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Abstract. Recently, it is shown that graph cuts algorithms can be used to solve some variational
image restoration problems, especially connected with noise removal and segmentation. For very large
size problems, the cost for memory and computation increase dramatically. We propose a domain
decomposition method with graph cuts algorithms. We show that the new approach is cost effective
both for memory and computation. Experiments with large size 2D and 3D data are supplied to
show the efficiency of the algorithms.
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1. Introduction. Segmentation is one of the fundamental tasks for image pro-
cessing. Mumford and Shah model [26] is an efficient tool for region based image
segmentation. This model is robust to noise and can segment objects without edges.
However, the minimization problem is difficult to solve numerically.

The level set method [11, 27] was first introduced to solve the Mumfod-Shah
functional by Chan and Vese in [7, 34]. In [24, 25, 30], some variants of the level set
method, so-called ”Piecewise Constant Level Set Method” (PCLSM), was introduced.
This method can identify several interfaces by one single level set function, which
makes it easier to solve the Mumford-Shah model.

Traditionally, methods based on gradient descent are often used for solving the
Mumford-Shah models, see [24, 25, 30]. These methods are normally slow and difficult
to find global minimizers. Recently, a lot of work have been done on applying graph
cuts algorithms for image segmentation [3, 4, 18, 12, 22]. It is more efficient for solving
this kind of minimization problem. The connection of graph cuts and variational
problems has been established in [2, 5, 10, 19]. For Mumford-Shah segmentation,
some work using graph cuts optimization for two-phase Mumford-Shah model has
been done in [9] and [13]. For multiphase problems, the method of [1, 10, 13, 23]
can be adapted to image segmentation. In this work, we shall follow the approach
given in [1]. In [1], the authors have extended the graph cuts idea of [10, 19, 20]
to the multiphases Mumford-Shah segmentation and it is more suitable for practical
applications. However, when the images become large and the number of phases
increases, both computational cost and memory usage are greatly increased. In this
work we try to find some remedies for these difficulties and show that we could get
some algorithms which has quite high efficiency as well as low memory usage. We
propose a method combining the domain decomposition method with graph cuts
algorithms.

The paper is organized as follows. Section 2, we review the PCLSM and its appli-
cations to the Mumford-Shah model. Section 3, we review the graph cuts algorithm
of [1] to the multiphase Mumford-Shah model. In Section 4, we combine the domain
decomposition methods with this graph cuts idea to solve the Mumford-Shah model.
Some implementation detailed are supplied in Section 5. Finally, in Section 6, we
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carry out some experiments by our method and compare the results with the original
graph cuts algorithm.

2. Mumford-Shah model with PCLSM.

2.1. Mumford-Shah model. The Mumford-Shah model is a well known model
for image segmentation problem [26]. In the model, Ω is a bounded domain and u0(x)
is the input image. We search for a pair (u,Γi) through the following minimization
problem:

E(u,Γi) =
∫

Ω

(u− u0)2dx+ µ

∫
Ω\

S
i Γi

|∇u|2dx+
n∑

i=1

γ

∫
Γi

ds (2.1)

where µ and γ are nonnegative constants and
∫
Γi
ds is the length of the boundary of

interfaces Γi. The most popular way to solve this minimization problem is applying
the level set method [7], especially for the piecewise constant Mumford-Shah model.
For such cases, the second term is vanished in the minimization functional.

2.2. Piecewise constant level set method. In [24, 25, 30], the piecewise
constant level set method (PCLSM) was proposed and applied to the Mumford-Shah
model. The main idea of PCLSM is to seek a partition of the domain Ω into n
subdomains Ωi, i = 1, 2, · · · , n. The essential idea is to use a piecewise constant level
set function φ to identify the subdomains.

φ = i in Ωi. (2.2)

Once the function φ is identified, we can construct the corresponding characteristic
functions for each subdomains Ωi as

ψi =
1
αi

n∏
j=1,j 6=i

(φ− j), αi =
n∏

k=1,k 6=i

(i− k). (2.3)

If φ is defined as in (2.2), we can have ψi(x) = 1 for x ∈ Ωi, otherwise we have
ψi(x) = 0. Based on these characteristic functions, we can extract the geometrical
information of the boundaries of the subdomains Ωi. For example, the length of the
interfaces surrounding each subdomains Ωi should be

Length(∂Ωi) =
∫

Ω

|∇(ψi)|. (2.4)

For some given values ci, i = 1, 2, · · ·n, define

u =
n∑

i=1

ciψi. (2.5)

We have u = ci in the corresponding subdomain Ωi, if φ satisfies (2.2). In the next
subsection, we shall use this idea for image segmentation with the Mumford-Shah
model.

