermore,
we call g exact data and f noisy data with a given noise

estimate

Hf (g) ≤ δ . (14)

A major step for error estimates and multi-scale tech-

niques in the case of regularization with singular en-
ergies has been the introduction of (generalized) Breg-

man distances (cf. [B67,K97]) as an error measure (cf.

[BO04]). The Bregman distance for general convex, not

necessarily differentiable functionals, is defined as fol-
lows.

Definition 1 (Bregman Distance) Let U be a Ba-

nach space and J : U → R∪{∞} be a convex functional

with non-empty subdifferential ∂J . Then, the Bregman
distance is defined as

D
∂J(v)
J (u, v)

:= {J(u) − J(v) − 〈p, u − v〉U | p ∈ ∂J(v)} .

The Bregman distance for a specific subgradient ζ is

defined as D
ζ
J : U × U → R

+ with

D
ζ
J (u, v) := J(u) − J(v) − 〈ζ, u − v〉U , ζ ∈ ∂J(v) .

Since we are dealing with duality throughout this work,

we are going to write

〈a, b〉U := 〈a, b〉U∗×U = 〈b, a〉U×U∗ ,

for a ∈ U∗ and b ∈ U , as the notation for the dual prod-

uct, for the sake of simplicity. The Bregman distance is

no distance in the usual sense; at least DJ (u, u) = 0
and DJ (u, v) ≥ 0 hold; the latter due to convexity of

J . If J is strictly convex, we even obtain DJ (u, v) > 0

for u 6= v. In general, no triangular inequality nor sym-
metry holds for the Bregman distance. The latter one

can be achieved by introducing the so-called symmetric

Bregman distance.

Definition 2 (Symmetric Bregman Distance) Let
U be a Banach space and J : U → R∪{∞} be a convex

functional with non-empty subdifferential ∂J . Then, a

symmetric Bregman distance is defined as D
symm
J : U ×

U → R
+ with

D
symm
J (u1, u2) := D

p1

J (u2, u1) + D
p2

J (u1, u2)

= 〈u1 − u2, p1 − p2〉U∗ ,

with pi ∈ ∂J(ui) for i ∈ {1, 2}.

2.1 Primal Inverse Scale Space Methods

Starting from a general, convex variational problem with
data fidelity Hf and regularization functional J , we ob-

tain the standard form:

Problem 1 (Variational Problem)

min
u∈W(Ω)

{Hf (Ku − f) + α J(u)} . (15)

The corresponding iterative Bregman regularization strat-

egy can be written as

Problem 2 (Inverse Scale Space)

ul+1 = arg min
u∈W(Ω)

{

Hf (Ku − f) + α D
pl

J (u, ul)
}

= arg min
u∈W(Ω)

{
Hf (Ku − f) + α (J(u) − 〈u, pl〉)

}
,

(16)

with pl ∈ ∂J(ul).

The first-order optimality condition of this Bregman-
regularized functional reads as follows,

α(pl+1−pl) = −K∗(∂Hf (Kul+1−f)), with pl ∈ ∂J(ul),

and basically provides an update rule for pl. In the limit
1
α
↓ 0, the latter can be interpreted as a forward Euler

discretization of the flow

d

dt
p(t) = K∗(∂Hf (Ku(t)−f)), p(0) = 0 ∈ ∂J(u(0)) ,
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which has been termed nonlinear inverse scale space

method (cf. [BRH07], [BFO+07], [BGO+06]). The ter-
minology inverse scale space method is due to the fact

that this approach somehow behaves in an inverse way

to the popular scale space methods (cf. [SG01], [W83],
[PM90]). In the case of inverse problems with Gaus-

sian noise modeling, i.e. L2 data fidelity, inverse scale

space strategies have been well studied and error esti-
mates could be attained (cf. [BRH07]). Unfortunately,

in the general case above, the residuals Ku(t) − f are

enclosed by the derivative of the data fidelity. Unlike

the special case of a L2 data fidelity, this aspect leads
to mathematical difficulties if you want to establish er-

ror estimates respectively convergence rates of the scale

space method, since we need to invert ∂Hf enclosed by
K∗. A different way to see the issues is to write the

inverse scale-space method as

∂H∗
f

(

(K∗)−1 d

dt
p(t)

)

= (Ku(t) − f),

with p(0) = 0 ∈ ∂J(u(0)) ,

which is a strongly nonlinear equation for the dual vari-

able. We are able to overcome these difficulties in the

following section by using an alternative dual scale space
strategy.

2.2 Dual Inverse Scale Space Methods

In this subsection we are going to derive a dual inverse

scale space method in terms of an iterative Bregman

regularization of a dual reconstruction functional. For-
tunately, it is possible to derive error estimates and con-

vergence rates of the corresponding dual inverse scale

space flow.

In order to derive the dual formulation of the Breg-

man regularization functional in (16), we use the zero

centered data fidelity Hf (·) and introduce the convex

conjugates

H∗
f (q) = sup

v∈V(Σ)

(
〈q, v〉V(Σ) − Hf (v)

)

J∗(p) = sup
u∈W(Ω)

(
〈p, u〉U(Ω) − J(u)

)
.

