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Abstract. The Mumford-Shah model is an important variational image segmentation model.
A popular multiphase level set approach, the Chan-Vese model, was developed for this model by
representing the phases by several overlapping level set functions. Recently, binary level set functions
were proposed as a variant representation of the Chan-Vese model. In both approaches, the gradient
descent equations had to be solved numerically, a procedure which is slow and has the potential
of getting stuck in a local minima. In this work, we develop an efficient and global minimization
method for the binary level set representation of multiphase Chan-Vese model based on graph cuts.
If the average intensity values of the different phases are sufficiently evenly distributed, the energy
function becomes submodular. Otherwise, a novel method for minimizing nonsubmodular functions
is proposed with particular emphasis on this energy function. We also show that non-local extensions
of the multiphase Chan-Vese model can be globally minimized by our method.

1. Introduction. Multiphase image segmentation is a fundamental problem in
image processing. Variational models such as Mumford-Shah [31] are powerful for this
task, but efficient numerical computation of the global minimum is a big challenge.
The level set method [15, 33] is a powerful tool which can used for numerical realiza-
tion. It was first proposed for the Mumford-Shah model in [11] for two phases and
[36] for multiple phases. This approach still has the disadvantage of slow convergence
and potential of getting stuck in a local minima.

Graph cuts from combinatorial optimization [16, 7, 19, 4, 24, 25, 3] is another tech-
nique which can perform image segmentation by minimizing certain discrete energy
functions. In the recent years, the relationship between graph cuts and continuous
variational problems have been much explored [5, 6, 13, 14]. It turns out graph cuts
are very similar to the level set method, and can be used for many variational problems
with the advantage of a much higher efficiency and ability to find global minima. It
can be applied to the 2-phase Mumford-Shah model [12, 37], but for multiple phases it
is probably not possible to find the exact, global minimum in polynomial time as this
is an NP-hard problem. The usual approach to minimization problems with several
regions is some heuristic method for finding an approximate, local minimum. Most
popular in computer vision are the α-expansion algorithms [7]. Recently, also convex
formulations of the continuous multiphase problem have been made in [34, 27] by
relaxing the integrality constraint. A suboptimal solution is found by converting the
real valued relaxed solution to an integral one (e.g. by thresholding).

In this paper we propose a method to globally and efficiently minimize the
Mumford-Shah model in the multiphase level set framework of Vese and Chan [36] by
using binary level set functions as in [28]. Since the length term is slightly approxi-
mated in this framework, global minimization is no longer NP hard. We will construct
a graph such that the discrete variational problem can be minimized exactly by finding
the minimum cut on the graph. However, the energy function may not be submodular
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if the average intensity values of the phases are distributed very unevenly. To handle
these cases, we have developed a method for minimizing non-submodular functions
with particular emphasis on our energy function. The minimization is global if these
values are fixed. A local minimization approach for determining these values is also
proposed.

Note that in contrast to α-expansion, the approximation is done in the model
rather than in the minimization method. Experimental comparison with alpha ex-
pansion is out of the scope of this paper. What can be said is that our method is
certainly a lot faster. It is also straight forwardly generalizable to non-local measure-
ments of the curve lengths as was done for two phases in [8].

In this work we focus on the case of 4 or less phases, but aim to generalize the
results to more phases later. Nevertheless, these are important cases since by the four
colour theorem, four phases in theory suffices to segment any 2D image. This can
potentially be exploited in an algorithm by assigning different constant values to each
disconnect component of the phases.

While image segmentation is the focus of this paper, the method we propose can
potentially also be applied for other variational multiphase problems outside of image
processing.

The paper is organized as follows: Section 1 reviews the Mumford-Shah model,
the Chan-Vese model and the different level set representations. Section 2 presents
the new global minimization approach for the multiphase Chan-Vese model. The sub-
modular case is presented in Section 2.2, while the non-submodular case is presented
in Section 2.3. Section 3 extends the model and minimization method to the non-local
setting. Section 4 presents a local minimization approach for determining the average
intensity values of the phases, while numerical experiments are presented in Section
5.

1.1. The Mumford-Shah model and its level set representation. Image
segmentation is the task of partitioning the image domain Ω into a set of n mean-
ingful disjoint regions {Ωi}ni=1.The Mumford-Shah model [31] is an established image
segmentation model with a wide range of applications. An energy functional to be
minimized is defined over the regions {Ωi}ni=1, and an approximation image u of the
input image u0. In an especially popular form, u is assumed to be constant within
each region Ωi, in which case the model reads

min
{ci},{Ωi}

EMS({ci}, {Ωi}) =
n∑
i=1

∫
Ωi

|ci − u0|βdx+
n∑
i=1

ν

∫
∂Ωi

ds, (1.1)

where ∂Ωi is the boundary of Ωi. The power β is usually chosen as β = 2. As
a numerical realization, Chan and Vese [11, 36] proposed to represent the above
functional with level set functions, and solve the resulting gradient descent equations
numerically. For two phases (n = 2) the level set representation yielded the variational
problem

min
φ,c1,c2

∫
Ω

(|∇H(φ)|+ λ{H(φ)|c1 − u0|β + (1−H(φ))|c2 − u0|β}dx, (1.2)

where H(·) : R 7→ R is the Heaviside function H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0.
The multiphase case was handled by introducing more level set functions. By using
m = log2(n) level set functions, denoted φ1, ..., φm, n phases could be represented.
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An important special case is the representation of 4 phases by two level set functions
φ1,φ2, as in Table 1.1. The energy functional could then be written

min
φ1,φ2,c1,...,c4

ECV (φ1, φ2, c1, ..., c4) = ν

∫
Ω

|∇H(φ1)|+ ν

∫
Ω

(|∇H(φ2)| (1.3)

+
∫

Ω

{H(φ1)H(φ2)|c2 − u0|β +H(φ1)(1−H(φ2))|c1 − u0|β)

+(1−H(φ1))H(φ2)|c4 − u0|βdx+ (1−H(φ1))(1−H(φ2))|c3 − u0|β}dx.