2.3. The minimization probelm. Assume u is a piecewise constant function
as given in (2.5). The multiphases piecewise constant Mumford-Shah model is to solve
the following minimization problem:

min
c∈Rn,φ∈{1,2,··· ,n}

E(c, φ), E(c, φ) =
∫

Ω

(u(c, φ)− u0)2dx+
γ

2

n∑
i=1

∫
Ω

|∇ψi|dx (2.6)
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We use total variation (TV) of the characteristic function to replace the last term
of the Mumford-Shah functional, measuring the length of the interfaces. Such an
approach has also been used in other segmentation models in [8, 21]. It is easy to see
that

φ =
n∑

i=1

iψi(φ), ∇ψi = ψ′i(φ)∇φ.

Thus, there exist two constants α1(n) > 0, α2(n) > 0, such that

α1(n)
∫

Ω

|∇φ|dx ≤
n∑

i=1

∫
Ω

ψi(φ)|dx ≤ α2(n)
∫

Ω

|∇φ|dx (2.7)

Unless ”symmetry” is a crucial issue for the segmentation problem, we replace the
regularization term in E(c, φ) by an equivalent functional and solve the following
minimization problem:

min
c∈Rn,φ∈{1,2,··· ,n}

E(c, φ), E(c, φ) =
∫

Ω

(u− u0)2dx+ γ

∫
Ω

|∇φ|dx. (2.8)

This functional is the Mumford-Shah model we used in the paper. In [24, 25, 30], the
constrained optimization problem (2.8) was solved by finding the saddle point of the
corresponding augmented Lagrangian functional. In these methods, some iterative
numerical methods are used to solve the corresponding Euler-Lagrange equations,
such as gradient decent time marching scheme. In the next section, we shall construct
a graph and solve minimization problem (2.8) by the graph cuts algorithms as in [1].

3. Graph cuts for multiphase Mumford-Shah Model. Instead of solving
the Euler-Larange equation, graph cuts algorithms have been proposed in [1] to solve
minimization problem (2.8). We give a review of this algorithm in the following.

3.1. Background on graph cuts. The graph cuts algorithm is an established
powerful method to minimize certain kinds of energy functional. A directed capac-
itated graph G = (V, E) is a set of vertices V and directed edges E . There are two
special vertices in the graph, i.e. the source s and the sink t. A cut on graph G
partitions the vertices into two disjoint groups S and T such that s ∈ S and t ∈ T .
The cost of the cut is the sum of capacities of all edges that go from S to T

c(S, T ) =
∑

u∈S,v∈T,(u,v)∈E

c(u, v). (3.1)

We focus on finding a cut with the smallest cost c(S, T ), namely the minimal cut. To
solve the minimal cut problem, there are mainly two groups of algorithms: Goldberg-
Tarjan style ”push-relabel” methods [16] and Ford-Fulkerson style ”augmenting paths”
[15]. In our paper, we use the augmenting paths method [3].

3.2. Discretization of energy functional. Assume we want to segment a
M ×N image into n(n ≥ 2) phases. Let P denotes the index set of the pixels, i.e.

P = {(i, j)|i ∈ 1, . . . ,M, j ∈ 1, . . . , N} . (3.2)

There are two different ways to discretize the TV term of the functional in (2.8), i.e.
isotropic and anisotropic. Since the isotropic total variation is not graph representable,
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we consider anisotropic discretization of the TV term. The anisotropic discretization
depends on the neighbor pixels adopted to represent the TV term. In this paper, we
consider 4 and 8 neighbors for 2D images, c.f. [2, 10, 17, 13]

TV 4(φ) =
∑
i,j

|φi+1,j − φi,j |+ |φi,j+1 − φi,j |. (3.3)

TV 8(φ) = TV 4(φ) +
1√
2

∑
i,j

(|φi+1,j+1 − φi,j |+ |φi+1,j−1 − φi,j |). (3.4)

The data fidelity term can be discretized directly. For a given p = (i, j) ∈ P, define

