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A Level Set Formulation of Geodesic Curvature
Flow on Simplicial Surfaces

Chunlin Wu, Xuecheng Tai

Abstract— Curvature flow (planar geometric heat flow) has
been extensively applied to image processing, computer vision
and material sciences. To extend the numerical schemes and algo-
rithms of this flow on surfaces is very valuable for corresponding
motion of curves and images defined on surfaces. In this work
we are interested in geodesic curvature flow over triangulated
surfaces using a level set formulation. We at first present geodesic
curvature flow equation on general smooth manifolds via curve
energy minimization. The equation is then discretized by semi-
implicit FVM (finite volume method). For convenience of descrip-
tion, we call the discretized geodesic curvature flow as dGCF.
Existence and uniqueness of the discrete problem dGCF are
discussed. Regularization behavior of dGCF will also be studied.
Finally we apply our dGCF to three problems: closed curve
evolution on manifolds, discrete scale-space construction and edge
detection of images painted on triangulated surfaces. Our method
works for compact triangular meshes of arbitrary geometry
(as long as there’s no degenerate triangles) and topology. The
implementation of the method is also easy.

Index Terms— geodesic curvature flow, level set, triangular
mesh surfaces, curve evolution, scale-space, edge detection.

I. INTRODUCTION

The geodesic curvature flow, also known as geometric heat
flow or curve shortening flow, has been studied for many years
in both pure and applied mathematics. Therein closed curve
evolution under geodesic curvature flow is an important tool
[15] of closed geodesic theory, which is a fundamental part of
Riemannian geometry. It also gains much attention in practice
and is extensively applied via level set formulations [31] to image
processing, computer vision and material science, etc.

The curve shortening flow on Euclidean plane is widely studied
both theoretically and practically. It has been proven in theory
that every simple closed curve (either convex or nonconvex)
shrinks into a circular point in a finite time [10], [12], [14]. In
applications, the flow is usually written in level set formulations
or so called Eulerian framework and, has made great successes in
the following problems. In multi-phase physical simulations and
material sciences, this flow plays an important role for topology
adaptive front propagation with curvature-dependent speed; see
[31] and references therein. In image processing, people establish
morphological scale-space [18] of an image via curve shorten-
ing flow. Scale-space is a fundamental concept for multi-scale
representations and analysis in image processing, and has been
extensively studied in recent years with many applications such as
image compression, transmission, segmentation, feature detection
and objects retrieval. The basic idea for scale-space construction
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is to introduce a family of images which progressively become
simpler in a sense that significant structures remain while unim-
portant details vanish. So far people have derived various scale-
spaces [40], [20], [1], [43], [16], [32], [36], [18], [38], [37],
[39], [6] from convolution method or time-dependent PDEs (the
most popular way in this area), etc. Properties of these scale-
spaces have been carefully analyzed in [20], [43], [18], [23], [24],
[25], [26], [34], [37], [38], [9], [21], [22], including the existence
and uniqueness, continuity dependency on initial data, grey level
shift invariance, semi-group property, average grey invariance and
critical point theory, information reduction and limit behavior, etc.
Some basic properties such as existence and uniqueness, semi-
group property and information reduction, hold in all scale-spaces.
Different scale-spaces may satisfy different other properties. In
morphological scale-space (based on curvature flow) [18], the
image is regarded as a collection of iso-intensity curves. Evolving
the image is just evolving all the level curves. As shown by
Grayson, the order of these level curves is preserved during the
scale-space evolution. This leads to the so called inclusion order
preserving [8], [18], the most advantage over other scale-spaces,
which is particularly convenient for shape and image analysis.
In computer vision, by introducing image content related weights
to the curve length functional, geodesic active contour models as
small variations of the curve shortening flow are proposed in [28],
[3] for shape modelling, image edge detection and segmentation;
see [13] for fast algorithms and references therein. Compared
with other techniques such as the very similar snake model [17],
geodesic active contour model by level set formulation has many
advantages, such as topology adaption (automatic curve splitting
and merging) which are very important in image segmentation. In
addition, it drives automatically the contour to the center of the
band of the image edges regardless of the diversity of the image
gradient at edges [3]. This property makes the method available
for not only general images, but also blurred images.

However, geodesic curvature flow on surfaces is much more
complicated, and the theoretical results on this topic are very
sparse; see [11], [27], [30]. Even the existence and uniqueness
of solutions are proved conditionally. And possible shapes of the
final curve are diverse. Unlike the planar case, a closed initial
curve on a manifold will evolve into one of two shapes under
the geodesic curvature flow. It may disappear or become closed
geodesic(s). Moreover, geodesics on manifolds can be stable or
unstable [30]. On the other hand, geodesic curvature flow has
many applications in curve and image motion on surfaces [19],
[33]. Therefore, to numerically compute the flow on manifolds
will be very valuable for, not only simulating some properties
of the flow [5], [4], but also extensive applications [19], [33]. In
[5] the authors studied this flow by using standard methods for
manifolds, i.e., cutting the interested manifold into a set of charts
and solving geodesic curvature flows on these charts separately.
This is a strategy based on piecewise parametrization. Various
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possible cases of final curves were illustrated. Under the level
set framework, curve evolution over implicit surfaces was well
studied by Cheng et.al. in [4]. In Cheng’s work, both the surface
and the curve are represented as level sets of functions defined
in R

3 and, the flow equations are solved in a narrow band of 3D
Cartesian grids near the surface. In [19], Kimmel studied geodesic
curvature flow on parametric manifolds with applications in image
processing. He proposed bending invariant scale-space concepts
of images painted on surfaces via geodesic curvature flow and
presented numerical methods to solve the problem. The technique
can be applied to post processing of texture mapping. This flow
with even more applications on parametric surfaces was reported
in [33] very recently.

The novel contributions made in this paper are in three aspects.
(1) We derive the numerical scheme for geodesic curvature flow
on triangulated surfaces using level set formulation, leading to
dGCF. Our method works for any compact triangular meshes
as long as there’s no degenerate triangles. (2) The discretized
flow dGCF is theoretically analyzed with a rigorous proof on
its existence and uniqueness, as well as a discussion on the
regularization behavior by eigen analysis. In contrast, for geodesic
curvature flow in continuous setting, even the existence and
uniqueness are proved conditionally. (3) We apply our dGCF
to curve evolution, scale-space calculation and edge detection of
images painted on triangular meshes. In the 1st application, we
present an algorithm to find stable closed geodesics on meshes.
To our knowledge, this problem has not been investigated so far,
although there are lots of publications (see [35] and references
therein) on computing geodesic pathes between given points
on meshes. In the 2nd application, the scale-space calculated
via geodesic curvature flow behaves very differently from some
other smoothing techniques such as Laplacian smoothing [41].
It provides much clearer multi-scale representations of images,
which seems retaining the inclusion order preserving property of
planar geometric heat flow. We also observe that the limit behavior
of this scale-space depends on the scale parameter, which is much
more complicated than Laplacian smoothing. Although we cannot
prove the limit behavior rigorously at this stage, we interpret
this phenomenon by the results of the 1st application, by using
the grey level shift invariance property. These observations have
not been noticed before. In the 3rd application, our method can
capture image edges with various complicated structures, even if
the edges are blurred and contain multiple connected components.
It should be pointed out that the (mean) curvature flow with no
weight was addressed in [2] for triangulated domains. However,
all the examples in [2] are for curves on planar Euclidean domains
or surfaces in spatial Euclidean domains. Therefore, in [2] the
pure (mean) curvature flow was computed, and not the geodesic
one. Furthermore, there’s little theoretical discussion on their
discretized flow in [2].