Note that the length term in (1.1) is slightly approximated, since some of the bound-
aries are counted twice. Note also that we have made a permutation in the inter-
pretation of the phases compared to [36]. The energy is still exactly the same for all
possible solutions. This permutation is crucial for making the corresponding discrete
energy function submodular.

The functional in this variational problem is highly non-convex, even for fixed
constant values c1, ..., c4. The traditional minimization approach of solving the gradi-
ent descent equations can therefore easily get stuck in a local minima. Furthermore,
the numerical solution of the gradient descent PDEs is expensive computationally.

In [30, 28], the same multiphase model was formulated using binary level set
functions φ1, φ2 ∈ D = {φ | φ : Ω 7→ {0, 1}}, representing the phases as in Table 1.1.
This resulted in the energy functional

min
φ1,φ2∈D,c1,...,c4

ECV (φ1, φ2, c1, ..., c4) = ν

∫
Ω

|∇φ1|dx+ ν

∫
Ω

|∇φ2|dx+ Edata(φ1, φ2),

(1.4)
where

Edata(φ1, φ2) =
∫

Ω

{φ1φ2|c2 − u0|β + φ1(1− φ2)|c1 − u0|β)

+(1− φ1)φ2|c4 − u0|β + (1− φ1)(1− φ2)|c3 − u0|β}dx.

The functional was written in a slightly different form in [30, 28], but is exactly equal
to the above in case φ1 and φ2 are binary functions. The constraint D was represented
by the polynomials K(φ1) = 0 and K(φ2) = 0, where K(φ) = φ(1−φ). Minimization
of this constrained problem was carried out by the augmented lagrangian method.
Since both the side constraints were non-convex, global minimization could not be
guaranteed. Also, convergence was slow just as in the traditional level set approach.
A similar approach could also be used for finding a local minimum with exact curve
lengths [29].

Let us mention that a method often referred to as continuous graph cut can be
used to globally minimize the Mumford Shah model in case of two phases. By letting
φ ∈ D, this model can be written

min
φ∈D,c1,c2

ν

∫
Ω

|∇φ|dx+ {φ|c1 − u0|β + (1− φ)|c2 − u0|β}dx. (1.5)

The idea, presented in [32] is to relax the constraint D by the convex constraint
D′ = {φ | φ : Ω 7→ [0, 1]}. It was shown that thresholding this solution at almost any
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Traditional level set functions Binary level set functions
x ∈ phase 1 iff φ1(x) > 0, φ2(x) < 0 φ1(x) = 1, φ2(x) = 0
x ∈ phase 2 iff φ1(x) > 0, φ2(x) > 0 φ1(x) = 1, φ2(x) = 1
x ∈ phase 3 iff φ1(x) < 0, φ2(x) < 0 φ1(x) = 0, φ2(x) = 0
x ∈ phase 4 iff φ1(x) < 0, φ2(x) > 0 φ1(x) = 0, φ2(x) = 1

Table 1.1
Representation of four phases by traditional and binary level set functions (note: a little per-

mutation compared to the original paper [36]).

threshold in [0, 1] yields the optimal solution within D. Since (1.5) is convex, this
procedure would yield the globally optimal solution.

One could immediately think the same idea could be extended to the multiphase
case by iteratively minimizing (1.4) for φ1 and φ2 in D′ and finally threshold the
results. However, since Edata(φ1, φ2) is not convex with respect to φ1 and φ2, the
minimization would not be global.

In general, discrete graph cuts has the disadvantage of some metrification artifacts
over continuous graph cuts. However, discrete graph cuts is faster and can elegantly
be used for minimization problems with non-local operators. The method we propose
can easily be generalized to minimize non-local measurements of the curve lengths
as was done for two phases in [8]. This will be discussed in Section 2.4 by using a
different regularization term. In the next section we will propose a method which
globally minimizes (1.4) for fixed constant values c1, ..., c4. This new approach is also
shown to be very superior in terms of efficiency compared to gradient descent.

2. Graph cut minimization. We will discretize the problem (1.4) and show
that this discrete problem can be minimized globally by finding the minimum cut
on a specially designed graph. This is possible when the constant values c1, ..., c4
are sufficiently evenly distributed. We show that such a distribution makes the dis-
crete energy function sub-modular. The evenness criterion will soon be defined more
clearly. We have observed that this criterion makes sense for most practical images.
Nevertheless, we later develop an algorithm for minimizing non-submodular functions
with particular emphasize on functions of the form (1.4).

2.1. Brief overview of graph cuts in computer vision. Graph cut is a well
known optimization problem. Due to a duality theorem by Ford and Fulkerson [26],
there are several fast algorithms for this problem. It was introduced as a computer
vision tool by Greig et. al. [19] in connection with markov random fields [16] and has
later been studied by Kolmogorov et. al. [4, 24]. Its applications range from stereo
vision [23], segmentation [3, 21, 37, 12] to noise removal [13, 14, 10].