N4(p) = {(i± 1, j), (i, j ± 1)} ∩ P, (3.5)
N8(p) = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)} ∩ P. (3.6)

Using these notations, the discretization version of (2.8) can be written as

Ed(c, φ) =
∑
p∈P
|up − u0

p|2 + γ
∑

p∈P,q∈Nk(p)

wp,q|φp − φq|. (3.7)

Above, Nk(p), k = 4, 8, is defined as in (3.5)-(3.6) and wpq is the corresponding weight
for the discretized TV-term as in (3.3) and (3.4), see also [1]. u0

p is the intensity value
of u0 at p ∈ P and up is related to φp as in (2.5). We assume that the value of
ci, i = 1, 2, · · ·n are known. For boundary points p, Nk(p) has less neighboring points.

By doing so, the minimization problem is transformed into discrete form which is
graph representable. We can get the minimizer of (3.7) using the max-flow / min-cut
algorithm using the algorithm of [1].

It is easy to extend the model to 3D problems. For example, we can use the neigh-
borhood involving 6 neighbors for 3D and use the following term as the regularization
term:

TV 3D,6(φ) =
∑
i,j,k

(|φi+1,j,k − φi,j,k|+ |φi,j+1,k − φi,j,k|+ |φi,j,k+1 − φi,j,k|)

Later, we shall also test on 3D segmentation problems and this regularization term
has been used there. We can also add more neighboring points to approximate the
length better.

3.3. Graph construction. Recently, the graph of [10, 19, 20] has been extended
in [1] to solve the multiphases Mumford-Shah model. In this subsection, we briefly
review the essential ideas.

To use graph cuts algorithm for the multiphases segmentation problems, we have
to introduce an extra dimension, i.e. we construct graph with one dimension higher
than the original image. For a 2D image of size M ×N , we construct a graph in 3D
containing M ×N × (n− 1) vertices. More specifically, we have G = (V, E) and

V =
{
vp,l | (p, l) ∈ R2 × R| p ∈ P, l ∈ {1, . . . , n− 1}

}
. (3.8)

The edges E are divided into two groups: ED coresponds to the data fidelity term in
(3.7) and ER corresponds to the TV term in (3.7). They are defined, respectively, as

ED = ∪p∈P
{
(s, vp,1) ∪n−2

l=1 (vp,l, vp,l+1) ∪ (vp,n−1, t)
}
. (3.9)

ER = {(vp,l, vq,l) | p ∈ P, q ∈ Nk(p), l ∈ 1, . . . , n− 1} . (3.10)
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(a) (b)

Fig. 3.1. (a) The graph corresponds to 1D signal of 6 grid points. We construct a 3 level grids
for this 4 phase segmentation problem. The gray curve denotes the cut. (b) shows the values of the
level set function φ at each grid point corresponding to the cut in (a).

In Fig 3.1, the graph for a 1D signal with 4-phase segmentation is shown. The edges
in ED are illustrated as the vertical arrows while the edges in ER are illustrated as the
horizontal arrows in Fig 3.1. A cut is called admissible if it only serves one vertical
edge for each p ∈ P, c.f. [1]. In order to exclude non-adimissible cut, we introduce an
artificial constant σ > 0 and define the capacity of the edges as:

c(s, vp,1) = |u0
p − c1|2 +

σ

MN
∀p ∈ P, (3.11)

c(vp,l, vp,l+1) = |u0
p − cl|2 +

σ

MN
∀p ∈ P, ∀l ∈ 1, . . . n− 2, (3.12)

c(vp,n, t) = |u0
p − cn|2 +

σ

MN
∀p ∈ P. (3.13)

c(vp,l, vq,l) = γ · wpq, ∀p ∈ P, ∀q ∈ Nk(p), ∀l ∈ 1, . . . n− 1. (3.14)

In the above, γ is the regularization parameter, wpq is the weight for the discretization
of the TV-norm and Nk(p) is the set containing the neighbors of p ∈ P used in the
discretization.

After adding all edges to the graph, we can solve the minimization by using
the max-flow / min-cut algorithm. We emphasis that the segmentation problem is
transfered from the size of M ×N to the size of M ×N × (n− 1).