Here we emphasize the differences between our method and
those reported in [41]. Basically the geodesic curvature flow
equation describes geometric evolution of curves, whose mecha-
nism is totally different from diffusion equations studied in [41].
Hence the numerical scheme is naturally different from those in
[41]. Consequently the method presented in this paper has many
different applications, i.e., curve evolution and edge detection
on manifolds. The approaches in [41] cannot handle these two
applications, because we have proved in [42] that the diffusion
models in [41] satisfy constant limit behavior. That is to say,

using these models, the flow function will tend to a constant
finally, which is impossible to capture the geodesics. In addition,
even in the same application of our method and [41], say, scale-
space image evolution, geodesic curvature flow behaves much
differently from diffusion equations, and offers the advantage of
inclusion order preserving.

The outline of the paper is as follows. We first give some
compulsory notation in Section 2. Then in Section 3 we review the
flow equation on general surfaces using a weighted curve energy
minimization. The equation is discretized via semi-implicit FVM
in Section 4, leading to our dGCF. We will also in this section
prove the existence and uniqueness, and study the regularization
behavior of the discretized flow, followed by a comparison to
Laplacian smoothing. In Section 5 we discuss three applications
of dGCF. Conclusion and future work are included in Section 6.

II. NOTATION

We need some notation; see also [41]. Assume M ⊂ R
3 is

a compact triangulated surface of arbitrary topology with no
degenerate triangles. The set of vertices, the set of edges and the
set of face triangles of M are denoted as {vi : i = 0, 1, · · · , V−1},
{ei : i = 0, 1, · · · , E − 1} and {τi : i = 0, 1, · · · , T − 1},
respectively. Here V, E and T are the numbers of vertices, edges
and triangles, respectively. We explicitly denote an edge e whose
endpoints are p, q as [p, q]. Similarly a triangle τ whose vertices
are p, q, r is denoted as [p, q, r]. If v is an endpoint of an edge e,
then we denote it as v ≺ e. Similarly, e is an edge of a triangle τ is
denoted as e ≺ τ ; v is a vertex of a triangle τ is denoted as v ≺ τ .
We use BC(τ ), BC(e) and BC(v) to denote the barycenters of
a triangle τ , an edge e and a vertex v, respectively. Let N1(i) be
the 1-neighborhood of vertex vi, which is the set of indices of
vertices connecting to vi. Let D1(i) be the 1-disk of the vertex
vi. D1(i) is the set of triangles containing vi.

We also introduce the concepts of dual meshes and dual cells;
see Fig. 1. For any triangular mesh surface, a barycentric dual
is formed by connecting the midpoint of each edge with the
barycenters of each of its incident faces, as illustrated in Fig. 1 (a).
The original mesh consists of black lines while the dual mesh is
in blue. In a dual mesh, one assigns a dual cell Ci to each vertex
vi of mesh surface M ([29]). The dual cell of a vertex vi is part
of its 1-disk which is near to vi in the dual mesh. Fig. 1 (b)
shows the dual cell Ci for an interior vertex vi of the original
mesh, while Fig. 1 (c) shows the dual cell for a boundary vertex.

For each vertex vi, we denote the usual hat function as ϕi,
which is linear over each triangle and ϕi(vj) = δij , i, j =

0, 1, · · · , V − 1, where δij is the Kronecker delta. Functions
{ϕi : i = 0, 1, · · · , V − 1} satisfy

1) local support: suppϕi = D1(i);
2) nonnegativity: ϕi ≥ 0, i = 0, 1, · · · , V − 1;
3) partition of unity:

∑
0≤i≤V−1

ϕi ≡ 1.

A function u defined over the triangulated surface M is considered
to be a piecewise linear function. Suppose u reaches value ui at
vertex vi, i = 0, 1, · · · , V− 1. Then u(p) =

∑
0≤i≤V−1

uiϕi(p) for

any p ∈ M . Accordingly, piecewise linear vector-valued functions
(u1(p), u2(p), · · · , ud(p)) on M can be defined. Besides, one may
have piecewise constant scalar (vector-valued) functions over M ,
that is, a single value (vector) is assigned to each triangle of M .
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(a) barycentric dual mesh
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(b) dual cell of an interior vertex
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(c) dual cell of a boundary vertex
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(d) computation of
cij,τ , cjk,τ and cki,τ

Fig. 1. Barycentric dual mesh, dual cells and computation of coefficients.

III. GEODESIC CURVATURE FLOW OVER SMOOTH SURFACES

USING LEVEL SET FORMULATION

In this section, we present geodesic curvature flow over general
smooth surfaces using level set formulation via a weighted curve
energy minimization.

Assume M is a general 2-dimensional manifold embedded in
R

3 and ∇ is the intrinsic gradient operator on M. Suppose that
C ⊂ M is a curve defined on M, and represented by the zero
level set of a function φ : M → R; see Fig. 2 (just a local view)
for illustration of geodesic curvature of C and the usual geodesic
curvature flow (with no weight).

Here we consider a more general geodesic curvature flow which
decreases a weighted curve length, by using level set formulation.
Assume that g : M → R

+ is a positive scalar function serving
as a weight (or stopping function). Then the weighted length of
C is defined as

E(C) =

∫

C:φ=0
gdl, (1)

which, by the Co-Area Formula, can be reformulated into

E(C) = E(φ) =

∫

M
gδ(φ)|∇φ|dM, (2)

an energy functional of φ, where δ(·) is the Dirac function.
Similarly with [4], we derive the Euler-Lagrange equation for

the energy functional (2) as
{

−∇ · (g ∇φ
|∇φ|

)δ(φ) = 0
∂φ
∂~n |∂M = 0

, (3)

where ∂M is the boundary of M and ~n is the intrinsic outer
normal of ∂M. For closed M, the boundary condition is auto-
matically ignored.

Just as in the standard level set method, replacing δ(φ), which
is treated as the smoothed out delta function, by |∇φ|, we obtain
the following gradient descent flow equation





φt = |∇φ|∇ · (g ∇φ√
|∇φ|2+β

)

∂φ
∂~n |∂M = 0

φ(0) = φ0

, (4)

where β is a small positive number introduced to avoid division by
zero. This flow on implicit (with g = 1) and parametric manifolds
was investigated in [4] and [33], respectively.

��

M

C

kNknN̂

kgÑ

Fig. 2. The curvature vector kN of curve C on manifold M has two
orthogonal components: the normal curvature vector knN̂ and the geodesic
curvature vector kgÑ. The usual geodesic curvature flow (with no weight)
decreases the length of C, say,

∫
C

dl. It reads Ct = kgÑ in Lagrangian
framework, and φt = |∇φ|∇ · ( ∇φ

|∇φ|
) in Eulerian framework. Similarly with

the curve evolution on planar domain, Lagrangian framework handles both
open and closed curves quite well, but suffers from the difficulty of changing
the topology of the curve; Eulerian framework works particularly well for
closed curve evolution and benefits from its flexible topology adaptivity, but
has difficulty for open curves. There’s also one other important difference
between these two frameworks for curve evolution on surfaces. In Lagrangian
framework, each point of the curve moves on the tangent plane of the surface.
Hence in numerical computation (the manifold is also discretized), one should
be very careful to avoid the points of the curve to go out of the surface.
However, Eulerian framework does not suffer from this problem.