A graph G = (V, E) is a set of vertices V and a set of edges E . We let (a, b) denote
the directed edge going from vertex a to vertex b, and let c(a, b) denote the capac-
ity/cost/weight on this edge. In the graph cut scenario there are two distinguished
vertices in V, called the source {s} and the sink {t}. A cut on G is a partitioning of
the vertices V into two disjoint connected sets (Vs, Vt) such that s ∈ Vs and t ∈ Vt.
The cost of the cut is defined as

c(Vs,Vt) =
∑

(i,j)∈E s.t. i∈Vs,j∈Vt

c(i, j).

A flow f on G is a function f : E 7→ R. For a given flow, the residual capacities
are defined as R(e) = c(e)− f(e) ∀e ∈ E . The max flow problem is to find maximum
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amount of flow that can be pushed from {s} to {t}, under flow conservation constraint
at each vertex. The theorem of Ford and Fulkerson says this is the dual to the problem
of finding the cut of minimum cost on G, the min-cut problem. Therefore, efficient
algorithms for finding max-flow, such as the augmented paths method [26] can be used
for finding minimum cuts in graphs. An efficient implementation of this algorithm
specialized for image processing problems can be found in [4]. This algorithm, which
is available on-line has been used in our experiments.

In computer vision this has been exploited for minimizing energy functions of the
form

min
x∈{0,1}m

E(x) =
∑
i

Ei(xi) +
∑
i<j

Ei,j(xi, xj).

Typically, i = 1, ...,m denotes the set of grid points and x contains one binary variable
for each grid point. In order to be representable as a cut on a graph, it is required
that the energy function is submodular (or regular) [24, 16], i.e.

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0), ∀i < j

2.2. Discretization of energy functional. Instead of discretizing the Euler-
Lagrange equations, we will discretize the variational problem (1.4). In the next
section we show how to minimize the resulting discrete energy function exactly. Let
us first mention there are two variants of the total variation term. The isotropic
variant, by using 2-norm

TV2(φ) =
∫

Ω

|∇φ|2 dx =
∫

Ω

√
|φx1 |2 + |φx2 |2 dx (2.1)

and the anisotropic variant, by using 1-norm

TV1(φ) =
∫

Ω

|∇φ|1 dx =
∫

Ω

|φx1 |+ |φx2 | dx. (2.2)

The anisotropic variant is graph representable and will be considered here. A more
isotropic graph representable version can be obtained by splitting TV1 using the orig-
inal gradient operator, and one rotated counterclockwise π/4 radians

TV1,π4
(φ) =

1
2

∫
Ω

{
|∇φ(x)|1 + |Rπ

4
∇φ(x)|1

}
dx, (2.3)

where Rπ
4
∇ is the gradient in the rotated coordinate system. It is also possible to

create even more isotropic versions by considering more such rotations.
Let P = {(i, j) ⊂ Z2} denote the set of grid points. For each p = (i, j) ∈ P, the

neighborhood system N k
p ⊂ P is defined as

N 4
p = {(i± 1, j), (i, j ± 1)} ∩ P

N 8
p = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)} ∩ P.

The discrete energy function can be written

min
φ1,φ2∈D,c1,...,c4

Ed(φ1, φ2, c1, ..., c4) = ν
∑
p∈P

∑
q∈Nkp

wpq|φ1
p−φ1

q|+ν
∑
p∈P

∑
q∈Nkp

wpq|φ2
p−φ2

q|

(2.4)
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(a) (b)

Figure 2.1. (a) The graph corresponding to the data term at one grid point p. (b) A sketch of
the graph corresponding to the energy function of a 1D signal of two grid points p and q

+
∑
p∈P

Edatap (φ1
p, φ

2
p),

where

Edatap (φ1
p, φ

2
p) = {φ1

pφ
2
p|c2 − u0

p|β + φ1
p(1− φ2

p)|c1 − u0
p|β)

+(1− φ1
p)φ

2
p|c4 − u0

p|β + (1− φ1
p)(1− φ2

p)|c3 − u0
p|β},

and k = 4 for TV1 and k = 8 for TV1,π4
. The weights wpq are then given by wpq =

4δ2

k||p−q||2 . Similar weights can also be derived from the Cauchy-Crofton formula of
integral geometry as was done for two phases in [5].

2.3. Graph construction. We will construct a graph G such that there is a
one-to-one correspondence between cuts on G and the level set functions φ1 and φ2.
Furthermore, the minimum cost cut will correspond to the level set functions φ1 and
φ2 minimizing the energy (2.4).

min
(Vs,Vt)

c(Vs,Vt) = min
φ1,φ2

Ed(φ1, φ2, c1, ..., c4) +
∑
p∈P

σp. (2.5)

where σp ∈ R are fixed for each p ∈ P. In the graph, two vertices are associated to
each grid point p ∈ P. They are denoted vp,1 and vp,2, and corresponds to each of
the level set functions φ1 and φ2. Hence the set of vertices is formally defined as

V = {vp,i | p ∈ P, i = 1, 2} ∪ {s} ∪ {t}. (2.6)

The edges are constructed such that the relationship (2.5) is satisfied. We begin with
the edges constituting the data term of (2.4). For each grid point p ∈ P they are
defined as

ED(p) = (s, vp,1) ∪ (s, vp,2) ∪ (vp,1, t) ∪ (vp,2, t) ∪ (vp,1, vp,2) ∪ (vp,2, vp,1). (2.7)

The set of all data edges are denoted ED and defined as ∪p∈PED(p). The edges
corresponding to the regularization term are defined as

ER = {(vp,1, vq,1), (vp,2, vq,2) ∀p, q ⊂ P s.t.q ∈ N k
p }. (2.8)
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(a) (b) (c)

Figure 2.2. (a) and (b) distributions of c which makes energy function submodular for all β.
(c) distribution of c which may make energy function nonsubmodular for small β

For any cut (Vs, Vt), the corresponding level set functions are defined by

φ1
p =

{
1 if vp,1 ∈ Vs,
0 if vp,1 ∈ Vt,

φ2
p =

{
1 if vp,2 ∈ Vs,
0 if vp,2 ∈ Vt.