Under appropriate conditions, the Fenchel duality the-

orem (cf. [ET99]) implies the following primal-dual re-

lation.

inf
u∈W(Ω)

{
Hf (Ku − f) + α (J(u) − 〈pl, u〉)

}

= inf
u,v

sup
q

{
Hf (Ku − f) + α(J(u) − 〈pl, u〉)

+〈v − Ku + f, q〉}

=sup
q

{

inf
v

(Hf (v) + 〈v, q〉)

+α inf
u

(J(u) − 〈pl +
1

α
K∗q, u〉) + 〈f, q〉

}

Using the convex conjugates and inf(·) = − sup(−·)

we get

= sup
q

{

−H∗
f (−q) + 〈f, q〉 − αJ∗(

1

α
K∗q + pl)

}

,

with
1

α
K∗q + pl ∈ ∂J(u) ⊂ W(Ω)

∗

Defining p := 1
α
K∗q + pl, hence q = α(K∗)−1(p − pl)

implies the dual formulation of the (primal) Bregman

method above:

Problem 3 (Inverse Scale Space, dual form.)

pl+1 = arg min
p∈U(Ω)∗

{
H∗

f (α(K∗)−1(pl − p))

−〈f, α(K∗)−1(p − pl)〉 + J∗(p)
}

,

with α(K∗)−1(pl − p) ∈ ∂Hf (Ku) and p ∈ ∂J(u).

Now we are going to use the primal-dual relation

above to provide a dual iterative Bregman regulariza-

tion technique. Considering the standard regularized re-
construction model in (15), the described primal-dual

relation above, with pl = 0, yields the dual formulation

of the variational problem:

Problem 4 (Variational Problem, dual form.)

min
p∈U(Ω)∗

{
αJ∗(p) − 〈f, α(K∗)−1p〉 + H∗

f (−α(K∗)−1p)
}

.

Please consider that the conjugate of J and the duality

product act as a fidelity term and the conjugate of Hf

as a regularization term in this formulation.

Consequently, the natural dual counterpart of the
primal inverse scale space method, using the substitu-

tion q := α(K∗)−1p resp. ql := α(K∗)−1pl, reads as

follows
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Problem 5 (Dual Inverse Scale Space)

pl+1 = arg min
q∈V(Σ)∗

{

α J∗(
1

α
K∗(q)) − 〈f,−q〉

+ Drl

H∗
f
(−q,−ql)

}

= arg min
q∈V(Σ)∗

{

α J∗(
1

α
K∗(q)) − 〈f,−q〉

+ H∗
f (−q) + 〈rl, q〉

}

with rl ∈ ∂H∗
f (−ql) .

The corresponding dual formulation of this variational

problem, i.e. the primal (equal to the bidual) formula-
tion, has a structure we are familiar with. The definition

of the convex conjugate and the Fenchel duality theo-

rem under appropriate conditions once more imply the

following dual-primal relation:

inf
p

{
αJ∗(p) − 〈f,−α(K∗)−1p〉 + H∗

f (−α(K∗)−1p)

+〈rl, α(K∗)−1p〉
}

= inf
p,q

sup
v

{
H∗

f (−q) + 〈rl − f, q〉 + αJ∗(p)

+〈K∗q − αp, v〉}

=sup
v

{

inf
q

(H∗
f (−q) + 〈rl − f, q〉 + 〈Kv, q〉)

+ α inf
p

(J∗(p) − 〈p, v〉)

}

=sup
v

{

− sup
q

(H∗
f (−q) + 〈Kv + rl − f, q〉) − αJ(v)

}

= − inf
v

{
Hf (Kv + rl − f) + αJ(v)

}

We obtain the simple primal (bidual) iterative regular-

ization technique, equivalent to the dual formulation

above:

Problem 6 (Dual Inverse Scale Space, primal form.)

ul+1 = arg min
u∈W(Ω)

{
Hf (Ku + rl − f) + αJ(u)

}
, (17)

with rl ∈ ∂H∗
f (−α(K∗)−1pl).

Since both Hf and J are proper, lower semi-continuous
and convex, and since Hf is locally bounded, we have

∂ (Hf (Ku) + αJ(u)) = ∂Hf (Ku) + α ∂J(u)

for all u ∈ W(Ω), due to [ET99]. Hence, the optimality

condition of (17) is given via

0 ∈K∗(∂Hf (Kul+1 − f + ∂H∗
f (−α(K∗)−1pl))) + αpl+1

⇐⇒(K∗)−1(−αpl+1)

∈ ∂Hf (Kul+1 − f + ∂H∗
f (−α(K∗)−1pl))

⇐⇒∂H∗
f (−α(K∗)−1pl+1)

= ∂H∗
f (−α(K∗)−1pl) + Kul+1 − f

Consequently, the first order optimality condition of

this variational problem provides an update of the resid-
ual function rl,

rl+1 = rl + Kul+1 − f (18)

for rl ∈ ∂H∗
f (−α(K∗)−1pl) and rl+1 ∈ ∂H∗

f (−α(K∗)−1pl+1).
This recursion formula yields an interesting decompo-

sition of f involving ”noise” at levels l and l + 1 and

signal at level l + 1.

2.2.1 Well-Definedness of the Iterates

In the following we show that the iterative dual-Bregman

procedure is well-defined, i.e. that (18) has a minimizer

ul+1 and that we may find a suitable subgradient rl+1.

Proposition 1 Assume Hf to be a strict convex fi-

delity with operator K having a trivial null space and

J to be a convex functional. Let u0 := 0, p0 := 0 ∈

∂J(u0), r0 = 0 ∈ ∂H∗
f (−α(K∗)−1p0) and α > 0. Then,

the minimizers ul+1 in (17) are well-defined.

Proof As described above, rewriting the optimality con-

dition of (17) yields the update (18) of the residuals.
Since r0 = 0, the l − th residual can be expressed ex-

plicitly by

rl = −

l∑

i=1

(f − Kui) ∈ ∂H∗
f (−α(K∗)−1p),

consequently (18) changes to

ul+1 = arg min
u∈W(Ω)

{

Hf (Ku +

l∑

i=1

(Kui) − (l + 1)f) + αJ(u)

}

.

