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Abstract

This paper is devoted to the registration of gene expression data to a neuroanatomical
mouse atlas in two dimensions. We use a nonlinear elasticity regularization allowing large
and smooth deformations, and overcome the difficulty of minimizing the nonlinear elastic-
ity functional by introducing an additional variable v ' ∇u, where u is the displacement.
Thus, the nonlinearity in the derivatives of the unknown u no longer exists in the ob-
tained Euler-Lagrange equation. Experimental results show that gene expression data are
mapped to their corresponding mouse atlas by minimizing a standard L2 dissimilarity
measure along with landmark constraints. We also present comparisons with biharmonic
regularization to show that the proposed nonlinear elasticity model needs fewer numeri-
cal correction such as regridding, renders smaller dissimilarity in landmark distance and
intensity maps, and produces larger mutual information.

Keywords: mouse atlas, gene expression, registration, nonlinear elasticity, landmark-
based, multi-modal.

1 Introduction

An important task in medical imaging, for clinical studies of disease and for atlas-based iden-
tification and segmentation of anatomical structures, is to compare a subject/time variant
template image T with an unbiased, reference image R. This is commonly done using image
registration. Given a reference R and a template T , defined on image domain Ω, we want
to find a smooth, invertible transformation to transform T into an image similar to R. For
images of the same modality, a well-registered template has geometric features and intensity
distribution matched with the reference; for images produced by different mechanism and
possessing distinct modalities, the goal of registration is to correlate the images while main-
taining the modality of the template. In the case of mapping gene expression data to atlas,
we want to match anatomically or geometrically significant points for the template with those
corresponding ones for the reference. Preliminary results of this work have been published in
conference proceedings [13], [14].
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1.1 Prior Related Work

An extensive overview of registration models is given in [18], including parametric model such
as landmark-based spline registration, and nonparametric models employing linear diffusion,
linear elasticity, biharmonic and fluid regularization. Also, variational methods for regulariza-
tion of the deformation, by linear elasticity or by diffusion tensor, using mutual information
and other information-theoretic approaches, are presented in [8] in a theoretical framework.

For models that deal with larger deformation, we refer to [4] for a well-known large defor-
mation fluid registration method (not in variational form), and to a variational registration
for large deformations (LDDMM) [1], [17]. The log-unbiased fluid registration method [26],
[25] developed more recently also handles large deformation. Besides fluid models, nonlin-
ear elasticity regularization is implemented using the finite element method in [21] and [20].
Non-linear elasticity principles have also been used with the regularized gradient flow in [7].

As for landmark-based registration methods, we refer to [11], where a consistent landmark
and intensity-based registration method is presented using thin-plate spline regularization
(or biharmonic regularization). Another related reference is [22] where data fidelity, spline
regularization and soft landmark constraints are combined, as in the present work.

1.2 Our Approach

There are forward and backward registrations. The former is done in the Lagrangian frame-
work where a forward transformation Ψ is sought and grid points x with intensity values T (x)
are moved and arrive at non-grid points y with intensity values T (Ψ−1(y)) = T (x), ∀x ∈ Ω or
∀y ∈ Ψ(Ω). In this work, we adopt the Eulerian framework to find a backward transformation
Φ = Ψ−1 such that grid points y in the deformed image arrive from non-grid points x = Φ(y)
and are assigned with intensity values T (x) = T (Φ(y)). For more detailed description of the
two frameworks, readers may refer to [18].

For data fidelity, we minimize the L2 distance of the pixel by pixel intensity values between
T ◦ Φ and R. The mapping of landmark points is done simply by minimizing the sum of the
squared distances between the points without incorporating any spline model. We propose
a nonlinear elasticity model for regularization of the displacement vector field, since this
allows smooth larger deformations and thus will do without the need for regridding most of
the time. In prior work based on nonlinear elasticity principles, the finite element method
has been used. To have a simpler numerical algorithm, we hereby introduce an auxiliary
variable for the Jacobian matrix of the displacement in order to remove the nonlinearity
in the derivatives of the displacement vector field. This idea has been inspired by a more
theoretical work [16], and [9] for a joint segmentation and registration model.