(2.9)

Weights are assigned to the edges such that the relationship (2.5) is satisfied. Weights
on the regularization edges are simply given by

c (vp,1, vq,1) = c (vq,1, vp,1) = c (vp,2, vq,2) = c (vq,2, vp,2) = νwpq, ∀p ∈ P, q ∈ N k
p .

(2.10)
We now concentrate on the weights on data edges ED. For grid point p ∈ P, let

A(p) = c(vp,1, t), B(p) = c(vp,2, t), C(p) = c(s, vp,1),

D(p) = c(s, vp,2), E(p) = c(vp,1, vp,2), F (p) = c(vp,2, vp,1).

In Figure 2.1(a) the graph corresponding to an image of one pixel p is shown. It is
clear that these weights must satisfy

A(p) +B(p) = |c2 − u0
p|β + σp

C(p) +D(p) = |c3 − u0
p|β + σp

A(p) + E(p) +D(p) = |c1 − u0
p|β + σp

B(p) + F (p) + C(p) = |c4 − u0
p|β + σp

(2.11)

This is a non-singular linear system for the weights A(p), B(p), C(p), D(p), E(p), F (p).
Negative weights are not allowed. By choosing σp large enough there will exist a
solution with A(p), B(p), C(p), D(p) ≥ 0. However, the requirement E(p), F (p) ≥ 0
implies that

|c1 − u0
p|β + |c4 − u0

p|β = A(p) +B(p) + C(p) +D(p) + E(p) + F (p)− 2σp

≥ A(p) +B(p) + C(p) +D(p)− 2σp = |c2 − u0
p|β + |c3 − u0

p|β .

This condition must hold for all grid points p ∈ P. Hence, the following condition on
the constant values c1, ..., c4 must be satisfied

|c2 − I|β + |c3 − I|β ≤ |c1 − I|β + |c4 − I|β , ∀ I ∈ [0, L], (2.12)

where L is the maximum intensity value. This condition can be seen in the light of
submodular energy functions [24, 16]. In fact, the pairwise term

∑
p∈P E

data
p (φ1

p, φ
2
p)

is submodular if and only if the condition (2.12) is satisfied.
Let us analyze this condition further. We assume the constant values are ordered

increasingly 0 ≤ c1 < c2 < c3 < c4. The condition says something about how evenly
{ci}4i=1 are distributed. Here are some observations.
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Lemma 2.1. Let 0 ≤ c1 < c2 < c3 < c4. (2.12) is satisfied for all I ∈ [c2, c3] for
any β ∈ N (natural numbers).

Proof. Let c2 ≤ I ≤ c3. Then, clearly

|c2 − I|β < |c1 − I|β and |c3 − I|β < |c4 − I|β ,

for any β ≥ 1. Therefore, adding these two inequalities

|c2 − I|β + |c3 − I|β < |c1 − I|β + |c4 − I|β .

Lemma 2.2. Let 0 ≤ c1 < c2 < c3 < c4. There exists a B ∈ N such that (2.12) is
satisfied for any β ≥ B.

Proof. Assume first I > c3, then

|c1 − I| > |c2 − I| > |c3 − I|

Therefore, there exists a const > 1 s.t.

|I − c1| = const |c2 − I|.

Pick B1
I ∈ N s.t.

constβ ≥ 2, ∀β ≥ B.

Then

|c1 − I|β + |c4 − I|β ≥ |c1 − I|β ≥ 2|c2 − I|β > |c2 − I|β + |c3 − I|β . ∀β ≥ B1
I

If I < c2, then

|c4 − I| > |c3 − I| > |c2 − I|

and thus the same argument can be used to show there exists B2
I ∈ N such that

|c4 − I|β + |c1 − I|β > |c2 − I|β + |c3 − I|β , ∀β ≥ B2
I .

In case c2 ≤ I ≤ c3, the existence of such a B was proved in Lemma 2.1, e.g. B = 1.
Therefore the condition (2.12) is satisfied for any I ∈ [0, L] by choosing β ≥ B =

maxI∈[0,L] max{B1
I ,B2

I}.

So (2.12) becomes less strict for larger β. In fact we have observed that for β = 2,
(2.12) is realistic for most practical images.

The possibility that (2.12) is not satisfied may happen in two situations: If
c1, c2, c3 are close to each other compared to c4 and intensity u0

p is close to c4, or
if c2, c3, c4 are close to each other compared to c1 and u0

p is close to c1, see Figure 2.2.
Let us go back to the linear system (2.11), with restriction E(p), F (p) ≥ 0. As-

suming (2.12) holds, this has infinitely many solutions. It was shown in [24] that
at most three edges are required for representing a general submodular term of two
binary variables. Therefore, it is possible to pick a solution such that at least three of
the weights A(p), B(p), C(p), D(p), E(p), F (p) in ED(p) becomes zero for each p ∈ P.
The construction of the solution is as follows

A(p) = max{|c2 − u0
p|β − |c4 − u0

p|β , 0}, C(p) = max{|c4 − u0
p|β − |u0

p − c2|β , 0}
8



B(p) = max{|c4 − u0
p|β − |c3 − u0

p|β , 0}, D(p) = max{|c3 − u0
p|β − |c4 − u0

p|β , 0}

E(p) = |c1 − u0
p|β + |c4 − u0

p|β − |c2 − u0
p|β − |c3 − u0

p|β , F (p) = 0.