Hence, the existence of minimizers can be traced back

to existence of minimizers for the original reconstruc-

tion problem, just with modified given data, which can

be treated as usual. Moreover, as K has only a trivial
null space, the strict convexity of Hf and the convexity

of J implies the strict convexity of the functional (17),

and therefore the minimizers ul+1 are unique. ⊓⊔

2.2.2 Dual Inverse Scale Space Flow

To derive a dual nonlinear inverse scale space flow we

have to take a look at the update formula (18) due to

the optimality condition of (17). In the limit α ↓ 0, this
can be interpreted as a forward Euler discretization of

the flow

d

dt
r(t) = Ku(t) − f, r(0) = 0 , (19)
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with r(t) ∈ ∂H∗
f (−α(K∗)−1p(t)), which is termed dual

nonlinear inverse scale space method (in analogy to pre-
vious works [BGO+06], [BFO+07]). By defining the in-

tegrated residual in that way, we obtain

p(t) =
1

α
K∗(q(t)) . (20)

2.2.3 Error Estimates

In order to derive error estimates in the iterative Breg-

man distance setting we need to introduce the so-called
source condition

∃ p̃ ∈ ∂J(ũ), ∃ q̃ ∈ V(Σ)∗ : p̃ =
1

α
K∗q̃ . (SC)

The nowadays standard source condition (SC) will in
some sense ensure that a solution ũ contains features

that are enhanced by the regularization term J . Notice

the resemblance between the time dependent subgradi-
ent p(t) in (20) and p̃ in the source condition. Now we

consider the Bregman distance for the convex conju-

gate of Hf , D
∂H∗

f (−q(t))

H∗
f

(−q̃,−q(t)), which is finite due

to the source condition. Then

d

dt

(

D
∂H∗

f (−q(t))

H∗
f

(−q̃,−q(t))
)

=
d

dt

(
H∗

f (−q̃) − H∗
f (−q(t)) − ∂H∗

f (−q(t))(−q̃ + q(t))
)

= 〈rt, q̃ − q(t)〉
(19)
= 〈f − Ku(t), q(t) − q̃〉

= 〈f − g, q(t) − q̃〉 − 〈Ku(t) − g, q(t) − q̃〉

= 〈f − g, q(t) − q̃〉 − α〈u(t) − ũ, p(t) − p̃〉

= 〈f − g, q(t) − q̃〉 − αD
symm
J (u(t), ũ)

≤ 〈f − g, q(t) − q̃〉 − αD
p(t)
J (ũ, u(t))

=: − I(t) .

(21)

In the following we want to analyse the monotony be-

havior of I(t). For that purpose, we deduce a relation

between qt and the second derivative of the data fidelity
Hf from the dual inverse scale space flow in (19) first,

which is

d

dt
(∂H∗

f (−q(t))) = ∂2
q (H∗

f (−q(t))) (−qt)

= Ku(t) − f .

By using an equivalent definition of the convex conju-
gate in the differentiable case (∂H∗

f = (∂Hf )−1) and

by using the derivative of inverse functions this yields

qt(t) = ∂t(α(K∗)−1p(t))

= [∂2
q (H∗

f (−q(t)))]−1 (f − Ku(t))

= [∂u[(∂uHf (∂H∗
f (−q(t))))−1]]−1 (f − Ku(t))

= ∂2
uHf (r(t)) (f − Ku(t)), r(t) ∈ ∂H∗

f (−q(t)) .

Consequently, the temporal properties of the estimate

I(t) read as follows:

d

dt
(I(t))

= − 〈qt, f − g〉 + α
d

dt

(

D
p(t)
J (ũ, u(t))

)

= − 〈qt, f − g〉 − α〈ũ − u(t), pt〉

= − 〈qt, f − g〉 − 〈g − Ku(t), ∂t(α(K∗)−1p(t))〉

= − 〈f − g, qt〉

− 〈g − Ku(t),H
′′

f (r(t)) (f − Ku(t))〉

= − 〈f − g,H
′′

f (r(t)) (f − Ku(t))〉

− 〈g − Ku(t),H
′′

f (r(t)) (f − Ku(t))〉

= − 〈f − Ku(t),H
′′

f (r(t)) (f − Ku(t))〉

≤ 0

⇐⇒ Hessian H
′′

f is positive semidefinite

⇐⇒ Hf convex

(22)

with r(t) ∈ ∂H∗
f (−q(t)). Hence, after integrating in-

equality (22) from 0 to t we get a decrease of I in time

and obtain

I(t) ≤ I(s) ∀t ≥ s =⇒ t · I(t) ≤

∫ t

0

I(s)ds . (23)

Now, integrating (21) from 0 to t yields

D
r(t)
H∗

f
(−q̃,−q(t)) − D

r(0)
H∗

f
(−q̃,−q(0)) ≤ −

∫ t

0

I(s)ds

⇒ t · I(t)
(23)

≤
∫ t

0

I(s)ds ≤ D
r(0)
H∗

f
(−q̃,−q(0)) − D

r(t)
H∗

f
(−q̃,−q(t)).

(24)

In the case of noise-free data, i.e. δ = 0, I(t) reduces

to the time dependent Bregman distance we want to

estimate. Hence, we can conclude

t α ·D
p(t)
J (ũ, u(t)) ≤ D

r(0)
H∗

f
(−q̃,−q(0))−D

r(t)
H∗

f
(−q̃,−q(t))

︸ ︷︷ ︸

≤0

and thus:

Theorem 1 (Exact data) Let ũ ∈ U(Ω) satisfy Kũ =

g = f , and (SC). Moreover, with q(t) := (K∗)−1p(t),
let u be a solution of the dual inverse scale space flow

∂t r(t) = Ku(t) − g, r(t) ∈ ∂H∗
f (−q(t)) .