1.3 Motivation for Mapping Gene Expression to Atlas

The C57BL/6J mouse digital brain atlas [15], [12] is a comprehensive framework for storing
and accessing information, and serves as a canonical representation of the mouse brain. We
use the mouse brain atlas as a common and unbiased framework and map gene expression
data to the atlas in order to facilitate the integration of anatomic, genetic, and physiologic
observations from multiple subjects in a common space. Since genetic mutations and knock-
out strains of mice provide critical models for a variety of human diseases, such linkage
between genetic information and anatomical structure is important.
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2 Description of the Proposed Model

Let Ω be a bounded open subset of Rd. In present work, we consider two-dimensional images;
i.e. d = 2. Denote by R the reference image and by T the template image. We want to find
a smooth transformation Φ(x) = x + u(x), x = (x1, x2) that minimizes an energy functional
consisting of data fidelity, landmark constraints, and regularization. The general form of such
functional is as follows,

inf
u

{
J(u) = FidT,R(u) + γDLM (u) + αReg(u)

}
,

where γ and α are parameters chosen based on the images. By gradient descent, we solve
the time-dependent Euler-Lagrange equation in the displacement vector field u = (u1, u2),
instead of directly in Φ:

∂ul
∂t

= −∂Fid(u)

∂ul
− γ ∂D

LM (u)

∂ul
− α∂Reg(u)

∂ul
, l = 1, 2.

2.1 Data Fidelity in Eulerian Framework

We have chosen the standard L2 distance as dissimilarity measure between T ◦ Φ and R,
and this is complemented by the use of additional landmarks as geometrical constraints. We
minimize the L2 distance function

Fid(u) =
1

2

∫
Ω
|T (x + u(x))−R(x)|2dx

by solving the Euler-Lagrange equation

∂Fid(u)

∂ul
= (T (x + u(x))−R(x))Txl(x + u(x)), l = 1, 2

where Txl denotes the gradient of the intensity field of the template in the direction of xl, l =
1, 2.

2.2 Landmark Constraints

Let xR,k be manually-selected landmark points for the reference R, and xT,k those for the
template T . We want to map xR,k to xT,k by a smooth deformation Φ such that Φ(xR,k) ∼
xT,k by minimizing the following landmark distance function:

DLM (u) =
1

2

m∑
k=1

‖xT,k − Φ(xR,k)‖2

where Φ(xR,k) = xR,k+u(xR,k). Then, we solve the following time-dependent Euler-Lagrange

equation by gradient descent: ∂DLM (u)
∂t (x) =

{
xT,k − x− u(x) if x = xR,k

0 otherwise .
,

k = 1, ...,m. (m = number of landmarks)
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2.3 Regularization

Viewing the shape change of the image after transformation as the deformation of an elastic
material under external force was first adopted by [2] in developing linear elastic registration
method. Since the linear model works better for small deformation, we propose a nonlinear
elastic model to allow large deformation. Among the various nonlinear elastic models, we
have chosen the St. Venant-Kirchhoff material for its simplicity [5].

Compared with the experimental results on characteristic images by models with linear
diffusion, linear elasticity and biharmonic regularization, the proposed nonlinear elasticity
model allows larger and smoother deformation without numerical correction such as regridding
[4] most of the time. Since the nonlinear term has resulted in an Euler-Lagrange equation
which is hard for numerical implementation, we propose a particular implementation that
removes the non-linearity in the derivatives [16], [9].