The value σp is given implicitly by this solution.
Therefore, by analyzing the complexity of our method in the augmented paths

framework, it is easily seen that the cost of our method is equal to the cost of one
single iteration of the alpha expansion method.

Note finally that three phase segmentation is a special case that can be handled by
putting infinite cost to one of the four possible solutions, i.e. E(p) =∞ or F (p) =∞.

Remark 1. In this work, we concentrate on multiphase image segmentations
problems. We want to emphasis that the graph constructed here can be used for other
multiphase problems besides image segmentation problem.

2.4. Minimization of non-submodular energy functions. In the last sec-
tion, we have observed that the energy function (2.4) is submodular if c1, ..., c4 satisfies
(2.12). Although this is realistic for most images, we will develop a method for mini-
mizing nonsubmodular functions with particular emphasis on nonsubmodular terms of
the kind encountered here. Minimization of non-submodular functions via graph cuts
has been investigated previously, see [22] for a review. The usual idea is to develop
a method for determining most of the variables in the energy function, while leaving
some of the variables undetermined. In our approach, we instead aim to determine
all the variables. Even when (2.12) does not hold, the energy function is ”almost
submodular”, which we believe explains why the following very efficient algorithms
works so well in practice.

Consider now the situation

|c2 − u0
p|β + |c3 − u0

p|β > |c1 − u0
p|β + |c4 − u0

p|β ,

for some p ∈ P. In this case the linear system (2.11) has a solution only if either
E(p) < 0 or F (p) < 0, in which case one of the edges, (vp,1, vp,2) or (vp,2, vp,1), will
have negative weight. In order to construct the solution we consider two cases. If
u0
p > c3, then

E(p) = |c1 − u0
p|β + |c4 − u0

p|β − |c2 − u0
p|β − |c3 − u0

p|β , F (p) = 0

A(p) = max{|c2−u0
p|β−|c4−u0

p|β , 0}−E(p), C(p) = max{|c4−u0
p|β−|u0

p−c2|β , 0}−E(p)

B(p) = max{|c4−u0
p|β−|c3−u0

p|β , 0}−E(p), D(p) = max{|c3−u0
p|β−|c4−u0

p|β , 0}−E(p),

in which case E(p) < 0. If u0
p < c2, then

F (p) = |c1 − u0
p|β + |c4 − u0

p|β − |c2 − u0
p|β − |c3 − u0

p|β , E(p) = 0

A(p) = max{|c1−u0
p|β−|c3−u0

p|β , 0}−F (p), C(p) = max{|c3−u0
p|β−|u0

p−c1|β , 0}−F (p)

B(p) = max{|c2−u0
p|β−|c1−u0

p|β , 0}−F (p), D(p) = max{|c1−u0
p|β−|c2−u0

p|β , 0}−F (p),
9



in which case F (p) < 0. Remember that by Lemma 2.1, the condition holds whenever
u0
p ∈ [c2, c3].

It is difficult to interpret what is physically meant by max flow on a graph with
negative edge weights. The concept of min-cut, on the other hand, certainly have
a meaning even if some of the edges have negative weight. In the extreme case of
negative weight on all edges, this becomes equivalent to the max-cut on a graph with
negated edge weights. The first step of our procedure finds a good feasible solution,
and therefore also a good upper bound on the objective function (2.4). Very often
this feasible solution is in fact the optimal solution. All edges of negative weight
will be removed, resulting in a new graph G. The motivation is as follows. The
previous section discussed the possibility of condition (2.12) not being satisfied. In
this case c1, c2, c3 are close to each other compared to c4 and u0

p at p ∈ P is close
to c4. Measured by the data term, the worst assignment of p is to phase 1, which
has the cost |c1 − u0

p|β . By removing the negative edge with E(p) < 0, the cost of
this assignment becomes even higher |c1 − u0

p|β − E(p). Alternatively, if c2, c3, c4 are
close to each other compared to c1 and u0

p is close to c1 then F (p) < 0. By removing
this edge with negative weight, the cost of the worst assignment of u0

p becomes higher
|c4 − u0

p|β − F (p). We therefore expect the minimum cut on G to be almost identical
to the minimum cut on G. For ease of notation, we define the sets

P1 = {p ∈ P | E(p) < 0, F (p) ≥ 0},

P2 = {p ∈ P | F (p) < 0, E(p) ≥ 0}.

Assume the maximum flow has been computed on G, letRA(p), RB(p), RC(p), RD(p)
denote the residual capacities on the edges (vp,1, t), (vp,2, t), (s, vp,1), (s, vp,2) respec-
tively. The following theorem gives a criterion for when the minimum cut on G yields
the optimal solution of the original problem.

Theorem 2.3. Let G be a graph as defined in (2.6)-(2.8) and (2.10), with weights
A(p), B(p), C(p), D(p), E(p), F (p) satisfying (2.11). Let G be the graph with weights
as in G, with the exception c(vp,1, vp,2) = 0 ∀p ∈ P1 and c(vp,2, vp,1) = 0 ∀p ∈ P2.

Assume the maximum flow has been computed on the graph G. If

RA(p) +RD(p) ≥ −E(p), ∀p ∈ P1 and RB(p) +RC(p) ≥ −F (p), ∀p ∈ P2,
(2.13)

then min-cut (G) = min-cut (G).
Proof. We will create a graph G of only positive edge weights, such that the

minimum cut problem on G is a relaxation of the minimum cut problem on G. The
graph G is constructed with weights as in G with the following exceptions

c(vp,1, t) = A(p)−RA(p), ∀p ∈ P1,

c(s, vp,2) = D(p)−RD(p), ∀p ∈ P1

c(vp,2, t) = B(p)−RB(p), ∀p ∈ P2,

c(s, vp,1) = C(p)−RC(p), ∀p ∈ P2.