Then the convergence rate D
p(t)
J (ũ, u(t)) = O( 1

t
) holds,

more precisely

D
p(t)
J (ũ, u(t)) ≤

D
r(0)
H∗

f
(−q̃,−q(0))

α t
.
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In the case of noisy data some further effort is necessary,

since the temporal derivative of the Bregman distance
with respect to H∗

f in (21) is not only bounded by the

negative Bregman distance. Therefore, (24) reads as fol-

lows:

D
r(t)
H∗

f
(−q̃, q(t)) − 〈t(f − g), q(t) − q̃〉 + t α D

p(t)
J (ũ, u(t))

≤ D
r(0)
H∗

f
(−q̃,−q(0)) (25)

To find a lower bound of the first two terms on the left
hand side, we provide the following lemma.

Lemma 1 Let F : X → R ∪ {∞} be a convex func-
tional, u, v ∈ X, p, q ∈ X∗ and t ∈ R

+. Then the

duality product can be estimated by a sum of Bregman

distances,

〈t(u − v), p − q〉X ≤ c t2 D
∂F (u)
F (v, u) + D

∂F∗(q)
F∗ (p, q),

with a constant,

c := ( inf
w∈[v,u]

‖F ′′(w)‖)−1 ( inf
ξ∈[q,p]

∥
∥F ∗′′(ξ)

∥
∥)−1 ,

depending on the norm of the second derivative of F

and its convex conjugate.

Proof One observes from a Taylor expansion of F ∗ in

p around q with a residual term,

F ∗(p) = F ∗(q)+〈(F ∗)′(q), p−q〉+
1

2
〈p−q, (F ∗)′′(ξ)(p−q)〉

with ξ ∈ [q, p], that a lower bound for the corresponding

Bregman distance is given by

D
(F∗)′(q)
F∗ (p, q) = F ∗(p) − F ∗(q) − 〈(F ∗)′(q), p − q〉

=
1

2
〈p − q, (F ∗)′′(ξ)(p − q)〉

≥
ǫ

2
‖p − q‖

2
,

with ǫ := inf
ξ∈[q,p]

‖(F ∗)′′(ξ)‖.

In analogy a Taylor expansion of F in v around u,

F (v) = F (u) + 〈F ′(u), v −u〉+
1

2
〈v−u, F ′′(w)(v −u)〉,

with w ∈ [u − v], yields

1

c̃ ǫ
D

F ′(u)
F (v, u) =

1

c̃ ǫ
(F (v) − F (u) − 〈F ′(u), v − u〉)

=
1

2 c̃ ǫ
〈v − u, F ′′(w)(v − u)〉

≥
1

2 ǫ
‖u − v‖

2
,

with c̃ := inf
w∈[u,v]

‖F ′′(w)‖.

Using Young’s inequality we obtain

〈t(u − v), p − q〉 ≤
t2

2ǫ
‖u − v‖

2
+

ǫ

2
‖p − q‖

2

≤ c t2 D
∂F (u)
F (v, u) + D

∂F∗(q)
F∗ (p, q)

With constant c := 1
c̃ǫ

we get the desired estimation.
⊓⊔

Now, applying Lemma 1 to functional Hf yields the

estimate

〈t(f−g), q(t)−q̃〉 ≤ D
r(t)
H∗

f
(−q̃,−q(t))+ct2D

∂Hf (f)
Hf

(g, f) ,

such that the Bregman distance regarding to H∗
f is an-

nihilated in (25) and that we can conclude

−ct2D
∂Hf (f)
Hf

(g, f)+t α D
p(t)
J (ũ, u(t)) ≤ D

r(0)
H∗

f
(−q̃,−q(0)) .

Finally, since Hf (f) = 0, ∂Hf (f) = 0 and with the

upper bound of the noise (14) we have

D
∂Hf (f)
Hf

(g, f) = Hf (g) ≤ δ ,

provides a general error estimate for the dual inverse

scale space method:

Theorem 2 (Noisy data) Let ũ ∈ U(Ω) satisfy Kũ =
g and (SC), and let f be noisy data satisfying (14).

Moreover, with q(t) := (K∗)−1p(t), let u be a solution

of the dual inverse scale space flow

∂t r(t) = Ku(t) − f, r(t) ∈ ∂H∗
f (−q(t)) .

Then the error estimate

D
p(t)
J (ũ, u(t)) ≤

D
r(0)
H∗

f
(−q̃,−q(0))

α t
+ c δ t

holds. In particular, for the choice t∗(δ) := O( 1
δ
) we

obtain the convergence rate D
p(t∗)
J (ũ, u(t∗)) = O(δ).

Remark 1 In the case of Poisson noise modeling, i.e. if

Hf is the Kullback-Leibler data fidelity, cKL reads as

follows:

cKL

=( inf
w∈[g,f ]

∥
∥∂2

wHf (w)
∥
∥)−1 ( inf

ξ∈[q̃,q(t)]

∥
∥∂2

ξH∗
f (ξ)

∥
∥)−1

=
max{sup g, sup f}2

inf f

max{sup(1 − q̃), sup(1 − q(t))}2

inf f
,

since ∂2
wHf (w) = f

w2 , H∗
f (ξ) =

∫

Σ
−f log(1 − ξ) and

∂2
ξH∗

f (ξ) = f
(1−ξ)2 .
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3 Reconstruction with Poisson Noise:

Bregman-EM-TV Methods

In the following we present reconstruction algorithms

for inverse problems with measured data drawn from
Poisson statistics (e.g. deconvolution problems in fluo-

rescence microscopy). More precisely, we use the Kullback-

Leibler functional, i.e.

Hf (Ku − f) :=

∫

Σ

(f log

(
f

Ku

)

− f + Ku) dµ (26)

as the data fidelity and the (exact) total variation (TV),

see (9), as regularization J(u). Interestingly, the itera-

tion steps of reconstruction methods proposed in this
chapter, including the primal and dual inverse scale

space methods of the last section, are all based on the

following variational framework:

min
u∈BV (Ω)

u≥0

∫

Σ

(Ku + b − f log(Ku + b)) dµ

+ α(|u|BV − 〈p, u〉) , (27)

with

α := 0, p := 0 for EM

p := 0, for EM-TV

b := 0, p := pl for Bregman-EM-TV

b := rl, p := 0 for Dual-Bregman-EM-TV .