2.3.1 Diffusion Regularization

Diffusion regularization defined as follows:

Reg(u) =
1

2

2∑
l=1

∫
Ω
‖∇ul‖2dx

is motivated by its smoothing properties and also by its small number of operations required
[18]. Solving the Euler-Lagrange equations by gradient descent:

∂ul
∂t

= −(T (x + u(x))−R(x))Txl(x + u(x)) + γ
∂DLM (u)

∂t
(x) + α4ul, l = 1, 2.

Each component of the displacement u is the solution of the heat equation. In the present
work, we discretize the time-dependent Euler-Lagrange equations by the following semi-
implicit finite difference scheme:

ul
n+1
i,j − ulni,j
4t

= −
(∂T1

∂xl

)
i,j

(Ti,j −Ri,j) + γ
∂DLM (u)

∂t
(x)

+ α
(ulni+1,j − 2ul

n+1
i,j + ul

n
i−1,j

h2
+
ul
n
i,j+1 − 2ul

n+1
i,j + ul

n
i,j−1

h2

)
, l = 1, 2,

where ∂T1
∂xl

has values on the grid points and is obtained by applying Matlab interpolation
function to the gradient Txl .

2.3.2 Biharmonic Regularization

The biharmonic regularization is defined as

Reg(u) =
1

2

2∑
l=1

∫
Ω

(4ul)2dx.

The integrand (4ul)2 approximates the curvature and thus this regularizer minimizes the
curvature of the displacement vectors [18]. According to [18], among the nonlinear methods,
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the biharmonic registration is less dependent on the initial position of the image and thus
is more suitable when an affine linear pre-registration is not available. The time-dependent
Euler-Lagrange equations are the following:

∂u

∂t
= −(T (x + u(x))−R(x))Txl(x + u(x)) + γ

∂DLM (u)

∂t
(x)− α42u, l = 1, 2.

The semi-implicit finite difference scheme that we adopted is as follows:

ul
n+1
i,j − ulni,j
4t

= −
(∂T1

∂xl

)
i,j

(Ti,j −Ri,j) + γ
∂DLM (u)

∂t
(x)− α 1

h4
(16ul

n+1
i,j

+ ul
n
i+2,j − 6ul

n
i+1,j − 6ul

n
i−1,j + ul

n
i−2,j + ul

n
i,j+2 − 6ul

n
i,j+1 − 6ul

n
i,j−1 + ul

n
i,j−2

+ ul
n
i+1,j+1 + ul

n
i+1,j−1 + ul

n
i−1,j+1 + ul

n
i−1,j−1), l = 1, 2.

2.3.3 Linear and Nonlinear Elasticity Regularization

It is physically motivated to view the displacement of vector fields as the deformation of some
material under force. The strain energy corresponding to Saint Venant-Kirchhoff hyperelastic
materials [24] is given by

Reg(u) =

∫
Ω
W (ε)dx,

with tensor

ε(u) =
1

2
(∇ut +∇u +∇ut∇u).

and the stored energy

W (ε) =
λ

2
(trace(ε))2 + µtrace(ε2),

where λ and µ are the Lamé coefficients of the material.

Linear Elasticity Regularization By removing the nonlinear term∇ut∇u, we obtain the
linear elasticity regularization which allows small deformation. The time-dependent Euler-
Lagrange equations are as follows:

∂u

∂t
= −(T (x+u(x))−R(x))Txl(x+u(x))+γ

∂DLM (u)

∂t
(x)+αµ4u+(λ+µ)∇(divu), l = 1, 2.

The semi-implicit finite difference scheme for the regularization term is the following:

up
n+1
i,j − upni,j
4t

= −
(∂T1

∂xl

)
i,j

(Ti,j −Ri,j) + γ
∂DLM (u)

∂t
(x)

+ (λ+ µ)Ap + µ
(upni+1,j − 2up

n+1
i,j + up

n
i−1,j

h2
+
up
n
i,j+1 − 2up

n+1
i,j + up

n
i,j−1

h2

)
+ (λ+ µ)