3.4. An iterative segmentation scheme. In the last section, we show that
graph cuts algorithms can be used to solve the Mumford-Shah minimization problem
when the values of c are known. For minimization problem (2.8), we also need to
estimate the c values and the following algorithms is rather robust and converges
fast:

Algorithm 3.1. (Graph cuts segmentation algorithm)
Choose initial values for c0, set l = 0.

while (‖cl − cl−1‖ > tol)
1. Use graph cuts to estimate φl+1 from

φl+1 = argminφ̃Ed(cl, φ̃), (3.15)

2. Compute the characteristic functions {ψl+1
k }nk=1 from φl+1, c.f. (2.5).
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3. Update cl+1 by

ck
l+1 =

∑
p∈P u

0
pψk,p∑

p∈P ψk,p
, k = 1, . . . , n. (3.16)

4. Update l + 1← l.
The initial values c0 are computed very efficiently by the isodata algorithm, see

[33]. For segmentation problems, the above iterative procedure normally converges
in about 5-6 iterations. Compared with traditional gradient decent methods, it is
normally 500 times faster for relatively large size 2D images we have tested, see
[1]. When the size is very large, the memory and computational cost is becoming a
challenge problem.

4. Graph cuts algorithms with domain decomposition. As we discussed,
when the images become large, the computational and memory cost for the multiphase
graph cuts algorithm increases greatly. This is causing problems for some data set with
very large sizes, especially in 3D applications. We shall use a domain decomposition
method to overcome these difficulties.

Domain decomposition methods is an efficient tool in large-scale computation and
has been used to PDE problems [6, 14, 31, 28, 29, 32]. In [32], these techniques have
been used for general convex minimization problems.

As was done in [32], the image domain can be decomposed into four regions and
then use graph cuts algorithms to solve subproblems over the subdomains. We use
Fig 4.1 to illustrate the decomposed subdomains.

Fig. 4.1. An example of domain decomposition with 25 subdomains

4.1. Non-overlapping domain decomposition. First, we consider the non-
overlapping domain decomposition method. We assume Ω has been decomposed into
4 non-overlapping subdomains. The subdomains intersect only on their interfaces,
see Fig. 4.1. We denote Pi ⊂ P, i = 1, 2, 3, 4, the index sets for the grid points
of the subdomains, c.f. (3.2). Corresponding to each subdomain, we define energy
functional

Ei
d(c, φ) =

∑
p∈Pi

|up − u0
p|2 + γ

∑
p∈Pi,q∈Nk(p)∩Pi

wp,q|φp − φq|. (4.1)

The algorithm can be written as follows:
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Algorithm 4.1. (non-overlapping domain decomposition)
Choose initial values for c0, set l = 0.

While (‖cl − cl−1‖ > tol)
1. For i = 1, 2, 3, 4, use a graph cuts algorithm to estimate φl+1

|Ωi
from

φl+1
|Ωi

= argminφ̃E
i
d(c

l, φ̃). (4.2)

2. Compute the characteristic functions {ψl+1
k }nk=1 from φl+1, c.f. (2.5).

3. Update cl+1 according to the following discrete formula for c

cl+1
k =

∑
p∈P u

0
pψ

l+1
k,p∑

p∈P ψ
l+1
k,p

k = 1, . . . , n. (4.3)

4. Update l + 1← l.
Here and later, we denote φ|Ωi

be the value of φ in Ωi. For minimization problem
(4.2), we only need to use graph cuts algorithms to find the values of φl+1 in Ωi.
Each Ωi contains many disjoint subdomains, i.e. Ωi = ∩jΩi,j . As the subprobnlems
over Ωi,j are independent of each other, we can use graph cuts algorithms to solve the
subdomain problems simultaneously. If we have parallel computers, these subdomain
problems can be solved in parallel. In our implementations, we just solve the problems
one by one. Even so, the computational cost is reduced compared to solving the
minimal cut problem of graph in the whole domain.

For a given p ∈ Pi on the boundary ∂Ωi of Ωi, the subdomain energy functional
Ei

d only includes regularization terms related to q ∈ Nk(p) ∩ Pi, i.e. the subdomain
problems only regularize with point inside the subdomain. There is no regularization
between the subdomains. Thus, this will cause some errors compared with Algorithm
3.1. Due to the reason that the ci, i = 1, 2, · · ·n are computed globally, it seems that
the algorithm has always been able to find a good segmentation despite this error.