In comparison to (26), we skipped terms independent
of u in (27) for simplicity without affecting minimiz-

ers. In the following subsection we will explain the EM

reconstruction algorithm and will proceed with the pre-

sentation of EM combined with TV regularization. Fi-
nally we are going to introduce the EM-TV based in-

verse scale space methods Bregman-EM-TV and Dual-

Bregman-EM-TV.

3.1 Reconstruction method: EM algorithm

In literature there are two types of reconstruction meth-

ods that are used in general: analytic (direct) and alge-

braic (iterative) methods. A classical example for a di-
rect method is the Fourier-based filtered backprojection

(FBP). Although FBP is well understood and compu-

tationally efficient, iterative type methods obtain more
and more attention in the applications mentioned above.

The major reason is the high noise level (low SNR) and

the type of statistics, which cannot be taken into ac-

count by direct methods. Hence, we will give a short
review on the Expectation-Maximization (EM) algo-

rithm [SV82,DLR77], which is a popular iterative al-

gorithm to maximize the likelihood function p(u|f) in

problems with incomplete data. In the absence of prior

knowledge any object u has the same relevance, i.e. the
Gibbs a-priori density p(u) in (4) is constant. We can

then normalize p(u) such that J(u) ≡ 0. Hence (8) re-

duces to the constrained minimization problem

min
u≥0

∫

Σ

(Ku + b − f log(Ku + b)) dµ , (28)

which is (27) with α := 0 and p := 0. With the natural

scaling assumption

K∗1 = 1 ,

a suitable iteration scheme for computing stationary
points, which also preserves positivity (assuming K pre-

serves positivity), is the so called EM algorithm (cf.

[NW01])

uk+1 = uk K∗

(
f

Kuk + b

)

, k = 0, 1, . . . . (29)

For noise-free data f several convergence proofs of the
EM algorithm to the maximum likelihood estimate, i.e.

the solution of (28), can be found in literature [NW01,

R07,VSK85,I91]. Besides, it is known that the speed of
convergence of iteration (29) is slow. A further property

of the iteration is a lack of smoothing, whereby the so-

called ”checkerboard effect” arises.
For noisy data f it is necessary to differentiate be-

tween discrete and continuous modeling. In the discrete

case, i.e. if K is a matrix and u is a vector the existence

of a minimum can be guaranteed since the smallest sin-
gular value is bounded by a positive value. Hence, the

vectors are bounded during the iteration and conver-

gence is ensured. However, if K is a general continuous
operator the convergence is not only difficult to prove,

but even a divergence of the EM algorithm is possi-

ble. Again the reason is the ill-posedness of the integral
equation (1), which transfers to problem (28). This as-

pect can be taken as a lack of additional a-priori knowl-

edge about the unknown u resulting from J(u) = 0. The

EM algorithm converges to a minimizer if it exists. Con-
sequently, in the continuous case it is essential to ensure

consistence of the given data to prevent divergence of

the EM algorithm. As described in [R07], the EM it-
erates show the following typical behavior for ill-posed

problems. The (metric) distance between the iterates

and the solution decreases initially before it increases as
the noise is amplified during the iteration process. This

issue might be regulated by using appropriate stopping

rules to obtain reasonable results. In [R07] it is shown

that certain stopping rules indeed allow stable approx-
imations. Ways to improve reconstruction results are

TV or Bregman-TV regularization techniques that we

will consider in the following subsections.
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3.2 Reconstruction method: EM-TV algorithm

The EM or Richardson/Lucy algorithm is currently the
standard iterative reconstruction method for deconvo-

lution problems with Poisson noise based on the linear

equation (1). However, with the assumption J(u) = 0,
no a-priori knowledge about the expected solution is

taken into account, i.e. different images have the same

a-priori probability. Especially in case of measurements
with low SNR the multiplicative fixed point iteration

(29) delivers unsatisfactory and noisy results even with

early termination. For this purpose we propose to in-

tegrate nonlinear variational methods into the recon-
struction process to make an efficient use of a-priori

information and to obtain improved results.

An interesting approach to improve the reconstruc-

tion is the EM-TV algorithm. In the classical EM algo-
rithm, the negative log likelihood functional (28) is min-

imized. We modify the functional by adding a weighted

TV term (cf. [ROF92]),

min
u∈BV (Ω)

u≥0

{ ∫

Σ

(Ku + b − f log(Ku + b)) dµ + α|u|BV

}

.

(30)

This is (27) with p = 0. Using |u|BV as a regulariza-
tion functional ensures, that images with smaller total

variation are preferred in the minimization (have higher

prior probability). BV (Ω) is a popular function space

in image processing since it can represent discontinu-
ous functions. By minimizing TV the latter are even

preferred [EG92,G84]. Hence, expected reconstructions

are cartoon-like images. Obviously, such an approach
cannot be used for studying very small structures in

an object, but it suits well for segmenting different cell

structures and analyzing them quantitatively. For the
solution of (30), we propose a forward-backward split-

ting algorithm, which can be realized by alternating

classical EM steps with almost standard TV minimiza-

tion steps as encountered in image denoising. The latter
is solved by using duality [C04], obtaining a robust and

efficient algorithm. For designing the proposed alter-

nating algorithm, we consider the first order optimality
condition of (30). Due to the total variation, this vari-

ational problem is not differentiable in the usual sense.