IV. DISCRETIZED GEODESIC CURVATURE FLOW OVER

TRIANGULATED SURFACES: DGCF

We now assume that M is triangulated to be M ⊂ R
3. Then

we come to the discrete setting; see Section 2. The function φ is
piecewise linear, which interpolates function values at vertices of
M ; and the weight g is piecewise constant as face samples. Under
these assumptions, the curve C as the zero level set of φ is also
piecewise linear and represented as line segments. In this section
we give our dGCF via semi-implicit FVM discretization of Eqn.
(4). The existence and uniqueness of the discretized flow will be
proven. We also discuss the regularization behavior of dGCF, as
well as its differences from Laplacian smoothing.

A. Discretized geodesic curvature flow (dGCF)

We discretize the flow equation (4) via semi-implicit FVM:
semi-implicit time discretization and spatial discretization by
integrating the PDE over some dual cells. This is a linearization
technique where only some of the variables in the nonlinear term
are evaluated at the next time step, leading to finally a linear
system for unknowns.

For each vertex vi of M , we integrate the two sides of Eqn.
(4) on the dual cell Ci:∫

Ci

φtdA =

∫

Ci

|∇φ|∇ · (g ∇φ√
|∇φ|2 + β

)dA. (5)

Because of the existence of |∇φ| outside the divergence operator,
the integral in the right hand side of (5) can not be directly
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calculated. Our strategy is firstly approximating |∇φ| outside
the divergence operator by a constant over the dual cell. Since
barycentric dual mesh is used, the average over the dual cell is
just the average over the 1-Disk. Therefore,

(|∇φ|)i =

∑
τ,vi≺τ

|∇φ|τ |sτ

∑
τ,vi≺τ

sτ
,

where sτ is the area of the triangle τ . This is a little different
variant of the approach used in [2]. (We cannot directly adopt
the method in [2] due to that the triangles of the 1-Disk are not
coplanar in general.) In this way, we have

∫

Ci

φtdA =

∑
τ∈D1(i)

|∇φ|τ |sτ

∑
τ∈D1(i)

sτ

∫

Ci

∇ · (g ∇φ√
|∇φ|2 + β

)dA. (6)

We then apply the divergence theorem to the integral in the
right hand side of Eqn. (6). Note that g is a piecewise constant
function. With a similar derivation as in [41], we have
∫

Ci

∇ · (g ∇φ√
|∇φ|2 + β

)dA =

∑

τ=[vi,vj ,vk]∈D1(i)

g|τ√
|∇φ|τ |2 + β

(φicii,τ + φjcij,τ + φkcik,τ ),

(7)
where




cij,τ = ∇ϕj ·
∫

⋃
e,vi≺e≺τ

[BC(e),BC(τ)] ~ndl = 1
2 cot θk

cik,τ = ∇ϕk ·
∫

⋃
e,vi≺e≺τ

[BC(e),BC(τ)] ~ndl = 1
2 cot θj

cii,τ = −cij,τ − cik,τ

, (8)

as shown in [41], [42]; see also Fig. 1 (d). This is a uniform
spatial discretization for any compact mesh surfaces of arbitrary
topology.

Thus with a semi-implicit time integral (from tn to tn+1), Eqn.
(4) is discretized as follows

si
φn+1

i − φn
i

tn+1 − tn
=

∑
τ∈D1(i)

|∇φ|nτ |sτ

∑
τ∈D1(i)

sτ
·

∑

τ∈D1(i)

g|τ√
|∇φ|nτ |2 + β

(φn+1
i cii,τ + φn+1

j cij,τ + φn+1
k cik,τ ),

where si is the area of the dual cell of vi. Denoting Φ =

(φ0, φ1, · · · , φV−1)
′

, the above equation is formulated in matrix
form (with initial value added)
{

(S + (tn+1 − tn)G(Φ(tn))H(Φ(tn)))Φ(tn+1) = SΦ(tn)

Φ(t0) = Φ0
,

(9)
where S = diag(s0, s1, · · · , sV−1) and G(Φ(tn)) =

diag(

∑
τ∈D1(0)

|∇φ|nτ |sτ

∑
τ∈D1(0)

sτ
,

∑
τ∈D1(1)

|∇φ|nτ |sτ

∑
τ∈D1(1)

sτ
, · · · ,

∑
τ∈D1(V−1)

|∇φ|nτ |sτ

∑
τ∈D1(V−1)

sτ
)

are two diagonal matrices and H(Φ(tn)) = (−hij ) with

hij =





∑
τ,[vi,vj ]≺τ

g|τ√
|∇φ|nτ |2+β

cij,τ , j ∈ N1(i)

∑
τ∈D1(i)

g|τ√
|∇φ|nτ |2+β

cii,τ , j = i

0, others

. (10)

Definition 1: Under an arbitrary time sequence tn, n =

0, 1, 2, · · · with t0 = 0, the sequence {Φ(tn), n = 0, 1, 2, · · · }
determined by Eqn. (9) is called a dGCF (discretized geodesic
curvature flow) of initial function Φ0.

Note that the time steps need not be a constant. In the following
subsections, we discuss some fundamental theoretical aspects of
dGCF, as well as some comparisons to Laplacian smoothing.

B. The existence and uniqueness of dGCF

The existence and uniqueness of the discretized flow can be
proved for any compact simplicial surfaces with no degenerate
triangles (the coefficients defined in Eqn. (8) are bounded), which
ensure our claim in the abstract. We need two lemmas.

Lemma 1: (1) Assume that D is a diagonal matrix with non-
negative elements and A is symmetric positive semi-definite. Then
the principle minors of the matrix DA are all nonnegative.
(2) Assume A is a V × V matrix and λ is a constant. Then

det(λI + A)

= λV +
∑

1≤k≤V

λV−k
∑

i1<i2<···<ik

A

(
i1 i2 · · · ik
i1 i2 · · · ik

)
,

(11)

where I is an identity matrix and A

(
i1 i2 · · · ik
i1 i2 · · · ik

)
is a

principle minor of A.
Proof (1) Let D = diag(d1, d2, · · · , dV). The assertion follows
immediately from

(DA)

(
i1 · · · ir
i1 · · · ir

)
= di1 . . . dir

A

(
i1 · · · ir
i1 · · · ir

)
,

for any 1 ≤ i1 < · · · < ir ≤ V .
(2) This can be proved in a similar way on pages 180–182 in

[7]. �

Lemma 2: The matrix H(Φ(tn)) with elements defined via
Eqn. (10) is symmetric and positive semi-definite with rank(H) =

V − 1.
Proof The symmetry of H(Φ(tn)) is obvious since cij,τ =

cji,τ . On the other hand, for any vector v, we have

v′H(Φ(tn))v =
∑

ij

−hijvivj = −
∑

i

hiiv
2
i −

∑

i

∑

j∈N1(i)

hijvivj

= −
∑

i

∑

τ,τ∈D1(i)

g|τ√
|∇φ|nτ |2 + β

cii,τ v2
i

−
∑

i

∑

j∈N1(i)

∑

τ,[vi,vj ]≺τ

g|τ√
|∇φ|nτ |2 + β

cij,τ vivj

=
∑

e=[vi,vj ]

∑

τ,e≺τ

g|τ√
|∇φ|nτ |2 + β

cij,τ (v2
i + v2

j )

−
∑

e=[vi,vj ]

∑

τ,e≺τ

g|τ√
|∇φ|nτ |2 + β

cij,τ2vivj

=
∑

e=[vi,vj ]

∑

τ,e≺τ

g|τ√
|∇φ|nτ |2 + β

cij,τ (vi − vj )
2

=
∑

τ=[vi,vj ,vk]

g|τ√
|∇φ|nτ |2 + β

·

(cij,τ (vi − vj)
2 + cik,τ (vi − vk)2 + cjk,τ (vj − vk)2)