(uqni+1,j+1 − uq
n
i+1,j−1 − uq

n
i−1,j+1 + uq

n
i−1,j−1

4h2

)
,

where p, q = 1, 2, p 6= q, A1 =
u2ni+1,j−2u2

n+1
i,j +u2ni−1,j

h2
, A2 =

u2ni,j+1−2u2
n+1
i,j +u2ni,j−1

h2
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Nonlinear Elasticity Regularization To allow larger deformation, we keep the nonlinear
term and the regularization is as follows:

Reg(u) =
λ

8

(
2(divu) +

2∑
k=1

|∇uk|2
)2

+
µ

4

( 2∑
i=1

[2
∂ui
∂xi

+

2∑
k=1

(
∂uk
∂xi

)2]2 +

2∑
i,j=1,i 6=j

[
∂uj
∂xi

+
∂ui
∂xj

+

2∑
k=1

∂uk
∂xi

∂uk
∂xj

]2
)
.

It is cumbersome to directly compute and discretize the associated Euler-Lagrange equation

in u. To avoid this difficulty, we introduce a matrix variable v =

(
v11 v12

v21 v22

)
, which

approximates ∇u. For β large enough, Reg(u) can be well approximated by

Regβ(u,v) =

∫
Ω

[
W
(1

2
(vt + v + vtv)

)
+ β|v−∇u|2

]
dx

=

∫
Ω

(λ
8

[2(v11 + v22) + (v2
11 + v2

12 + v2
21 + v2

22)]2

+
µ

4
[(2v11 + v2

11 + v2
21)2 + (2v22 + v2

12 + v2
22)2 + 2(v12 + v21 + v11v12 + v21v22)2]

)
dx

+ β

∫
Ω

[∣∣∣v11 −
∂u1

∂x1

∣∣∣2 +
∣∣∣v12 −

∂u1

∂x2

∣∣∣2 +
∣∣∣v21 −

∂u2

∂x1

∣∣∣2 +
∣∣∣v22 −

∂u2

∂x2

∣∣∣2]dx.
Now, we solve by gradient descent the linearized Euler-Lagrange equations in ul, l = 1, 2:

∂ul
∂t

= −(T (x+u(x))−R(x))Txl(x+u(x))+γ
∂DLM (u)

∂t
(x)+2αβ(4ul−

∂vl1
∂x1
−∂vl2
∂x2

), l = 1, 2,

and then update the approximation matrix v by solving the four Euler-Lagrange equations
in v:

∂v11

∂t
= 2αβ(

∂u1

∂x1
− v11)− αλI(1 + v11)

− αµ(2v11 + v2
11 + v2

21)(1 + v11)− αµJv12,

∂v12

∂t
= 2αβ(

∂u1

∂x2
− v12)− αλIv12

− αµ(2v22 + v2
12 + v2

22)v12 − αµJ(1 + v11),

∂v21

∂t
= 2αβ(

∂u2

∂x1
− v21)− αλIv21

− αµ(2v11 + v2
11 + v2

21)v21 − αµJ(1 + v22),

∂v22

∂t
= 2αβ(

∂u2

∂x2
− v22)− αλI(1 + v22)

− αµ(2v22 + v2
12 + v2

22)(1 + v22)− αµJv21,

where I = v11 + v22 + 1
2v

2
11 + 1

2v
2
21 + 1

2v
2
12 + 1

2v
2
22, and J = v12 + v21 + v11v12 + v21v22. The

following are the semi-implicit finite difference schemes for the time-dependent Euler-Lagrange
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equations for the regularization term in u and in v:

ul
n+1
i,j − ulni,j
4t

= −
(∂T1

∂xl

)
i,j

(Ti,j −Ri,j) + γ
∂DLM (u)

∂t
(x)