4.2. Overlapping domain decomposition. In the overlapping domain de-
composition, the subdomains overlap with each other. Fig 4.2 dispatches the sub-
domains in our overlapping domain decomposition approach corresponding to the
domain decomposition method presented in Fig 4.1. The dashed line denotes the
boundary of the subdomains. In overlapping domain decomposition, we use the over-
lapping parts to influence the cuts of the interior parts in each subdomain. Therefore,
the subdomains are no longer independent and have intimate relation with their neigh-
bor subdomains in the segmentation. The overlapping size influence the convergence
rate of the iterate process as analysed in [32]. Large overlapping size gives faster
convergence for the iteration. However, it also leads to increased cost in solving the
subdomain problems. A proper choice of the overlapping size is needed in order to
get the best convergence.

As the subdomains have overlaps now, the corresponding index sets Pi also have
overlaps. To explain the algorithm clearly, we need to introduce some notations.

We use Ω0
i to denote the interior grid points of Ωi and ∂Ωi to denote the boundary

grid points of Ωi. Correspondingly, P0
i is the index set for Ω0

i and ∂Pi is the index
set for ∂Ωi. Let

Ei
d(c, φ) =

∑
p∈P0

i

|up − u0
p|2 + γ

∑
p∈P0

i ,q∈Nk(p)

wp,q|φp − φq|. (4.4)

The overlapping domain decomposition algorithm is given in the following.
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Fig. 4.2. Four kinds of subdomains in the overlapping domain decomposition

Algorithm 4.2. (overlapping domain decomposition)
Choose initial values for c0 and φ0. Set l = 0.

While (‖cl − cl−1‖ > tol)

1. For i = 1, 2, 3, 4, let φl+ i
4 = φl+ i−1

4 in Ω\Ω0
i and use a graph cuts algorithm

to estimate φl+ i
4

|Ω0
i

from

φ
l+ i

4
|Ω0

i
= argminφ̃E

i
d(c

l, φ̃). (4.5)

2. Compute the characteristic functions {ψl+1
k }nk=1 from φl+1, c.f. (2.5).

3. Update cl+1 according to the following discrete formula for c

cl+1
k =

∑
p∈P u

0
pψ

l+1
k,p∑

p∈P ψ
l+1
k,p

k = 1, . . . , n. (4.6)

4. Update l + 1← l.
However, as the subdomains overlap with each other, solving (4.5) is quite differ-

ent from solving (4.2). The value of φl+ i
4 is equal to φl+ i−1

4 in Ω\Ω0
i and thus have

no need for computation. The value of φl+ i
4 in Ω0

i need to be solved through (4.5).
For a point p ∈ P0

i , Nk(p) may be outside Ω0
i . However, this does not cause any

problem for solving (4.5) as the values outside Ω0
i is already known. This will take

care of the regularization between the subdomains. We shall comment on the details
for the implementation for (4.5) in Section 5

For this algorithm, we have, c.f. [32]

Ed(cl+1, φl+1) ≤ Ed(cl, φl+1) ≤ Ed(cl, φl+3/4) ≤ Ed(cl, φl+1/2)
≤ Ed(cl, φl+1/4) ≤ Ed(cl, φl).
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This guarantees the monotonicity of the cost functional and thus gives a robust algo-
rithm.

5. Implementation of the algorithms. For the implementation of Algorithm
3.1, we just need to construct the graph defined in (3.8) and (3.9)-(3.10) and then add
the capacity (costs) as given in (3.11)-(3.14). Theoretically, any σ > 0 is enough to
guarantee that any minimum cuts is admissible, see [1]. Once the graph is constructed,
we use augmenting path algorithm to find the minimum cut.

The implementation of Algorithm 4.1 is also easy. For each subproblem, we
construct the graph as we have done for Algorithm 3.1 and use the augmenting path
algorithm to solve (4.2). Nearly the same codes used for Algorithm 3.1 can be used
for Algorithm 4.1. The only difference is that we need to construct and solve the
graph cuts problem over each subdomain instead of on the whole domain Ω.