=
∑

τ=[vi,vj ,vk]

g|τ√
|∇φ|nτ |2 + β

1

2
·
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(cot θk(vi − vj)
2 + cot θj(vi − vk)2 + cot θi(vj − vk)2)

=
∑

τ=[vi,vj ,vk]

g|τ√
|∇φ|nτ |2 + β

∫

τ
|∇v(p)|2dτ ≥ 0,

where v(p) is the piecewise linear interpolation of vertex data
v on M . This proves the semi-positiveness of H(Φ(tn)). The
positiveness of g implies rank(H) = V − 1. �

Theorem 1: For any initial value Φ0, and any time sequence
{tn, n = 0, 1, 2, · · · } with t0 = 0, there exists a unique dGCF.
Proof In fact we only need to prove that the coefficient matrix
of the system (9) is invertible. We compute the determinant of
(S + (tn+1 − tn)G(Φ(tn))H(Φ(tn))). Let

λi =

∑
τ∈D1(i)

|∇φ|nτ |sτ

∑
τ∈D1(i)

sτ
, i = 0, 1, · · · , V − 1,

we have

det(S + (tn+1 − tn)G(Φ(tn))H(Φ(tn)))

= det(S + (tn+1 − tn)diag(λ0, λ1, · · · , λV−1)H(Φ(tn)))

= detS · det(I + (tn+1 − tn)diag(
λ0

s0
,
λ1

s1
, · · · ,

λV−1

sV−1
)H(Φ(tn)))

:= detS · det(I + ΛH)

= detS · (1 +
∑

1≤k≤V

∑

i1<i2<···<ik

(ΛH)

(
i1 i2 · · · ik
i1 i2 · · · ik

)
)

> 0,

by Lemmas 1 and 2. This proves the invertibility of the coefficient
matrix of the system (9). �

C. Regularization behavior of dGCF

In this subsection we discuss the regularization behavior of
dGCF. As stated in the definition, in practice the dGCF is
calculated step by step using a time sequence. Therefore its one
step regularization behavior is of fundamental importance. Here
our interpretation is based on eigenvalue/eigenvector analysis
since we are in discrete setting. As an obvious result, the L2

stability can be obtained directly via our analysis.
Theorem 2: For the flow function Φ(tn), we assume that K =

{i|φn
j = φn

i , j ∈ N1(i)} and L = {0, 1, · · · , V − 1} \ K are
two index sets. Then (I + 4tS−1G(Φ(tn))H(Φ(tn)))−1 has
eigenvalues 0 < µ0, µ1, · · · , µV−1 ≤ 1 with corresponding
eigenvectors {bi = (bi,0, bi,1, · · · , bi,V−1)

′, i = 0, 1, · · · , V − 1},
which is complete. Moreover,

(1) If K is empty, then the largest eigenvalue µmax = 1 with
a unique eigenvector (1, 1, · · · , 1);

(2) If K is non-empty, then for all i ∈ K, µi = 1 is the
eigenvalue with (1, 1, · · · , 1) as one of the corresponding
eigenvectors; for i ∈ L, 0 < µi < 1 and bi,j = 0, j ∈ K in
its corresponding eigenvector bi.

Proof Let
D = S−1G(Φ(tn)),

which is a diagonal matrix with nonnegative elements.
(1) Since K is empty, it’s obvious that G is invertible. We then

have

S−1G(Φ(tn))H(Φ(tn)) = DH =
√

D
√

DH

∼ (
√

D)−1
√

D
√

DH
√

D =
√

DH
√

D,

implying that DH is similar to symmetric
√

DH
√

D by the
symmetry of H . Therefore I + 4tS−1G(Φ(tn))H(Φ(tn)) is
similar to a symmetric matrix and hence its inverse. This shows
that all the eigenvalues of I +4tS−1G(Φ(tn))H(Φ(tn)) are real
and the set of eigenvectors is complete. On the other hand, by
Lemmas 1 and 2,

det(λI − DH) = (−1)Vdet((−λ)I + DH) = (−1)V·

(−λ)V +

∑

1≤k≤V

(−λ)V−k
∑

i1<i2<···<ik

DH

(
i1 i2 · · · ik
i1 i2 · · · ik

)


6= 0, forλ < 0.

This shows that all the eigenvalues of DH are greater than or
equal to zero. Moreover, by Lemma 2 and the vanishing row
sums of H , we know that the minimal eigenvalue of the matrix
H is 0 with a unique eigenvector (1, 1, · · · , 1). Therefore in this
case the assertion follows.

(2) If K is non-empty, then G is not invertible. For convenience
we use a series of permutations to relocate the zero diagonal
elements of D together to the later part of the diagonal line.
Denoting the element number of K as |K| = V − r, there exists
an orthogonal matrix P (the product of a series of fundamental
matrices exchanging two rows each) such that

D = P−1
(

D11 0

0 0

)
P,

where D11 is an r× r (r < V) diagonal sub-matrix with positive
diagonal elements. Hence

S−1G(Φ(tn))H(Φ(tn)) = DH(Φ(tn))

= P−1
(

D11 0

0 0

)
PH(Φ(tn)) ∼

(
D11 0

0 0

)
PH(Φ(tn))P

′

:=

(
D11 0

0 0

)(
B11 B12

B
′

12 B22

)
=

(
D11B11 D11B12

0 0

)
,

where B11 is an r × r symmetric positive definite matrix from
Lemma 2.

Let’s analyze the matrix
(

D11B11 D11B12

0 0

)
. By a similar

argument as in (1), one can show that the eigenvalues of D11B11

are positive. Therefore we can denote all the eigenvalues by
λ0, λ1, · · · , λr−1, λr = λr+1 = · · · = λV−1 = 0 with corre-
sponding eigenvectors e0, e1, · · · , er−1, er, · · · , eV−1. In the next
we reveal structures of ei and show that for each λi, its algebraic
multiplicity equals to its geometric multiplicity. Consider the
following system of equations

(
D11B11 D11B12

0 0

)




x0

...
xr−1

xr

...
xV−1




= λi




x0

...
xr−1

xr

...
xV−1




,

i = 0, 1, · · · , V − 1.

By setting xr = xr+1 = · · · = xV−1 = 0, the eigenvalue λi

and the corresponding eigenvector ei for i = 0, . . . , r − 1 can
be determined by the sub linear system of D11B11. Noticing that
D11B11 is similar to a diagonal matrix, one gets that the algebraic
multiplicity and geometric multiplicity of each λi are the same,
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i = 0, . . . , r − 1. Also the later V − r elements of ei vanish. For
λr = λr+1 = · · · = λV−1 = 0, its geometric multiplicity is

V − rank

(
D11B11 D11B12

0 0

)
= V − r

which is exactly the algebraic multiplicity. Therefore the set of
eigenvectors {ei, i = 0, 1, · · · , V − 1} is complete.

Now we come back to (I + 4tS−1G(Φ(tn))H(Φ(tn)))−1

for this case. Since S−1G(Φ(tn))H(Φ(tn)) = DH =

P−1

(
D11B11 D11B12

0 0

)
P , we immediately obtain the re-

sult by taking into account the structure of P and the vanishing
row sums of H . �

The following interpretation can be inferred from this theorem.
Suppose the present flow function is Φ(tn). Since the eigenvectors
{bi, 0 ≤ i ≤ V − 1} are complete, Φ(tn) can be decomposed as

Φ(tn) =
∑

0≤i≤V−1

αibi, (12)

and will evolve into

Φ(tn+1) =
∑

0≤i≤V−1

µiαibi, (13)

according to Theorem 2. As all the eigenvalues {µi, 0 ≤ i ≤
V − 1} belong to (0, 1], the components {αibi, 0 ≤ i ≤ V − 1}
in the decomposition (12) will never blow up. The components
αibi will be kept unchanged if µi = 1; whereas other components
αibi will even shrink.