But the latter is convex since TV is convex and since we
can extend the data fidelity term to a Kullback-Leibler

functional, cf. [RA07], without affecting the stationary

points. For such problems powerful methods from con-

vex analysis are available, e.g. a generalized derivative
called the subdifferential [HL93], denoted by ∂. With

the natural scaling assumption K∗1 = 1, this general-

ized notion of gradients and the Karush-Kuhn-Tucker

(KKT) conditions [HL93, ,Theorem 2.1.4] yield the ex-

istence of a Lagrange multiplier λ ≥ 0 such that







0 ∈ 1 − K∗

(
f

Ku + b

)

+ α ∂|u|BV − λ

0 = λu






. (31)

By multiplying (31) with u we can eliminate the La-

grange multiplier and derive the following semi-implicit
iteration scheme

uk+1 − uk K∗

(
f

Kuk + b

)

+ α uk pk+1 = 0 (32)

with pk+1 ∈ ∂|uk+1|BV . Remarkably, the second term

within this iteration scheme is the EM step in (29).
Consequently, method (32) solving variational problem

(30), can be realized as a nested two step iteration,







uk+ 1
2

= uk K∗

(
f

Kuk + b

)

(EM step)

uk+1 = uk+ 1
2
− α uk pk+1 (TV step)






. (33)

Thus, we alternate an EM step with a TV correction
step. The complex second half step from uk+ 1

2
to uk+1

can be realized by solving the following variational prob-

lem,

uk+1 = arg min
u∈BV (Ω)

{

1

2

∫

Ω

(u − uk+ 1
2
)2

uk

+ α |u|BV

}

. (34)

Inspecting the first order optimality condition confirms

the equivalence of this minimization with the TV cor-

rection step in (33). Problem (34) is just a modified

version of the Rudin-Osher-Fatemi (ROF) model, with
weight 1

uk
in the fidelity term. This analogy creates the

opportunity to carry over efficient numerical schemes

known for the ROF-model.

For the solution of (34) we use the exact definition
of TV (9) with dual variable g and derive an iteration

scheme for the quadratic dual problem similar to [C04].

The resulting algorithm reads as follows: We initialize

the dual variable g0 with 0 (or the resulting g from
the previous TV correction step) and for any n ≥ 0 we

compute the update

gn+1 =
gn + τ ∇α uk divgn − uk+ 1

2
)

1 + τ |∇(α uk divgn − uk+ 1
2
)|

, 0 < τ <
1

4 α uk

,

with the constrained damping parameter τ to ensure

stability and convergence of the algorithm.

For a detailed analytical examination of EM-TV we

refer to [BSB09].
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3.3 Inverse Scale Space Method: Bregman-EM-TV

The presented EM-TV algorithm (33) solves the prob-

lem (30) and delivers cartoon-reconstructions with sharp

edges due to TV regularization. However, the realiza-
tion of TV steps via the weighted ROF-model (34) has

the drawback that reconstructed images suffer from los-

ing contrast. Thus, we propose to extend (30) and there-
with EM-TV by iterative regularization to a simultane-

ous contrast correction. More precisely, we perform a

contrast enhancement by inverse scale space methods
and by using the Bregman iteration. These techniques

have been derived in [OBG+05], with a detailed analysis

for Gaussian-type problems (7), and have been general-

ized in [BGO+06,BFO+07]. Following these methods,
an iterative refinement is realized by a sequence of mod-

ified EM-TV problems based on (30).

The inverse scale space methods concerning TV, de-
rived in [OBG+05], follow the concept of iterative reg-

ularization by the Bregman distance [B67]. In case of

the Poisson-model the method initially starts with a
simple EM-TV algorithm, i.e. it consists in computing

a minimizer u1 of (30). Then, updates are determined

successively by considering variational problems with
a shifted TV, namely (10), where pl is an element of

the subgradient of the total variation in ul. The Breg-

man distance concerning TV is defined in (11). The in-

troduction of this definition allows to characterize the
sequence of modified variational problems (10) by ad-

dition of constant terms as

ul+1 = arg min
u∈BV (Ω)

∫

Σ

(Ku−f log Ku) dµ+αD
pl

|·|BV
(u, ul) .

(35)

Thus, the first iterate u1 can also be realized by the

variational problem (35), if u0 is constant and p0 :=

0 ∈ ∂|u0|BV . We point out, that (35) is (27) with b := 0
and p := pl. The Bregman distance D

p

|·|BV
does not rep-

resent a distance in the common (metric) sense, since

D is not symmetric in general and the triangle inequal-
ity does not hold. Though, compared to (10), the for-

mulation in (35) offers the advantage that D
p

|·|BV
is a

distance measure with

D
p

|·|BV
(u, ũ) ≥ 0 and D

p

|·|BV
(u, ũ) = 0 for u = ũ .

Besides, the Bregman distance is convex in the first ar-

gument because | · |BV is convex. In general, i.e. for any

convex functional J (see e.g. [BFO+07]), the Bregman
distance can be interpreted as the difference between

J(·) in u and the Taylor linearization of J around ũ if,

in addition, J is continuously differentiable.

Before deriving a two-step iteration corresponding

to (33) we will motivate the contrast enhancement by it-
erative regularization in (35). The TV regularization in

(30) prefers functions with only few oscillations. The it-

erative Bregman regularization has the advantage that,
with ul as an approximation to the possible solution,

additional information is available. The variational prob-

lem (35) can be interpreted as follows: search for a so-
lution that matches the Poisson distributed data after

applying K and simultaneous minimization of the resid-

ual of the Taylor approximation of | · |BV around ul. In

the following we will see that this form of regularization
does not change the position of gradients with respect

to the last computed EM-TV solution ul but that an

increase of intensities is permitted. This leads to a no-
ticeable contrast enhancement.

For the derivation of a two-step iteration we con-

sider the first order optimality condition of the vari-

ational problem (10) resp. (35). Due to convexity of

the Bregman distance in the first argument we can de-
termine the subdifferential of (35). Analogous to the

derivation of the EM-TV iteration the subdifferential

of the log likelihood functional can be expressed by the
Fréchet derivative in (31). Hence, with the natural scal-

ing assumption K∗1 = 1 the optimality condition is

given by

0 ∈ 1 − K∗

(
f

Kul+1

)

+ α ( ∂|ul+1|BV − pl ), (36)

with pl ∈ ∂|ul|BV .