+ 2αβ
(ulni+1,j − 2ul

n+1
i,j + ul

n
i−1,j

h2
+
ul
n
i,j+1 − 2ul

n+1
i,j + ul

n
i,j−1

h2

−
vl1

n
i+1,j − vl1ni−1,j + vl2

n
i,j+1 − vl2ni,j−1

2h

)
,

and

vn+1
11 − vn11

4t
= 2β(

∂un1
∂x1
− vn+1

11 )− (λE1E5 + µ(E2E5 + E3v12)),

vn+1
12 − vn12

4t
= 2β(

∂un1
∂x2
− vn+1

12 )− (λE1v12 + µ(E4v12 + E3E5)),

vn+1
21 − vn21

4t
= 2β(

∂un2
∂x1
− vn+1

21 )− (λE1v21 + µ(E2v21 + E3E6)),

vn+1
22 − vn22

4t
= 2β(

∂un2
∂x2
− vn+1

22 )− (λE1E6 + µ(E4E6 + E3v21)),

where

E1 = v11 +
1

2
v2

11 +
1

2
v2

21 + v22 +
1

2
v2

12 +
1

2
v2

22,

E2 = 2v11 + v2
11 + v2

21, E3 = 2v22 + v2
12 + v2

22,

E4 = v12 + v21 + v11v12 + v21v22, E5 = 1 + v11, E6 = 1 + v22.

3 Experimental Results

3.1 Numerical Correction: Regridding

An admissible deformation field Φ : Ω → Ω, Φ(x) = x + u(x), should satisfy det(∇Φ) > 0
in Ω, Φ(x) = x on ∂Ω, and Φ is one-to-one and onto on Ω. To enforce such an con-
straint, some numerical corrections such as regridding are introduced [4]. In present work, if
det(∇(Φ)n+1) < 0.025, we set the displacement field un+1 = 0, the template T (x) = T (x+un),
and the landmarks, if any, xR,k = xT,k − un(xR,k). After the iteration is done, we calculate
the composite displacement field by interpolating each of the intermediate displacement field,
which are saved during the regridding process, based on its succeeding one. The algorithm is
given as follows:

(1) formulate identity matrices S1 and S2 so that S1(x, y) = x, S2(x, y) = y;
initialize un = (un1 , u

n
2 );

(2) iteration starts: compute un+1;
update matrices S11 and S22 so that Sn+1

11 = S1 + un+1
1 , Sn+1

22 = S2 + un+1
2 ;

if det(Jacobian(Φ)) < tol,
then regrid.count = regrid.count+ 1;

T = T1;
un+1 = 0;
save un as data files uk(regrid.count), k = 1, 2;
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end;
(3) iteration ends:

if regrid.count > 0
then composite.Skk = Sfinal.iterationkk ;

composite.uk = ufinal.iterationk , k = 1, 2;
for i = regrid.count : −1 : 1

read and load data files uk(regrid.count);
U0k=uk(regrid.count), k = 1, 2;
composite.uk(regrid.count)=composite.uk(regrid.count)

+interpolation(U0k,composite.S22,composite.S11);
composite.Skk(regrid.count)=Sk+composite.uk(regrid.count);

end
uk=composite.uk(1);
Skk=composite.Skk.

Note that models requiring fewer regridding steps are considered better since a well-defined
transformation is desired. The following results are done mostly without regridding.

3.2 Synthetic Images

3.2.1 Disk to Letter C

We first compare the linear elasticity, linear diffusion, biharmonic, and nonlinear elasticity
models for registration from disk to letter C (Figure 1.)

Figure 1: Reference (left), Template (right).
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Figure 2: (left to right) Transformed Images by linear elasticity, linear diffusion, biharmonic
(BH), nonlinear elasticity (NE).

From the registration results (Figure 2), we can see that linear elasticity regularization
is only suitable for small deformation. The linear diffusion regularization works better but
introduces a lot of artifacts. The biharmonic model seems to render a more satisfactory result
(even though a darker background is observed) together with the nonlinear elasticity model.
In terms of the regridding numbers, the biharmonic model and the nonlinear elasticity model
require three regridding steps while the linear diffusion model requires four.