Let’s investigate this more carefully. There are two cases. If
K is empty, the zero frequency component along eigen-direction
(1, 1, · · · , 1) (a constant function on the surface M in function
point of view) is the only one retained and other components
with higher frequency will shrink. If K is non-empty, we rewrite
Eqns. (12) and (13) as

Φ(tn) =
∑

i∈K

αibi +
∑

i∈L

αibi, (14)

and
Φ(tn+1) =

∑

i∈K

αibi +
∑

i∈L

µiαibi, (15)

where we use the result that µi = 1 for i ∈ K. Eqn. (15)
implies that components αibi for i ∈ K are preserved while other
αibi for i ∈ L shrink. The preserved components may contain
high frequency, not only the zero frequency along (1, 1, · · · , 1).
However, keep in mind where these components come from. We
recall that Φ(tn) = (φn

0 , φn
1 , · · · , φn

j , · · · , φn
V−1)

′. According to
Theorem 2, in the decomposition of Eqn. (14), only the first
summation

∑
i∈K

αibi, in which components are fully preserved,

contributes to φn
j , j ∈ K. On the other hand, from the definition

of K we know that these well preserved φn
j , j ∈ K should be

piecewise constant. The shrinking components αibi, i ∈ L have
the supports in transition domains between piecewise constant
regions of Φ(tn) and serve as high frequency signals. Here we see
a regularization effect: constant or piecewise constant components
preserve, while high frequency components supported in transi-
tion domains shrink. We mention that this regularization behavior
can also be found from the flow equation in the continuous setting.
In spite of this, we derive the behavior based on eigen-analysis,
since we are in discrete setting. Our interpretation also benefits
from the result of the completeness of the eigenvectors.

We then come to two observations which are very useful in
applications. The first one is the suggestion for designing initial
flow functions in our first and last applications. Good initial flow
functions should not be piecewise constant. The second obser-
vation is that the flow provides edge preservation when applied
to image regularization. The inner parts of piecewise constant
regions will be preserved, and gradually changing intensity in the
transition domains (such as textures) will shrink fast; see the Lena
example in our second application.

A direct corollary of Theorem 2 is the stability as follows.
Corollary 1: For any initial value Φ0, and any time sequence

{tn, n = 0, 1, 2, · · · } with t0 = 0,

‖Φ(tn+1)‖2 ≤ ‖Φ(tn)‖2.

D. Differences between dGCF (g = 1) and Laplacian smoothing

Here we emphasize that the discretized geodesic curvature
flow is totally different from Laplacian smoothing [41], although
we use a constant approximation to the gradient outside the
divergence operator in the derivation.

The Laplacian smoothing [41] is, in our context, as follows
(with a little different notation)

{
(S + (tn+1 − tn)W )Φ(tn+1) = SΦ(tn)

Φ(t0) = Φ0
, (16)

where W = (−wij) is a positive semi-definite symmetric matrix
with

wij =





∑
τ,[vi,vj ]≺τ

cij,τ , j ∈ N1(i)

∑
τ∈D1(i)

cii,τ , j = i

0, others

. (17)

There are three ways to see the differences between dGCF and
Laplacian smoothing. Firstly we compare the schemes; see Eqn.
(9) and (16). In general G(Φ(tn))H(Φ(tn)) 6= W . The only case
for G(Φ(tn))H(Φ(tn)) = W is that the absolute gradient of the
discrete flow function Φ(tn) reaches a same value in all triangles.
Such kind of flow function can be determined by a nonlinear
system of T − 1 equations with V unknowns, which has only
finite number of solutions. However, the system is very hard to
solve. The second way is to directly compare the solutions of
Eqn. (9) and (16). Suppose that both the dGCF and Laplacian
smoothing start from the initial flow function Φ0. We can find
out the conditions for Φ0 to give the same solution of dGCF and
Laplacian smoothing under the same time sequence t0, t1, · · · .
From t0 to t1, we get a nonlinear equation for Φ0; From t1 to
t2, we get another nonlinear equation for Φ0; and so on. Putting
all these nonlinear equations (actually infinitely many) together
gives the constraint for Φ0. Unfortunately, this system is also
very hard to solve due to its nonlinearity. These view points at
least show that dGCF and Laplacian smoothing does not have the
same solution in general. The third way is numerical simulation
and their limit behavior; see also the scale-space construction of
images painted on manifolds in the application section. The dGCF
and Laplacian smoothing behave very differently in topology
simplification of images. In addition, they give different limit
behaviors. We have proved in [42] that Laplacian smoothing gives
constant limit for each initial flow function. However, the limit
behavior of dGCF is much more complicated and depends on the
geometry of the manifold and the initial flow function, as well
as the scale parameter. Although we cannot prove it at this stage,
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we conjecture that dGCF gives piecewise constant limit behavior.
It seems impossible for dGCF to give a constant limit behavior
in general, otherwise it cannot be applied to our curve evolution
and edge detection applications.

V. APPLICATIONS

In this section we discuss some applications of dGCF.

A. Curve evolution under geodesic curvature flow

If we set the weight function g = 1, then we get curve evolution
under geodesic curvature dependent velocity. As mentioned in the
introduction, a closed initial curve on a manifold will evolve into
one of two possible shapes under the geodesic curvature flow. It
may disappear or become closed geodesic(s). Moreover, geodesics
on manifolds can be stable or unstable [30].

We show some examples calculated with dGCF. In Fig. 3, 4 and
5 evolutions of the same initial curve on three mountain surfaces
with different heights are illustrated, where we use the function

Mountain(x, y) =

{
2−1/(1−x2−y2), x2 + y2 < 1

0, x2 + y2 ≥ 1

to build the surfaces. The initial curves are defined to be the same
ellipse. In the next example we show the evolution of great circles
on the unit sphere under the geodesic curvature flow; see Fig. 6.
It’s well known that there are infinitely many closed geodesics on
the unit sphere and all of them are great circles and unstable. This
example illustrates the instability of these closed geodesics. Fig.
7, 8 and 9 show several other examples about the evolution of
curves under geodesic curvature flow on Dumbbell surface. Three
different geodesic curvature flows with different initial curves are
illustrated. In the former two examples in Fig. 7 and 8, the initial
curves are chosen to be at two different sides of an unstable
geodesic at one arm of the dumbbell. The geodesic curvature flow
generates different results. Fig. 9 illustrates an example about the
instability of geodesics on Dumbbell.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Curve evolution on Mountain 1 surface defined as (x, y, z(x, y))
where z(x, y) = Mountain(x − 1, y) + Mountain(x + 1, y). The curve
evolves from (a) via (b)(c)(d)(e) to (f), where it vanishes finally. This is
reasonable, since the mountains of this surface are too low and hence near to
the base plane so that one can expect the same result with the curve shortening
flow on the 2D plane.

Let’s investigate the next more interesting examples about curve
evolution on the bunny surface; see Fig. 10 and 11. In these two
examples, we start from the same initial curve and the same

(a) (b) (c)

(d) (e) (f)

Fig. 4. Curve evolution on Mountain 2 surface defined as (x, y, z(x, y))
where z(x, y) = 3Mountain(x − 1, y) + Mountain(x + 1, y). The curve
evolves from (a) via (b)(c)(d)(e) to (f). Here the curve shrinks faster on the
lower mountain and then fully moves to the higher one. Finally it disappears.