For u0 constant and p0 := 0 ∈ ∂|u0|BV this delivers a
well defined update of the iterates pl,

pl+1 := pl −
1

α

(

1 − K∗

(
f

Kul+1

))

∈ ∂|ul+1|BV .

Analogous to EM-TV we can apply the idea of the
nested iteration (33) in every refinement step, l = 1, 2, · · · .

For the solution of (35) condition (36) yields a strategy

consisting of an EM-step ul+1
k+ 1

2

followed by solving the

adapted weighted ROF-problem

ul+1
k+1 = arg min

u∈BV (Ω)







1

2

∫

Ω

(u − ul+1
k+ 1

2

)2

ul+1
k

+ α ( |u|BV − 〈pl, u〉 )






.

(37)

Following [OBG+05,BGO+06,BFO+07], we provide an

opportunity to transfer the shift-term 〈pl, u〉 to the data-
fidelity term. This approach facilitates the implemen-

tation of contrast enhancement with Bregman distance

via a slightly modified EM-TV algorithm. With the
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scaling vl := α pl and (36) we obtain the following up-

date formula

vl+1 = vl −

(

1 − K∗

(
f

Kul+1

))

, v0 = 0 . (38)

Using this scaled update we can rewrite the second step

(37) to

ul+1
k+1 = arg min

u∈BV (Ω)

1

2

∫

Ω

(u − ul+1
k+ 1

2

)2 − 2uul+1
k vl

ul+1
k

+ α |u|BV .

Note that

(u − ul+1
k+ 1

2

)2 − 2uul+1
k vl

= (u−(ul+1
k+ 1

2

+ul+1
k vl))2+(ul+1

k )2(vl)2−2ul+1
k+ 1

2

ul+1
k vl ,

holds, where the last two terms are independent of u.
Hence (37) simplifies to

ul+1
k+1 = arg min

u∈BV (Ω)

1

2

∫

Ω

(u − (ul+1
k+ 1

2

+ ul+1
k vl))2

ul+1
k

+ α |u|BV ,

(39)

i.e. the second step (37) can be realized by a slight mod-
ification of the TV step introduced in (34). Obviously,

the efficient numerical implementation of the weighted

ROF-problem in Section 3.2 using the exact definition
of TV and duality strategies can be applied in com-

plete analogy to (39). The update variable v in (38) is

an error function with reference to the optimality condi-

tion of the unregularized log-likelihood functional (28).
In every refinement step of the Bregman iteration vl+1

differs from vl by the current error in the optimality

condition (28). Within the TV-step (39) one observes
that an iterative regularization with the Bregman dis-

tance leads to contrast enhancement. Instead of fitting

to the EM solution ul+1
k+ 1

2

in the weighted norm, we use

a function in the fidelity term whose intensities are in-

creased by the error function vl. Resulting from the idea
of adaptive regularization vl is weighted by ul+1

k , too.

As usual for iterative methods the described reconstruc-

tion method by iterative regularization needs a stopping
criterion. The latter should stop at an iteration offering

a solution that approximates the true image as good

as possible. This is necessary to prevent that too much
noise arises by the inverse scale space strategy. In the

case of Gaussian noise, the discrepancy principle is a

reasonable stopping criterion, i.e. the procedure would

stop if the residual
∥
∥Kul − f

∥
∥

2
reaches the variance of

the noise. In the case of Poisson noise, however, it makes

sense to stop the Bregman iteration if the Kullback-

Leibler distances of Kul and the given data f reach the

noise level. For synthetic data the noise level is natu-

rally given by the KL distance between g = Kũ and f ,
where ũ denotes the true, noise-free image. For exper-

imental data it is necessary to find a suitable estimate

for the noise level from counts.

3.4 Dual Inverse Scale Space Method:
Dual-Bregman-EM-TV

In section 2.2 we presented a dual inverse scale space
method in terms of an iterative Bregman regularization

technique for general, convex data fidelities and regu-

larization terms. This strategy based on a dual repre-
sentation of the initial variational problem (15). A bid-

ual formulation of the dual inverse scale space strategy

offers a simple interpretation in terms of a familiar (pri-
mal) problem (17). In the special case of Poisson noise

modeling and TV regularization, this reads as follows

ul+1 = arg min
u∈BV(Ω)

u≥0

{∫

Σ

(Ku + rl − f log(Ku + rl)) dµ

+ α|u|BV } , (40)

with the update of the residual function rl (see (18))

rl+1 = rl + Kul+1 − f , with r0 = 0 .

The variational problem above can simply be inter-

preted as (27), if b := rl and p := 0. Comparing the pro-
posed iterative regularization technique with the EM-

TV problem in (30), reveals the noise function rl as

a dynamically updated background model instead of a
time-constant background b. Shifting the argument of

the data fidelity with rl in that appropriate way, leads

to the expected contrast enhancing behavior in each

time step l → l + 1.

Although the minimization problem (40) for a spe-

cific l can intuitively be implemented in analogy to the
splitting strategy of EM-TV,







uk+ 1
2

= uk K∗

(
f

Kuk + rl

)

(EM step)

uk+1 = uk+ 1
2
− α uk pk+1 (TV step)






,

we need to be aware of division-by-zero problems in
the EM step. For the dual inverse scale method, we

can overcome this problem by a partially explicit ap-

proximation. For this sake we rewrite the optimality
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condition in the following way, using K∗1 = 1,

1 − K∗

(
f

Ku + r

)

+ αp = 0

=⇒ 1 −
f

Ku + r
+ α(K∗)−1p = 0

=⇒ Ku + r − f + α(K∗)−1p(Ku + r) = 0

=⇒ K∗

(

1 −
f − r − αr(K∗)−1p

Ku

)

+ αp = 0

=⇒ 1 − K∗

(
f − r(1 + α(K∗)−1p)

Ku

)

+ αp = 0 .