3.2.2 Other Binary Images

We further compare the four models for registration of other binary images (Figure 3.) We
found from the registration results (Figure 4) that the nonlinear elasticity model does not
introduce artifacts (e.g. under the right ear where we expect the largest deformation) like
other models do. In terms of regridding numbers, the nonlinear elasticity model is the only
one which does not require any regridding step, and the biharmonic model requires fewer
regridding steps than the other two linear models.

Figure 3: Reference (left), Template (right).
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Figure 4: (left to right) Transformed Images by linear elasticity, linear diffusion, biharmonic
(BH), nonlinear elasticity (NE).

Since the biharmonic model is more comparable to the nonlinear elasticity model, we want
to further examine the two models for some real data.

3.3 Real Data

3.3.1 Ground Truth Test

Given two MRI images R and T (Figure 5) and the true distortion map (Figure 6) from R
to T (data test kindly provided by H. Tagare [23]), we want to check if the distortion maps
rendered by the nonlinear elasticity model and the biharmonic model are similar to the true
map. The true distortion map plots the vector fields from R to T , and the dissimilarity
between the true map and the maps after registration by the two models is measured by the
Euclidean vectorial norm. The difference from the ground truth is slightly smaller for the
nonlinear elasticity model after the same number of iterations (Figure 7.)

Figure 5: Reference (left), Template (right).
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Figure 6: True Map.

Figure 7: Distortion maps by BH (left), NE (right); Difference from the ground truth is
0.12692 for BH model and 0.12413 for NE model.
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3.3.2 Gene Expression to Atlas

We now show some experimental results obtained by the two methods presented in the previ-
ous section for mapping one 2D slice of mouse brain gene expression data (template T ) to its
corresponding 2D slice of the mouse brain atlas (reference R), in the presence of landmarks.
The data is provided by the Center for Computational Biology, UCLA. The mouse atlas ac-
quired from the LONI database was pre-segmented. The gene expression data was segmented
manually to facilitate data processing in other applications. Some studies have developed
algorithms for automatically segmenting the brain area of gene expression data. Moreover,
since the intensity range and intensity values of the gene expression data are so small that
the images almost resemble to characteristic images, we also match the histogram of the gene
expression data to that of the atlas in order to facilitate better registration for area away from
the edges. The two models have been independently tested on 8 pairs, all of size 200x200
pixels. The non-brain regions have been removed, to produce better matching. The number
of iterations for both methods depends on how small we wish the landmark distance and
the similarity measure to be. The landmarks are marked by an experienced neuroanatomist
based on the anatomical structures present in the images. This is based on prior knowledge
in neuroanatomy.

Energy Fig.8 shows the energy decreasing with time for both models applied on Pair 5.

Figure 8: Energy decreasing with time using BH (left) and NE (right) model.

Landmark Convergence Fig.9 shows the landmark convergence with and without the
enforcement of landmark constraints. We see that the convergence is much faster with the
enforcement of the constraints.
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Figure 9: Landmarks converging with time using BH (left) and NE (right) model. Top/bottom
line for convergence without/with enforcement of landmark constraints.