(a) (b)

(c) (d)

Fig. 5. Curve evolution on Mountain 3 surface defined as (x, y, z(x, y))
where z(x, y) = 3Mountain(x− 1, y) + 3Mountain(x + 1, y). The curve
evolves slowly from (a) via (b)(c) to (d), a closed geodesic.

initial flow function with different time steps. In Fig. 10, the
time step is small; in Fig. 11, the time step is large (10 times of
the former). As one can see, two different results are generated.
Both final curves are stable closed geodesics. The reason for this
phenomenon is that the first geodesic around the neck of the
bunny is not stable “enough” and consequently too much single-
step evolution (a large time step) may skips it. This is not safe
for finding closed geodesics on manifolds, which is now still a
challenging problem for general manifolds in pure mathematics
and the numerical understanding to this problem is rather little.
In our dGCF, the time step 4t can be arbitrary according to
Theorem 1. Flows with smaller time steps behave more safely, but
the curve will evolve slowly. On the other hand, in this problem
too large time steps result in skipping possible geodesics, since
geodesics are locally shortest. Taking both efficiency and accuracy
into account, we present a time step adaptivity algorithm; see
Algorithm 1. The flexible time step setting strategy is ensured by
Theorem 1 and Corollary 1 to avoid computational instability.

Different from the usually used strategy of fixing the time step,
Algorithm 1 sets new time step dynamically according to the
change rate of the curve lengths. The main part of this algorithm
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Curve evolution on the unit sphere: from (a) a great circle, via
(b)(c)(d)(e)(f)(g)(h) to (i). The initial curve (a) is chosen to be the Equator,
by setting the flow function to be φ(x, y, z) = z. As one can see, the curve
evolves very slowly at the beginning and oscillates around the geodesic. This is
because the forces from the both sides are nearly balanced. Once this balance
is broken, the curve evolves much faster and finally disappears.

(a) (b)

(c) (d)

Fig. 7. Curve evolution on Dumbbell: from (a) via (b)(c) to (d), where the
curve finally vanishes.

is the loop in step 6, in which two cases are considered for the
modification of the time step 4t. In the first case, the length
Lk of the current curve Ck is larger than the previous one. This
indicates that we have used a too big step from k − 1 to k and
the curve is now very near to a geodesic. Hence we set the flow
function backward a step to Φ(tk−1) and use a smaller time step,
to recompute the evolution from k − 1 to k. The resetting of
the time step is based on the reasonable assumption that at this
moment the change rate of the curve length dL

dt has the same
absolute value with different signs at the two sides of the potential

(a) (b)

(c) (d)

Fig. 8. Curve evolution on Dumbbell: from (a) via (b)(c) to (d), a closed
geodesic.

(a) (b)

(c) (d)

Fig. 9. Curve evolution on Dumbbell: from (a) an unstable geodesic, via
(b)(c) to (d). Under the geodesic curvature flow, the curve shrinks and breaks
into two curves. Both curves continue shrinking and finally disappear.

geodesic; see Fig. 12(a). We just find the intersection of the two
lines at both sides of the potential geodesic. The t variable of
this intersection is assumed to be the geodesic location and the
new time step is just the difference between t and tk−1. If this
difference 4t < 0, we just set it to be 1

2 (tk−tk−1). In the second
case as shown in Fig. 12(b)(c) with two subcases, the length of
the curve keeps decreasing. We then use the decreasing rate of
the curve length dL

dt to determine a new time step. We know dL
dt

should be zero at geodesics. This gives a new time step setting
in the first subcase shown in (b) where the decreasing rate from
Ck−1 to Ck is smaller than that from Ck−2 to Ck−1. In this
subcase we can hope that in the new iteration the curve will be
near to a geodesic. Therefore we set a new time step according to
the intersection of the t and the line passing through ( dL

dt )|k and
(dL

dt )|k−1. However, we do not use the precise difference between
the intersection and tk as the new time step. We use its one half
instead since we should avoid to march too much in a single step
evolution. If the decreasing rate from Ck−1 to Ck is larger than
that from Ck−2 to Ck−1, the geodesic is far from here. Hence we
just set the new time step to be proportional to ( dL

dt )|k/(dL
dt )|k−1

as stated in the algorithm.
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(a) (b)

(c) (d)

Fig. 10. Curve evolution under geodesic curvature flow with time step 0.005:
from (a) via (b)(c) to (d).

(a) (b) (c)

(d) (e) (f)

Fig. 11. Curve evolution under geodesic curvature flow with time step 0.05:
from (a) via (b)(c)(d)(e) to (f). The initial curve and flow function are the
same as Fig. 10.

Since the main loop in step 6 uses three-step information
to determine the new time step, we need to compute one step
evolution from the initial curve to start it up. We use another loop
procedure in step 3. There are two possibilities to terminate this
loop, depending on whether the initial curve C0 is a geodesic.
If C0 is chosen to be a geodesic, then this loop will end with
|L1−L0| < ε and L1 > L0 and consequently step 4 will terminate
the whole algorithm. If the algorithm starts with a non-geodesic
C0, the loop in step 3 will in general end with L1 < L0 (in
fact the loop will perform just once by setting a small initial
time step). Then the loop in step 6 starts up. In this way, the
algorithm generates a sequence of {Ck, k = 0, 1, 2, · · · } and the

Algorithm 1 Time step adaptive geodesic curvature flow of Φ0

on M

1. Set an initial time step 4t; Set t0 = 0;
2. Compute the length L0 of the zero level set C0 of Φ(t0) = Φ0;
3. Do

Set 4t = 1
24t; Set t1 = 4t;

Evolve Φ(t0) to Φ(t1);
Compute the length L1 of the zero level set C1 of Φ(t1);

While(L1 > L0 and |L1 − L0| ≥ ε)
4. If (|L1 − L0| < ε and L1 > L0) Exit;
5. Set k = 1;
6. Do

Set k = k + 1; Set tk = tk−1 + 4t;
Evolve Φ(tk−1) to Φ(tk);
Compute the length Lk of the zero level set Ck of Φ(tk);
If (Lk > Lk−1)

Set 4t = 1
2 ((tk − tk−1)+

(tk−1 − tk−2)(Lk −Lk−1)/(Lk−1 −Lk−2));
If (4t < 0) Set 4t = 1

2 (tk − tk−1);
Backward the flow function a step to Φ(tk−1);
Set k = k − 1;

Else
CRpre1 = (Lk − Lk−1)/(tk − tk−1);
CRpre2 = (Lk−1 − Lk−2)/(tk−1 − tk−2);
If (CRpre1 > CRpre2)
Set 4t = 1

2 (tk−tk−1)(0−CRpre1)/(CRpre1−CRpre2);
Else

Set 4t = (tk − tk−1)CRpre1/CRpre2;
While(not |Lk−1 − Lk| < ε)

t

L

�����

�

�
�

tk−2tk−1 tk

4t

(a)

t

dL
dt

�����

� �
�

tk−2tk−1tk

24t

(b)

t

dL
dt

�����

� � �

tk−2
tk−1tk

4t

(c)

Fig. 12. adaptive time step setting.

curves become shorter and shorter. Hence the curve length series
{Lk, k = 0, 1, 2, · · · } is monotonically decreasing with 0 as an
obvious lower bound. This gives the existence of the limit of
Lk which implies that the curve sequence converges to local
geodesic(s) for lim

k→+∞
Lk > 0, or disappears for lim

k→+∞
Lk = 0.