10



Then min-cut(G) ≤ min-cut(G) ≤ min-cut(G). The max flow on G is feasible on G
and therefore also optimal. Therefore, by duality min-cut(G) = min-cut(G) which
implies min-cut(G) = min-cut(G).

Therefore, by computing the max flow on G and examining the residual capacities for
criterion (2.13), we can check whether the solution is optimal on G. We have observed
that it is often possible to stop at this stage. However, if (2.13) does not hold for all
pixels one could either accept the solution as suboptimal, or make use of the following
algorithm, which is designed to handle such cases. The idea is to create a succession of
graphs {Gi}ni=1 with only positive edge weights, such that min-cut(Gi) ≤ min-cut(G)
for all i, min-cut(G0) = min-cut(G) and min-cut(Gn) = min-cut(G). For a given flow
we define two new sets P1

0 ⊆ P1 and P2
0 ⊆ P2

P1
0 = {p ∈ P1 | RA(p) +RD(p) < −E(p)},

P2
0 = {p ∈ P2 | RB(p) +RC(p) < −F (p)}.

The graphs Gi are constructed such that the minimum cut problems on Gi are re-
laxations of the minimum cut problem on G. Particularly, for each p ∈ P1

0 and each
p ∈ P2

0 , the cost of one of the 4 possible phase assignments is reduced, while the rest
of the assignment costs are correct (including the one that was set too high in G).
The cut on Gi is feasible if no p ∈ P1

0 ∪P2
0 is assigned to a phase of reduced cost. The

algorithm is iterated until the cut on Gi becomes feasible.
Algorithm 1:
G0 = G,G−1 = ∅, i = 0
Find max flow on G0, update P1

0 and P2
0

if(P1
0 and P2

0 are empty)
stop, optimal solution found
else:
while(Gi 6= Gi−1){

1. Construct Gi+1 as in G except for the following weights

for all p ∈ P1
0

if(vp,1 ∈ Vt and vp,2 ∈ Vt in Gi): set c(vp,1, t) = A(p) + E(p)
if(vp,1 ∈ Vs and vp,2 ∈ Vs in Gi): set c(s, vp,2) = D(p) + E(p)
if(vp,1 ∈ Vs and vp,2 ∈ Vt in Gi): set c(s, vp,1) = A(p) + E(p)
if(vp,1 ∈ Vt and vp,2 ∈ Vs in Gi): set c(s, vp,1) = D(p) + E(p)

for all p ∈ P2
0

if(vp,1 ∈ Vt and vp,2 ∈ Vt in Gi): set c(vp,2, t) = B(p) + F (p)
if(vp,1 ∈ Vs and vp,2 ∈ Vs in Gi): set c(s, vp,1) = C(p) + F (p)
if(vp,1 ∈ Vs and vp,2 ∈ Vt in Gi): set c(s, vp,2) = B(p) + F (p)
if(vp,1 ∈ Vt and vp,2 ∈ Vs in Gi): set c(s, vp,2) = C(p) + F (p)

2. Find max-flow on Gi+1

3. Update P1
0 and P2

0 by examining residual capacities in Gi+1

4. i← i+ 1
}

Theorem 2.4. Let Gn be the graph at termination of Algorithm 1. Then
min-cut(Gn) = min-cut(G).

11



Proof. If the algorithm terminates with G0, optimality was proved in theorem
2.3. Assume therefore n ≥ 1. The proof follows some of the same ideas as the proof
of theorem 2.3. We will use Gn to construct a graph G such that the minimum cut
problem on G is a relaxation of the minimum cut problem on G. Observe first that
since Gn = Gn−1, the minimum cut on Gn is feasible, no edges in the cut have a
reduced cost. Therefore, min-cut(Gn) ≥ min-cut(G)

The graph G is constructed with weights as in Gn except (residuals R obtained
from flow on Gn)

c(vp,1, t) = A(p)−RA(p), ∀p ∈ P1\P1
0 ,

c(s, vp,2) = D(p)−RD(p), ∀p ∈ P1\P1
0

c(vp,2, t) = B(p)−RB(p), ∀p ∈ P2\P2
0 ,

c(s, vp,1) = C(p)−RC(p), ∀p ∈ P2\P2
0 .

Then min-cut(G) ≤ min-cut(G) ≤ min-cut(Gn). By construction, the max flow on Gn
is feasible on G, and therefore also optimal on G. Hence, by duality min-cut(G) =
min-cut(Gn) which implies min-cut(G) = min-cut(Gn).

Observe that there is a lot of redundancy in this algorithm. It is not necessary
to compute the max-flow from scratch in each iteration, especially in the augmenting
paths framework. Rather, starting with the max flow in Gi, flow can be pulled back
along s− t paths passing through vertices vp,1 or vp,2 for p ∈ P1

0 ∪P2
0 until it becomes

feasible in graph Gi+1. With such an initial flow, only a few augmenting paths are
required to find the max flow on Gi+1. Since P1 and P2 are small subsets of P, and
P1

0 ∪ P2
0 are small subsets of P1 ∪ P2, the cost of this algorithm is negligible.

Note also that it is possible to prove that potential edges of negative weight can
only go in one direction. That is, if E(p) < 0 for some p ∈ P, then F (p) ≥ 0 for all
p ∈ P. If F (p) < 0 for some p ∈ P, then E(p) ≥ 0 for all p ∈ P.