Now we use an approximation of the first term includ-
ing the subgradient p from the last Bregman step and

obtain

uk+1 = uk K∗

(
f − rl(1 + ql)

Kuk

)

− α uk pk+1 ,

with ql = α(K∗)−1pl. Note that ql does not need to be

computed by inverting K∗, but can be obtained from

the update formula

ql+1 =
f − rl(1 + ql)

Kul+1
− 1.

4 Application to Optical Nanoscopy: Results

In recent years revolutionary imaging techniques have

been developed in light microscopy with enormous im-

portance for biological and material sciences or medicine.
For a couple of decades the technology of light micros-

copy has been considered to be exhausted, as the res-

olution is basically limited by Abbe’s law for diffrac-
tion of light. By developing stimulated emission deple-

tion (STED)- and 4Pi-microscopy now resolutions are

achieved that are way beyond these diffraction barrier

[K00,HS06]. To get an impression of nanoscopic images
blurred by different convolution kernels (PSFs), we refer

to Figure 1. In this section we present the performance

of the proposed techniques by reconstructing synthetic
and experimental data.

Figure 2 illustrates our techniques at a simple syn-

thetic object by applying a 4Pi convolution and adding
Poisson noise. With EM-TV (see 2(c) and 2(g)) we get

rid of noise and oscillations, but we are not able to sep-

arate the objects sufficiently. Using Bregman-EM-TV
a considerable improvement resulting from contrast en-

hancement can be achieved. This aspect is underlined

by the values of the KL-distance for the different recon-

structions. In Figure 4 we compare the primal and dual
inverse scale space strategy using the same synthetic

object, but in this case with a Gaussian convolution

kernel. As expected, both inverse scale space strategies

(a)

(b) (c)

(d) (e)

Fig. 1 Synthetic data concerning different PSFs: (a) true im-
age; (b) Gaussian PSF; (c) is convolved with Gaussian PSF and
Poisson noise; (d) PSF appearing in 4Pi microscopy; and (e) is
convolved with 4Pi PSF and Poisson noise.

compute very similar iterates and we can observe a de-
crease of the Kullback-Leibler distance between u and

ũ until the noise level is reached. Taking a closer look

at the distance measurements reveals a slightly better
decrease in the case of Dual-Bregman-EM-TV.

Figure 3, (a)-(c) demonstrate the protein Bruchpi-

lot [K06] and its EM-TV and Bregman-EM-TV recon-

struction. Particularly, the latter delivers well separated
object segments and a high contrast level. In Figure

3, (d)-(f) we illustrate our techniques by reconstruct-

ing Syntaxin [WHM+07], a membrane integrated pro-

tein participating in exocytosis. Here, the contrast en-
hancing property of Bregman-EM-TV is observable as

well, compared to EM-TV. It is possible to preserve fine

structures in the image.
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(a) (b)

(c) (d)

(e)

(f)

(g) (h)

Fig. 2 Synthetic data: (a) raw data using 4Pi PSF; (b) EM re-
construction, 20 its, KL-distance: 3.20; (c) EM-TV, α = 0.04,
KL-distance: 2.43; (d) Bregman-EM-TV, α = 0.1, after 4 up-
dates, KL-distance: 1.43; (e) true image; (f)-(h) horizontal slices

EM, EM-TV and Bregman-EM-TV compared to true image slice.

5 Conclusions & Open Questions

We have derived reconstruction methods for inverse
problems with Poisson noise. Particularly, we concen-

trated on deblurring problems in nanoscopic imaging,

although the proposed methods can easily be adapted

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Experimental data: (a) Protein Bruchpilot in active zones

of neuromuscular synapses in larval Drosophila; (b) EM-TV; (c)
Bregman-EM-TV; (d) Protein Syntaxin in cell membrane, fixed
mamalian (PC12) cell; (e) EM-TV; and (f) Bregman-EM-TV.

to other imaging tasks, i.e. medical imaging (PET,

[SBW+08]). Motivated by a statistical modeling we de-
veloped a robust EM-TV algorithm that incorporates

a-priori knowledge into the reconstruction process. By

combining EM with simultaneous TV regularization we

can reconstruct cartoon-images with sharp edges, which
yield a reasonable basis for quantitative investigations.

To overcome the problem of contrast reduction, we ex-

tended the reconstruction to Bregman iterations and
inverse scale space methods. We applied the proposed

methods to optical nanoscopy and pointed out their im-

provements in comparison to standard reconstruction
techniques.

An open issue remains the error estimation for the

primal inverse scale space method, which - if applicable
at all - will require novel theoretical approaches. On the

other hand the derivation of appropriate stopping rules

for the dual inverse scale space methods is an important
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4 Synthetic data: Comparison of primal and dual inverse

scale space methods; (a): true image; (b): raw data f using Gaus-
sian PSF; (c)-(d): KL-distance between u and ũ for Bregman-
EM-TV resp. Dual-Bregman-EM-TV, blue line: distance at all

250 iterations, red marker: distance at every Bregman step (in-
tervals of 50 interior iterations)(e),(g),(i): iterates u1,u3 and u5

of Bregman-EM-TV; (f),(h),(j): iterates u1,u3 and u5 of Dual-
Bregman-EM-TV.

open problem. For practical purposes visual inspection

may however be sufficient in most cases.

Acknowledgements This work has been supported by the Ger-
man Federal Ministry of Education and Research through the
project INVERS. C.B. acknowledges further support by the Deut-

sche Telekom Foundation, and M.B. by the German Science Foun-
dation DFG through the project ”Regularisierung mit Singulären
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