In the case that the limit is geodesic(s), they are obviously stable.
We then come to the following

Proposition 1: For any given initial curve C0 as the discrete
zero level set of the flow function Φ0 on a compact M , Algorithm
1 is convergent. Specially, the sequence of {Ck, k = 0, 1, 2, · · · }
will disappear finally or evolve into stable closed geodesic(s).

Here we use the change rate of curve lengths to design a
convergent time step adaptivity algorithm. Theorem 1 ensures the
feasibility and the sophisticated time step modification strategy
gives the convergence of the algorithm. Some examples are
provided in Fig. 13 and 14. We mention that our strategy is just
one adaptive time step method. It’s definitely true that one can
have other approaches to modify the time step dynamically.
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(a) (b) (c)

(d) (e) (f)

Fig. 13. Curve evolution under geodesic curvature flow with adaptive time
steps for finding closed geodesics on the bunny surface: (a)(d) two initial
curves; (b)(e) curves at middle time points; (c)(f) two final curves.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Curve evolution under geodesic curvature flow with adaptive time
steps for finding closed geodesics on the horse surface: (a)(c)(e) three initial
curves; (b)(d)(f) final curves corresponding to (a)(c)(e) respectively.

B. Discrete intrinsic scale-space construction of images
Due to its good property of inclusion order preserving over

other scale-spaces, the morphological scale-space concept of

planar images [18] has been extended to images painted on
parametric surfaces in [19], [33]. This generalization is valuable
for multi-scale analysis of images on surfaces, and can be applied
to post processing of texture mapping. Considering the wide
use of triangle meshes in computer graphics, here we construct
the corresponding concept for images on triangulated surfaces.
We consider the discrete version since in practice scale-space
evolutions are evaluated exclusively at a finite number of scales.

Definition 2: Let f be an initial image given on a triangulated
surface M . The image sequence {Tnf = u(n) = u(tn) =

u(n4t), n = 0, 1, 2, · · · } calculated from
{

(S + 4tG(u(n))H(u(n)))u(n+1) = Su(n)

u(0) = f
(18)

is called dGCF scale-space of f and n is the discrete scale. Here
4t is fixed and S, G, H are defined as in the last section with the
weight function g ≡ 1.

The scale-space in the above definition is intrinsic to the surface
since the calculation automatically includes the surface metric.
Before showing examples, we briefly discuss some basic prop-
erties generally required by most scale-spaces. At first Theorem
1 immediately gives the existence and uniqueness. Also trivial
verifications show the discrete semi-group property and the grey
level shift invariance as follows.

Proposition 2: For any n1 ≥ 0 and n2 ≥ 0, Tn1+n2f =

Tn2(Tn1f) = Tn1(Tn2f).

Proposition 3: Let C = (c, c, · · · , c) be a V-dimensional vec-
tor, then Tn(f + C) = Tn(f) + C.

In addition, Theorem 2 and the interpretation following it
give the information reduction property (a regularization effect).
The zero frequency component as a constant function keeps
unchanged while high frequency components such as gradually
changing intensity shrink fast in the scale-space evolution. Piece-
wise constant regions will shrink slowly since in a single scale
evolution only transition domains between these regions change.

Some examples are provided in Fig. 15, 16, 17 and 18, with
comparisons to Laplacian smoothing [41]. As one can see, the
topologies of the images in the scale-spaces get simpler when
scales get larger. This property is basic for scale-spaces of planar
images, and is preserved for images over mesh surfaces. It also
can be observed in the Lena example the edge preservation
effect that in the scale-space evolution piecewise constant re-
gions evolved slowly while small oscillations such as textures
vanish very quickly. In the bunny example shown in Fig. 16,
we compare dGCF scale-space and Laplacian smoothing. The
dGCF scale-space exhibits inclusion order preserving clearly.
Disconnected objects never interfere with each other. Also the
red nose disappears first, and then the black eyes, and finally the
feet. It’s a gradual simplification procedure in which small objects
with large geometric irregularities (such as small objects whose
boundaries have large and tempestuously variational geodesic
curvatures; e.g., the red nose of the bunny.) disappear first while
large objects later as expected. Hence in dGCF scale-spaces,
geometric information of objects in images play an important role.
Differently from dGCF, Laplacian smoothing simplifies image
structures via isotropically averaging the image intensity step by
step and consequently, the objects get more and more blurred,
as shown in Fig. 16. From the examples in Fig. 15 and 16,
one may expect a constant limit behavior of dGCF scale-space.
In fact this is not true in general. Remind the curve evolution
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application in the previous subsection. According to Prop. 3,
the scale-space evolution is transformed to be a curve evolution
procedure if one subtracts a constant from the image intensity.
The possible existence of closed geodesics tells us that on general
manifolds the constant limit behavior may not be true. However,
we guess that the limit image should be piecewise constant, and
the intensity change can only happen at stable closed geodesics.
Our first application on curve evolution also suggests that the
piecewise constant limit image depends on the scale parameter
4t. We particularly verify this in the examples shown in Fig. 17
and 18. In Fig. 17, we compute dGCF scale-space evolution of
a black-white image on the unit sphere. Here the initial image is
specially chosen to be a half-black and half-white image where
the intensity change happens at the equator (an unstable closed
geodesic) of the sphere. As one can see, the intensities of both
sides of the equator become closer and closer along the increasing
scale and finally the same value, i.e., a constant limit. Actually
on manifolds who have no stable closed geodesics, the constant
limit behavior can always be expected. In the example of Fig.
18, the limit behavior of dGCF scale-spaces with different scale
parameter 4t of an image on the bunny surface have been studied,
with comparisons to Laplacian smoothing. As one can see, the
limit of geodesic curvature flow scale-space (piecewise constant
with intensity changes at stable closed geodesics, but currently not
proved) depends on the parameter for surfaces which have stable
closed geodesics. In contrast, Laplacian smoothing exhibits much
simpler limit behavior. It gives constant limit, which does not
depend on the scale parameter and the geometry of the surface,
as proved in [42].

(a) (b) (c) (d)

Fig. 17. dGCF scale-space of a half-black image on the unit sphere: (a) the
initial image; (b)(c)(d) images at increasing scales.

C. Edge detection

In this subsection we apply the geodesic curvature flow to
detect edges of images on triangulated surfaces, where g(·) is no
longer constant but a weight function depending on the intensity
gradient of images on surfaces. This is a generalized work of
active contour model in planar image processing [17], [28], [3],
[13] and can be used to 3D painting and editing systems.

Assume that we have a gray image f on M . Since we want
the contour to stop evolving at edges of the image, the weight
function g(·) is usually chosen to be monotonically decreasing
with respect to the absolute image intensity gradient |∇f |. Note
that the piecewise constant |∇f | gives piecewise constant weight
over the triangulated surface M . In this work, we use

g(|∇f |) =
1

1 + k|∇f |2 (19)

where k is a constant. For color images, the function g can be
similarly designed by combining gradients of all the channels.

Geodesic curvature flow using level set formulation can detect
image edges with complex structures, such as multiple disjoint

(a) (b)

(c) (d)

Fig. 19. Edge detection using geodesic curvature flow on the horse surface.
The curve evolves from (a) via (b)(c) to (d).

(a) (b)

(c) (d)

Fig. 20. Edge detection using geodesic curvature flow on the bunny surface.
The curve evolves from (a) via (b)(c) to (d).

objects and blurred edges. We show some examples. In Fig. 19,
the object to be detected is a leaf on the horse surface. The leaf has
very sharp corners and slim shank. Our dGCF can easily capture
the leaf without losing these micro structures. In the example of
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(a) (b) (c) (d) (e)

Fig. 15. dGCF scale-space of Lena on an open surface. From left to right: increasing scales. (a) is the initial image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 16. Comparison between dGCF scale-space (1st row) and Laplacian smoothing (2nd row) of a cartoon on the bunny. From left to right: increasing
scales. (a)(f) are the initial images.