For Algorithm 4.2, due to the overlapping of the subdomains, some extra care
need to be given in solving subdomain problems (4.5). For a given p ∈ P0

i , Nk(p)
may be outside Ω0

i and these values are known and needed for Ei
d in (4.4). If we take

k = 4 or k = 6 for Nk, then Nk(p) is alway within Pi = P0
i ∪ ∂Pi for any p ∈ P0

i .
Each Ωi contains many disjoint subdomains, i.e. Ωi = ∩jΩi,j . As the subprobnlems
over Ωi,j are independent of each other, we can use graph cuts algorithms to solve the
subdomain problems simultaneously or one by one. For each subdomain problem, we
construct the graph for the subdomain Ωi,j to include the interior and boundary grid
points, i.e. the subdomain graph is

Vi,j =
{
vp,l | (p, l) ∈ R2 × R| p ∈ Pi,j , l ∈ {1, . . . , n− 1}

}
.

E i,j = E i,j
D ∪ E

i,j
R ,

E i,j
D = ∪p∈Pi,j

{
(s, vp,1) ∪n−2

l=1 (vp,l, vp,l+1) ∪ (vp,n−1, t)
}
.

E i,j
R =

{
(vp,l, vq,l) | p ∈ P0

i,j , q ∈ Nk(p), l ∈ 1, . . . , n− 1
}
.

In the above, notations Pi,j and P0
i,j are self explainable. The capacity of the edges for

the interior grid points are defined as in (3.11)-(3.14). The boundary value of φl+ i
4

is known as φl+ i
4 = φl+ i−1

4 in Ω\Ω0
i . We only need to compute the value of φl+ i

4

in the interior of Ωi which can be computed in parallel over the subdomains Ωi,j .
To keep the boundary values unchanged, the capacity for the edges in E i,j

D for any
p ∈ ∂Pi,j should be defined as ∞ except one that indicates the value of the point p
and the capacity for this edge should be given 0. Comparing with the implementation
of Algorithms 3.1-4.1, we only need to set the capacity for the ”vertical edges” to be
∞ or 0 for the grid points on the boundary of Ωi. This is the only extra ”care” that
we need to take for the implementation of Algorithm 4.2.

In our implementations, we take tol = 0.1, n = 4 and σ = 4(n− 1)γ. The values
of γ varies with the examples. For Algorithm 4.2, we alway take φ0 = 0 and use
ISODATA algorithm of [33] to get the initial values for c. The size of overlapping is
one pixel unless specified otherwise.

6. Numerical experiments. In the following, we implement our domain de-
composition methods on synthetic and real data. We develop our codes in C++ using
the augmenting path algorithm introduced in [3]. All numerical experiments were per-
formed on a HP xw4600 Workstation with an Intel(R) Core(TM) 2 Duo CPU E6750
@ 2.66 GHz, 2.67 GHz and 2.00 GB of RAM.

In the first experiment, we implement our method to a real brain MR image of
high resolution, shown in Fig 6.1(a). We use 4-phase image segmentation approach
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(a) Given image u0 (b) Orignal alg. (c) Non-over alg. (d) Over alg.

(e) Given image u0 (f) Orignal alg. (g) Non-over alg. (h) Over alg.

(i) Given image u0 (j) Orignal alg. (k) Non-over alg. (l) Over alg.

(m) Given imageu0 (n) Orignal alg. (o) Non-over alg. (p) Over alg.

(q) Given image u0 (r) Orignal alg. (s) Non-over alg. (t) Over alg.

Fig. 6.1. The comparison result of MR, lena, lake, tree and clock
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to extract the 4 different classes of the brain image. This 4 different classes can be
classified as: region 1: background, region 2: cerebrospinal fluid, region 3: gray matter
and region 4: white matter. We segment the MR image with the TV 4 norm and the
TV 8 norm respectively. The results of the image with the TV 4 norm are shown in
the Fig 6.1(b)-(d) and the computation time is shown in the Table 6.1. We can see
that our decomposition method can get almost the same result as using the original
graph cuts algorithm (Algorithm 3.1) visually. In the meantime, the decomposition
methods improve more than 1

4 of the computation time. For this test, the size of the
image is 670× 530. We have used 25(5× 5) subdomains and γ = 800.

In the second experiment, we apply the domain decomposition methods to four
different images. We choose four 1024 × 1024 images: Lena, Lake, Tree and Clock
and use original graph cuts algorithm, non-overlapping decomposition method and
overlapping decomposition method on these images respectively. The segmentation
results are displayed in Fig 6.1 and the computation time is shown in Table 6.1. To
see the superiority of domain decomposition methods, we enlarge the images to the
size 2048× 2048. For our computer, the original graph cuts cannot handle images of
this size. However, our decomposition method can solve the segmentation problem
well. Therefore, this decomposition method is useful for large scale images, especially
for application to 3D problems. For this test, we have used 128(8 × 16) subdomains
and γ = 500.