Visualization of Registration Results Fig.10 to Fig.17 are registration results of the
eight pairs of images after the same number of iterations for both models. Each figure contains
(1) a reference-template (before and after histogram equalization) data pair with landmark
points marked, (2) the deformed template, distortion map with landmark points marked, and
(3) inverse of the determinant of Jacobian of Φ with deformed grid. The distortion maps draw
the vectors from the grid points of the reference image to the non-grid points after registration;
the original reference/template landmarks are marked in red/green, the reference landmarks
after registration are marked in blue. We can see that the landmarks converge (moving from
red spots to blue spots to approach the green spots) in accordance with the distortion field.
As for the deformed grids, where the grid area expands/shrinks, we observe lighter/darker
gray level corresponding to larger/smaller value of the inverse of determinant of Jacobian.
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Figure 10: Pair 4: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 11: Pair 5: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 12: Pair 6: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 13: Pair 7: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 14: Pair 8: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 15: Pair 11: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 16: Pair 12: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Figure 17: Pair 15: mouse atlas (reference R), gene expression (template T ), and gene expres-
sion after histogram equalization with specified landmarks (top from left to right); deformed
template, deformation field plus the landmarks transformation, 1/det(∇Φ) plus the deformed
grid using BH regularization (middle from left to right), and those using NE regularization
(bottom from left to right.)
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Quantitative Comparisons of the Results Besides the visualization of the regis-
tration results shown above, numerics are given in tables. Table 1 and 2 give the landmark
distances and the dissimilarity measures after registration by the two models for the eight pairs
of images. The nonlinear elasticity model reaches smaller dissimilarities in overall intensity
values and in landmark distance.

Table 1: Landmark Distance after Registration

IMG4 IMG5 IMG6 IMG7 IMG8 IMG11 IMG12 IMG15

LMDist(BH) 0.49519 0.42388 0.26758 0.90027 0.70846 0.11232 0.46912 0.71972

LMDist(NE) 0.49282 0.41299 0.26593 0.74304 0.60741 0.10712 0.34660 0.55106

Table 2: Dissimilarity Measure after Registration

IMG4 IMG5 IMG6 IMG7 IMG8 IMG11 IMG12 IMG15

‖T1−R‖(BH) 1,942 1,806 1,168 4,130 3,723 1,255 1,266 3,073

‖T1−R‖(NE) 1,938 1,790 1,151 4,101 3,693 1,177 1,173 3,058

We also observe that the nonlinear elasticity model has a slightly larger range of values
for the determinant of Jacobian in average but also has a higher average percentage of points
where the determinant of Jacobian equals to one. Table 3 gives the range of values for the
determinant of Jacobian for the eight pairs of images after registration.

Table 3: Range of Values for the Determinant of Jacobian

IMG4 IMG5 IMG6 IMG7 IMG8 IMG11 IMG12 IMG15

BH (0.34,3.38) (0.15,2.11) (0.28,1.99) (0.25,2.05) (0.04,1.87) (0.23,2.30) (0.31,2.30) (0.37,2.12)

NE (0.32,3.55) (0.01,3.16) (0.10,2.15) (0.08,2.57) (0.10,2.82) (0.15,2.40) (0.18,3.23) (0.03,2.35)

Table 4 gives the percentage of points where the determinant of Jacobian equals to one
after registration by the two models for the eight pairs of images. Now we see that the
percentages for both models are very close. The nonlinear elasticity model renders larger
percentages for five out of eight image pairs.

Table 4: Percentage of Points where the Determinant of Jacobian Equals to One

IMG4 IMG5 IMG6 IMG7 IMG8 IMG11 IMG12 IMG15

BH %52.74 %52.66 %52.73 %51.08 %57.96 %53.35 %59.75 %52.39

NE %52.73 %52.44 %54.15 %56.39 %52.05 %53.67 %66.52 %54.29
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Table 5 gives the iteration numbers by the two models for the eight pairs of images.
Number of iterations required by both models are similar given proper choice of parame-
ters; iteration time for the nonlinear elasticity model is about twice as long as that for the
biharmonic model (13 to 16 minutes v.s. 5 to 7 minutes per 4,000 iterations using Intel(R)
Core(TM)2 Duo CPU T7500 @ 2.20GHz processor with code in Matlab); no regridding step is
needed for both models for gene data to atlas registration given proper choice of parameters;
fewer regridding steps are needed for nonlinear elasticity model for binary images.