(a) (b) (c) (d) (e)

Fig. 18. Comparisons between limit behaviors of dGCF scale-spaces and Laplacian smoothing, as well as limit behaviors of dGCF scale-spaces with different
scale parameters. (a) an image that gradually changes from black to white on the bunny surface. (b) the image of dGCF scale-space with scale parameter
4t = 0.005 at n = 10000. (c) the image of Laplacian smoothing with scale parameter 4t = 0.005 at n = 10000. (d) the image of dGCF scale-space with
scale parameter 4t = 0.05 at n = 1000. (e) the image of Laplacian smoothing with scale parameter 4t = 0.05 at n = 1000.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 21. Edge detection on a dumbbell surface. The curve evolves from (a)
via (b)(c) to (d). (e)(f)(g)(h) are images at a different view point corresponding
to (a)(b)(c)(d), respectively.

Fig. 20, the zero level curve of the flow function dynamically
changes its topology and breaks into multiple branches when
needed, and finally captures all the objects. In our last example,
we test dGCF for detecting blurred objects that are very far
from each other and located on different branches of the surface
separated by many geodesics. In this case we use an initial flow
function with two disjoint zero level sets. Each level curve locates
on the corresponding branch as the object. Under the flow, the
two curves evolve towards the expected objects and finally capture
them, in spite of their shapes (square or circle). The final contour
locates at the middle of the blurry band of the image edges. We
provide two groups of pictures with different view points in Fig.
21. There’s one thing that we should point out. Different from
the previous two applications, here we use large time steps since
we want to find the globally shortest (in weighted length) curve.

D. Remarks on the implementation and numerical experiments

The implementation consists of three parts. The first one is
to build basic data structures for the calculation. From the given
mesh data we extract the 1-Disks and 1-Neighbors for all vertices,

which are stored in arrays indexed by vertices. We also compute
the gradients of the piecewise linear basis functions and the co-
efficients {cii,τ , cij,τ , cik,τ , cji,τ , cjj,τ , cjk,τ , cki,τ , ckj,τ , ckk,τ }.
These data are arranged as arrays indexed by triangles. The second
part is to solve the single step evolution, i.e., the linear system (9).
We use PBCG method to solve (9), since it’s a highly sparse linear
system, say, Ax = b for simplification. We use an array to store
the absolute gradient of the flow function indexed by triangles.
It is updated dynamically. Using this array, together with the
coefficients calculated above, we implement both Ax and A′x for
PBCG method, due to the non-symmetry of the coefficient matrix
in our problem. The third part is the implementation of Algorithm
1 and extraction of the zero level set of the flow function, which is
quite straightforward. A simple marching-triangle-like approach
is enough for the latter.

We also give some discussions on the initializations of flow
functions in the curve evolution and edge detection applications,
as well as the choice of the initial time step in Algorithm 1.
There are two concerns for the initialization of flow function.
At first, the discussion on the regularization behavior of dGCF
in Section 4 suggests that the initial flow function should better
be not piecewise constant but gradually changing. Secondly, the
initialization should be as fast as possible (especially for large
meshes). It’s not necessary to be very precise. Therefore we use
planes to initialize the flow function. In most of our examples
we use only one plane since there’s only one curve initially.
The values of the initial flow function are set to be the signed
Euclidean distance of the vertices to the plane. However, in our
last example, we need two initial curves. Therefore we use two
planes to generate the initial flow function. Concretely, we set

Φ0(vi) = SignMin(P1(vi), P2(vi))

= Sign(P1(vi))Sign(P2(vi))Min(|P1(vi)|, |P2(vi)|),

where Sign(·) is the sign function and P1, P2 are algebraic
representations of two planes. This simple trick can be extended to
multi-planes. It transforms a partition with multi-planes to patches
with different signs as expected. As for the initial time step in
Algorithm 1, it depends on both the geometry of the initial curve
and the initial flow function. To quantify this will be a long story,
and in our experiments we simply choose a small initial step such
as 0.005. One may consider the geodesic curvature of the initial
curve and the gradient of the flow function to design an initial
time step.

Some notes on numerical experiments are presented here. Table
I gives the mesh information of models we used in this work.
Therein SLTAR stands for the smallest largest triangle area ratio,
and defined as

SLTAR =
min

τ
area of τ

max
τ

area of τ
.

Sslelr denotes the smallest one of ratios of shortest and longest
edge lengths in triangles, which reads

Sslelr = min
τ

min
e≺τ

length of e

max
e≺τ

length of e
.

SLTAR describes globally the distribution of triangles, whereas
Sslelr measures locally the quality of triangles. As shown in the
table, some meshes are very irregular, such as the Dumbbell
model. Our dGCF can handle all of them. The efficiency depends
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on the geometry of the surface, as well as the initializations of
the curve and the flow function. If the curve is very near to a
closed geodesic, then the flow converges very quickly; otherwise
it will take some time. In our examples the CPU costs vary from
several seconds to several minutes.

TABLE I
MESH INFORMATION OF MODELS

Model # vertices # triangles SLTAR Sslelr
Mountain 1 8649 16928 0.609129 0.501487
Mountain 2 8649 16928 0.248045 0.240832
Mountain 3 8649 16928 0.248045 0.240832

Sphere 62094 124184 0.000138661 0.0112244
Dumbbell 18878 37752 2.64159e-007 0.000507087

Bunny 34817 69630 0.00375069 0.0921986
Horse 48485 96966 0.000356748 0.0295239
Lena 65536 130050 0.303472 0.290264

VI. CONCLUSION AND FUTURE WORK

In this paper we discussed a level set formulation of geodesic
curvature flow on triangulated surfaces. The discretized flow,
dGCF, was rigorously analyzed and, applied to several problems
about curve and image motion on surfaces. The method is
totally different from diffusion equations [41] in mechanism,
computation and applications. It offers a method to compute
stable closed geodesics on triangulated manifolds, the problem
which, to our knowledge, has not been studied so far. In the
image motion application, geodesic curvature flow provides much
better multi-scale representations than other approaches such as
Laplacian smoothing. In addition, the level set formulation of
the flow benefits from the topology adaption and the availability
to blurred images, which is particularly useful in image edge
detection. However, our method still has some disadvantages.
In the case of finding the geodesic between two given points,
the Lagrangian framework is much more suitable than Eulerian
framework. Furthermore, examples showed that the limit behavior
of image motion under geodesic curvature flow is much more
complicated than Laplacian smoothing. With different scale pa-
rameters, different limit images may be generated. In contrast,
Laplacian smoothing does not suffer from this uncertainty.

Several problems are left open. At first, more sophisticated
adaptive time step control strategies are needed in the application
of finding closed geodesics. Also better flows can be introduced
to find all the possible closed geodesics including unstable ones.
Secondly, in the scale-space construction application, the numer-
ical examples showed the piecewise constant limit behavior of
the flow. To rigorously prove this result will be very valuable
for many applications, not only scale-space analysis. Besides, to
precisely describe the dependency of the limit behavior on the
scale parameter for images on a given surface is very interesting.
On the third, error estimate of our dGCF to the original geodesic
curvature flow on smooth manifold should be investigated, which
will give how the dGCF simulates the original flow. This is
not easy due to two reasons, the complexity of the flow in
continuous setting and the unspecific underlying manifolds before
triangulation. Finally, our method can be applied to many other
problems, such as mesh segmentation.
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