We are trying to develop a convergence theory for this algorithm. Numerical
experiments indicate that convergence is fast and no oscillations occur. We have so far
investigated convergence experimentally by applying the algorithm to all images from
the segmentation database [1]. We have used both the L1 and L2 data fidelity term,
and different values on the regularization parameter ν, always resulting in convergence
in an average of 3-4 iterations. Let us point out that Algorithm 1 was very rarely
needed. When we used L2 norm in data fidelity (β = 2), P1

0 or P2
0 was usually

empty, but occasionally contained a very small subset of P1 or P2. In these cases the
algorithm converged in 1-3 iterations. When using L1 norm (β = 1) the subsets P1

0

or P2
0 were comparatively a little larger.
We observed that pathological cases could be created by setting ν unnaturally

high, since then the sets P1
0 or P2

0 became larger. In order to verify the convergence
of the algorithm, we have therefore also tested it on these pathological cases by using
L1 norm and setting ν very high. After going through all images from the database
[1], we observed that it always converged. The average number of iterations was 9
(when it was needed), and the maximum number of iterations was 30.
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3. Extension to non-local operators and edge detectors. We have so far
only considered euclidian measurements of the length term in the Chan-Vese model.
Recently, powerful extensions of this model with two phases have been made by using
non-local operators [17, 8] or active contours with edge detectors [9]. Both of these
extensions use a priori information of the image in the length measure. These concepts
can now elegantly be generalized to multiple phases by using our global minimization
approach. The multiphase Chan-Vese model with edge detector can be written

min
φ1,φ2∈D,c1,...,c4

E(φ1, φ2, c1, ..., c4) = ν

∫
Ω

g(|∇u0(x)|)|∇φ1|dx+ν
∫

Ω

g(|∇u0(x)|) |∇φ2|dx+

(3.1)

Edata(φ1, φ2),

where g(s) is a decreasing function, e.g. g(s) = 1
s2+ε , and Edata(φ1, φ2) is given

as before. It forces the boundaries of the phases to locations of high gradients, the
edges in the image. Another interesting extension is the use of non-local differential
operators in the above functional. Non-local filters and operators have recently gained
huge popularity in image denoising for their ability to simultaneously denoise smooth
and textured regions [2, 18, 20]. Recently its power has also been demonstrated for
image segmentation [17, 8]. In [8], the two phase Chan-Vese model was extended
the non-local setting, and was shown to better segment fine and small structures.
Both the data term and regularization term could be extended. Here we focus on the
regularization term. As in [8] we define a non-local version of the gradient ∇NLφ :
Ω× Ω 7→ R of φ between any pairs of points (x, y) ∈ Ω× Ω

∇NLφ(x, y) = (φ(x)− φ(y))
√
w(x, y), (3.2)

where w is some weight function. The magnitude of the gradient is defined as its
inner product with itself

|∇NLφ(x)| =

√∫
Ω

(φ(x)− φ(y))2w(x, y)dy. (3.3)

Hence the non-local total variation can then be defined as∫
Ω

|∇NLφ|dx =
∫

Ω

√∫
Ω

(φ(x)− φ(y))2w(x, y)dy dx (3.4)

The work of [8] proposed a non-local extension of the two phase Chan-Vese model
with this operator

min
φ∈D,c1,c2

ν

∫
Ω

|∇NLφ|dx+ {φ|c1 − u0|β + (1− φ)|c2 − u0|β}dx. (3.5)

They showed that this functional could be globally minimized (for fixed c1, c2) by
using continuous or discrete graph cut. We are now able to generalize this result to
multiple phases. The multiphase non-local Chan-Vese functional can be written

ENL−CV (φ1, φ2, c1, ..., c4) = ν

∫
Ω

|∇NLφ1|dx+ν
∫

Ω

|∇NLφ2|dx+Edata(φ1, φ2). (3.6)

We will show that a discretized version of this functional can be minimized globally
via graph cuts. Remember that since Edata(φ1, φ2) is not convex, continuous graph
cuts cannot be used.
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3.1. Discretization and graph representation. The discrete versions of (3.1)
and (3.6) have the same form as (2.4), which is repeated here for convenience

min
φ1,φ2∈D,c1,...,c4

Ed(φ1, φ2, c1, ..., c4) = ν
∑
p∈P

∑
q∈Nkp

wpq|φ1
p−φ1

q|+ν
∑
p∈P

∑
q∈Nkp

wpq|φ2
p−φ2

q|

+
∑
p∈P

Edatap (φ1
p, φ

2
p),

but the weights wpq differs. In case of edge detector (3.1) they are given as

wpq = ν
2δ2(|∇du0(p)|+ |∇du0(q)|)

k||p− q||2
∀p ∈ P, q ∈ N k

p ,

where ∇d is a discrete gradient. The edges are defined as before in Section 2.3. In case
of the non-local functional, the neighborhood system N k

p is not local in the spatial
sense, but may potentially contain all points in P.

min
φ1,φ2∈D,c1,...,c4

Ed(φ1, φ2, c1, ..., c4) = ν
∑
p∈P

∑
q∈P

wpq|φ1
p − φ1

q|+ ν
∑
p∈P

∑
q∈P

wpq|φ2
p − φ2

q|

+
∑
p∈P

Edatap (φ1
p, φ

2
p),

The weights can be chosen in the discrete setting as in [2, 8]

wpq = exp(−
||U0

p − U0
q ||L2

h
), ∀(p, q) ∈ P × P,

where U0
p and U0

q are patches of the image u0 centered at pixels p and q respectively,
and h is a scale parameter. The points p and q are interpreted as close if their image
patches are similar. The regularization edges and weights are now given as

c (vp,1, vq,1) = c (vq,1, vp,1) = c (vp,2, vq,2) = c (vq,2, vp,2) = νwpq, ∀(p, q) ∈ P × P.
(3.7)

It is not necessary to use all these edges in practice, since that would slow down the
computational cost considerably. Only a selected few connections are needed for each
vertex. In the two phase segmentation case or image denoising case [2, 8] discussed
details on how to select the most relevant edges.