Table 5: Iteration Numbers

IMG4 IMG5 IMG6 IMG7 IMG8 IMG11 IMG12 IMG15

10,000 10,000 10,000 200,000 140,000 4,000 80,000 40,000

Table 6 gives the parameters chosen for the two models for the eight pairs of images: the
time step dt = 1 and the space discretization h = 1 for both models. For the biharmonic
model, we vary the regularization weighing parameter α and the landmark constraint coef-
ficient γ; for the nonlinear elasticity model, we vary the coefficient β of the approximation
matrix v and γ while fixing α = 1, λ = 1, and µ = 1e − 2. The choice of α and β does
not vary too much among the tested pairs of images; α ≥ 5e + 4 and β ≥ 75e + 3 will give
satisfactory results. The choice of γ more or less depends on the total landmark distance be-
fore registration; the larger the landmark distance is, the smaller γ should be. Note that an
almost constant (or slightly increasing) ratio, γ/α or γ/β, for each image pair can be found;
increasing γ in accordance with α or β by the ratio may result in smoother transformation,
faster landmark convergence, but slower similarity convergence.

Table 6: Parameters

IMG4 IMG5 IMG6 IMG7 IMG8 IMG11 IMG12 IMG15

α 50,000 75,000 50,000 100,000 100,000 75,000 150,000 75,000

γ(BH) 100,000 700,000 300,000 100,000 100,000 700,000 300,000 150,000

β 100,000 120,000 75,000 100,000 75,000 75,000 150,000 100,000

γ(NE) 160,000 190,000 300,000 100,000 700,000 700,000 300,000 150,000

Mutual Information Furthermore, we want to evaluate the registration results by
comparing how much the deformed template correlates with the reference after being regis-
tered by the two models. Such correlation is called mutual information and is formulated as
follows:

MIX,Y =

∫
Y

∫
X
p(x, y)log

p(x, y)

p(x)p(y)
dx dy,

where X and Y are random variables; p(x, y) is the joint probability density function of X
and Y; p(x) and p(y) are the marginal probability density functions of X and Y respectively.

Mutual information quantifies the dependence between X and Y, which in our case are
the intensity maps of R and T . Considering larger mutual information indicates better regis-
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tration, we see in the following plots that the nonlinear elasticity model, indicating by black
line, is more desirable in this respect.

Figure 18: Mutual information increasing with time for all pairs, 4-8, 11, 12, 15, (from left to
right, top to bottom) using BH regularization (red line), and NE regularization (black line)
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4 Conclusion and future work

We presented variational registration models for obtaining smooth deformations between two
dimensional slices of mouse atlas and gene expression data. We proposed a nonlinear elastic
regularization with an implementation that removes the nonlinearity in the derivatives and
compared it with the biharmonic model. Experimental results showed that the biharmonic
model and the nonlinear elasticity model both render large deformation with no regridding
step. Moreover, the nonlinear elasticity model renders higher mutual information and better
landmark points matching. A better parameter selection and extension to three dimensions
will be made.

Acknowledgements We would like to thank Erh-Fang Lee for pre-processing the mouse
brain image data and providing us with the landmark points. We also want to thank Igor
Yanovsky for his constant examination and helpful suggestions for the numerical implemen-
tation of the nonlinear elasticity model. This work was funded by the National Institutes
of Health through the NIH Roadmap for Medical Research, Grant U54 RR021813 entitled
Center for Computational Biology (CCB).

References

[1] F. Beg, M. Miller, A. Trouvé, and L. Younes. Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. IJCV, 61(2):139–157, 2005.

[2] C. Broit. Optimal Registration of Deformed Images. PhD thesis, Computer and Infor-
mation Science, University of Pensylvania, 1981.

[3] G.E. Christensen, M.I. Miller, M.W. Vannier, and U. Grenander. Individualizing neu-
roanatomic atlases using a massively parallel computer. IEEE Computer, 29(1):32–38,
1996.

[4] G.E. Christensen, R.D. Rabbitt, and M.I. Miller. Deformable templates using large
deformation kinematics. IEEE TIP, 5(10):1435–1447, 1996.
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