In the third experiment, we implement our method on 3D MRI image. The
original size of MRI image is 250 × 250 × 120 and it is too large for the graph cuts
algorithm (Algorithm 3.1) to handle. In this experiment, we use our method to MRI
data and get the segmentation result. We choose two slices of the MRI data and show
the comparison images in the Fig 6.2. We also give a comparison of the CPU time
with different sizes of data extracted from the 3D MRI data to illustrate the scale
of computation time with different sizes of image. In Fig 6.3, the table contains the
CPU time of different sizes of images and the figure corresponds to the data in the
table. For this test, we have used 1000(10× 10× 10) subdomains and γ = 500.

(a) Given image u0 (b) Non-over alg. (c) Over alg.

(d) Given image u0 (e) Non-over alg. (f) Over alg.

Fig. 6.2. The comparison result of MRI. We show the slice nr.: 50 and 80.
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(a) (b)

Fig. 6.3. Computation time in seconds for different resolution. In (b), 1 denotes the extracted
image with size of 250 × 250 × 120; 2 denotes the extracted image with size of 120 × 120 × 60; 3
denotes the extracted image with size of 60 × 60 × 30; 4 denotes the extracted image with size of
30× 30× 15.

Next, we compare the computational cost of the domain decomposition methods
with different numbers of subdomains. We carry out this experiment on the same
four images and decompose the images into 22, 23, 24, 25, 26, 27 subdomains using
2 elements of overlaps. The result of non-overlapping decomposition is shown in Fig
6.4(a) while the result of overlapping decomposition is shown in Fig 6.4(b). Through
the results, it is obviously that the computing time decreases as the subdomain size
decreases. This experiment illustrates that our domain decomposition methods can
improve the speed of the segmentation problem.

(a) (b)

Fig. 6.4. Time consuming of domain decompositiom methods.

Besides, we try to illustrate that the energy obtained by domain decomposition
methods approximates the energy of the original graph cuts Algorithm 3.1. We test
the same four images of size 1024× 1024 and decompose them into 128 subdomains.
The size of the subdomains is 128×64. The energy of original graph cuts Algorithm 3.1
is marked with ”∗”. The energies of non-overlapping and overlapping decomposition
methods are calculated using the cut results in the entire domain. For non-overlapping
case, we add all the weights of the cut edges on the image domain while we add all the
weights of the cut edges of internal nodes in overlapping case. The energies of non-
overlapping and overlapping decomposition are denoted by ”+” and ”o” respectively
in the figure. The energy figure of each image is shown in Fig 6.5(a)-(d). Through
the experiments, we see that the energy of our domain decomposition methods is
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Table 6.1
Compution time in seconds for different experiments. – denotes problem can not handle by the

method.

Size neighbor Original alg Non-over alg Overlapping alg
Brain 670× 530 4 10.25 7.421 7.531
Brain 670× 530 8 22.844 15.562 14.813
Lena 1024× 1024 4 51.641 38.797 31.688
Lake 1024× 1024 4 57.45 44.657 42.875
Tree 1024× 1024 4 29.859 22.594 25.86
Clock 1024× 1024 4 74.203 56.438 63.344
MRI 250× 250× 120 6 – 353.282 507.875

convergent and the difference between the energy of domain decomposition methods
and the energy of original graph cuts algorithm is acceptable to us.

(a) (b)

(c) (d)

Fig. 6.5. The energy comparision between original method (black curve), non-overlapping de-
composition (blue curve) and overlapping decomposition method (red curve).

7. Conclusion. In this work, we propose a new method to minimize the Mumford-
Shah model with piecewise constant level set representation. We apply the domain
decomposition methods to image segmentation and use graph cuts algorithm to min-
imize the energy functionals. The proposed method improves the computation effi-
ciency. Even more, it greatly reduced the memory costs and enables us to solve very
large size problems effectively. Due to the monotonicity property of the algorithms,
its numerical performance is very robust. It is remarkable that the algorithm can
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segment a 3D MRI image with 7× 106(250× 250× 120) voxels in just a few minutes
and the quality is comparable with traditional variational methods.
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