4. Unknown constant values, algorithm. The algorithm presented in the
last sections minimizes Ed(c, φ1, φ2) with respect to φ1, φ2 for a fixed c. Vice versa, for
a fixed φ1, φ2 the values c minimizing Ed(c, φ1, φ2) are given by the average intensity
in each region

ci =

∫
Ωi
u0 dx∫

Ωi
dx

, i = 1, ..., n (4.1)

We want an algorithm to minimize both with respect to φ and c. This is achieved by
combining the two above results in the following iterative descent algorithm
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Size Phases Gradient descent Graph Cut
Experiment1 100x100 4 25.3 0.10
Brain 933x736 4 3077 19.4
Experiment 3 100x100 4 − 0.14
Experiment 4 320x480 4 − 10.2
Experiment 5 320x480 4 − 9.9

Table 5.1
Computation times in seconds for gradient descent vs graph cut optimization (the computation

times when using L1 data term are not available for gradient descent)

Algorithm 2:
Estimate initial values c0, set l = 0.
while( ||cl − cl−1|| > tol)

Use graph cuts to estimate φ from

φ = argminφ̃1,φ̃2Ed(cl, φ̃1, φ̃2). (4.2)

Update cl+1 according to equation (4.1).
Update l← l + 1

Note that no initialization of the level set function is required. Only the values c0

need to be initialized, which can be achieved very efficiently by the isodata algorithm
[35]. In all our experiments, convergence was reached in 4-12 iterations. It must be
noted that this algorithm is no longer guaranteed to find the global minima. Theo-
retically, it may get trapped in a local minima close to the initial values c0. However,
in practice it is usually rather insensitive to initialization.

5. Numerical results. Numerical experiments are made to demonstrate the
new minimization methods. We also make comparisons between the PDE approach
and combinatorial approach for minimizing (1.3). In all results, the phases are de-
picted as bright regions. In experiment 1 and 2, Figure (5.2) and (5.1), the L2 norm
is used in the data term. The constant values {ci}4i=1 satisfy condition (2.12) initially
and in all iterations of Algorithm 2 until convergence.

We next try to use L1 data fidelity on the image in Figure 5.2 (b). For this
modified image, we observe that in the optimal solution, c1, c2, c3 are close to each
other compared to c4. Therefore, as expected, condition (2.12) was not satisfied for
all pixels. However, after finding the max flow on G and examining the residual
capacities, the criterion 2.13 was satisfied, and hence the global minimum had been
obtained. If the constant values had been even closer to each other, the model would
merge some of the regions together. See Table 5 for computation times.

For the next two images, c.f. Figure 5.3(a) and (b), the L1 norm was used,
and for some grid points neither condition (2.12) or the criterion (2.13) was satisfied.
Therefore, Algorithm 1 had to be used. For each iteration of Algorithm 2, it converged
in 5-8 iterations. See Table 5 for computation times (the cost of Algorithm 1 has been
neglected). Because ν is set so high, the results does not look very good. The purpose
of these examples is to show that Algorithm 1 can be used to find the global minimum
of the energy function in case criterion (2.13) is not satisfied. As already mentioned,
we have also tested the convergence of Algorithm 1 experimentally by applying it to
all images from the database [1]. This includes pathological with ν set very high. The
different constant values in these experiments were given automatically from each
iteration of Algorithm 2.
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(a) Input image

(b) graph cut

(c) gradient descent

Figure 5.1. Experiment 2: From left to right: phase 1 - phase 4.

(a) Experiment 1

(b) Experiment 3

Figure 5.2. (a) Experiment 1: L2 data fidelity. (b) Experiment 3: L1 data fidelity. Note that
the constant values of phase 1-3 are very close to each other. From left to right: input image, phase
1, phase 2, ..., phase 4.
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(a) Experiment 3

(b) Experiment 3

Figure 5.3. (a)Experiment 4. (b) Experiment 5. From left to right: input image, phase 1 -
phase 4. L1 norm

6. Conclusions. We have developed a global minimization method for the mul-
tiphase Chan-Vese model of image segmentation based on graph cuts. Numerical
experiments also demonstrated superior efficiency of the new approach over gradient
descent. If the average intensity values (constant values) of the phases were suffi-
ciently evenly distributed, the energy function became submodular. A method for
minimizing non-submodular was developed in order to handle all possible distribu-
tions of the constant values. This method was specially designed for energy functions
of our kind. We also showed that non-local extensions of the multiphase Chan-Vese
model could be globally minimized by our method.

In this work, we have restricted our attention to four (or less) phases. The results
can be generalized to more phases by using more level set functions. For m level set
functions, m vertices in the graph will be associated to each grid point. Since the data
term then would involve interactions between m binary variables, we expect submod-
ularity to be more restrictive. We plan to investigate how submodularity is related to
the constant values in these cases, and extend the non-submodular algorithm to this
setting. On the other hand, four phases suffices in theory to segment any 2D image
by the the four color theorem. Therefore, algorithms can alternatively be designed to
take advantage of this, which makes extensions to more than four phases unnecessary.
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