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Abstract
We present a region-based boundary detection algorithm for objects

that exhibit relatively simple photometric characteristics (e.g.smooth color
or gray levels), embedded in complex background clutter. Current meth-
ods either frame this problem in Bayesian classification terms, where pre-
cious modeling resources are expended representing the complex back-
ground away from the decision boundary, or use heuristics to limit the
search to local regions around the object of interest. We propose an
adaptive lookout region, whose size depends on the statistics of the data,
that are estimated along with the boundary during the detection process.
The result is a “curious” snake that explores the outside of the decision
boundary only locally to the extent necessary to achieve a good tradeoff
between missed detections and narrowest “lookout” region, drawing inspi-
ration from the literature of minimum-latency set-point change detection
and robust statistics.

1 Introduction

In [15], Mumford and Shah proposed a model of the image as piecewise smooth
statistics. While simplistic in terms of its generative power, this model has
proven very useful for discriminative purposes, and has served as a basis for effi-
cient computational algorithms for image segmentation developed in the context
of Level Set Methods [16]. Indeed, [6] consider an even simpler model, involving
piecewise constant image statistics, that has gained widespread acceptability in
fields ranging from medical image analysis to forensics and entertainment. The
power of this method lies in the explicit representation of the null and alternate
hypotheses (foreground/background), that compete for the decision without the
need for ad-hoc thresholding, a mechanism exploited in region competition [26].
This model has also been extended to color [2], and texture [21, 18, 19].

The strengths of this model, however, turn into limitations when the under-
lying assumptions are stretched. Fig. 1 illustrates this phenomenon. The object
of interest (called “foreground”) often has homogeneous (constant or smooth)
statistics, e.g.the heart chambers in Fig. 1. However, the remainder of the im-
age (the “background”) is certainly not well approximated by a constant gray
value. As a result, detecting the boundaries of the chambers, a seemingly easy
task, is hampered by the structure of the background, which ends up influencing
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the boundary more than the characteristics of the object of interest. Of course,
any reasonable image (for instance, one that is L2-integrable) can be approxi-
mated arbitrarily well with a collection of constant functions, so the model [6] is
still valid, but not with two regions (foreground/background), but with a larger
number of regions, most of which unrelated to the object of interest (Fig. 1
bottom-right). While techniques to extend [6] to multiple “phases” have been
proposed, they are cumbersome, reflecting fact that, for anything more than
two regions, the optimization problem associated with [6] is no longer convex
[5].1 The alternative to a fine partition of the image domain into simple func-
tion is a coarser partition (e.g.foreground/background) with respect to more
complex functions, say smooth functions, leading us back to the Mumford-Shah
functional. In either case, much of the attention in Fig. 1 is devoted to the
background. These difficulties have prompted practitioners to devise heuristics,
for instance restricting the domain of the image to a box around the curve, or
to a dilation of the curve by an amount proportional to the area within. The
shortcomings of these approaches are obvious, as there is no reason why the
structure of the boundary of a region (say the edge of a brick wall) should de-
pend on how large the region is. For the purpose of detecting a discontinuity,
that is a classification task, a generative model is useful only insofar as it de-
termines the classification boundary. Modeling energy expended to represent
the distribution away from the decision boundary is all but wasted, as argued
eloquently by [24]. In our case, the distributions of intensity values specifying
the null and alternate hypothesis (foreground/background) are defined in the
co-domain of the image (intensity, color, texture descriptors etc.), but the deci-
sion boundary is defined on its domain, Ω ⊂ D. This is the situation considered
in the problem of set-point change detection, which, for one-dimensional causal
signals, is treated as an optimal stopping time [10], using the mathematics of
filtrations and Martingales.

Robust Statistical methods are designed precisely for this situation, when
the null hypothesis (the object of interest) fits a rather simple model, and one
is not interested in characterizing the alternate hypothesis, i.e.the statistics of
the background, other than the fact that they do not fit the model. Thus one
could approach the problem in Fig. 1 by seeking some kind of robust detector,
which would inevitably involve sensitive thresholds that may not survive the
large variability of data customary, for instance, in medical image analysis.

Consider, as a way of example, a one-dimensional image, a scan-line from
Fig. 1, where the boundary of interest is c. Clearly, the statistics of the signal
far away from c are of little interest in determining the location c (Fig. 2.
Therefore, a hypothetical traveler traversing the signal would seek to localize
the transition c with the smallest possible latency, d−c, for a given level of false
alarm rate. For cases when the statistics of the signal are known, the solution to
this problem is provided in [23]. Unfortunately, we do not know the statistics.

1This reflects the fact that, with only one phase transition, the classification problem is
masked as a regression problem: One is not looking for whether the object of interest is in
the image. One is told so, and the question just becomes that of localizing the object, or
determining its boundary.
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Figure 1: Segmentation of a heart chamber using [6] (top-right, red curve),
starting from the initial condition (top-left), is impeded by the fact that the
background does not fit the constant model. Extension to multi-phase seg-
mentation (bottom-left, each region is color-coded, and the object of interest
corresponds to the white region) is complex and highly non-convex. Extension
to more complex models, such as [15] (bottom-right, the foreground region has
smooth intensity, displayed in white, and the background region is a smooth
function approximating the background – note it is highly blurred) is also labo-
rious (Fig. 4). In both cases, precious modeling and computational resources
are expended to capture the structure of the background away from the object
of interest.

If, on the other hand, d was given to us, but not the statistics, we could use [6].
Unfortunately, we do not know d.

To develop some intuition, let us consider an even simpler version of the
one-dimensional example, whereby the statistics before and after the transition
are Gaussian, just with different means µ, µ̄ and standard deviations σ, σ̄. It is
immediately clear that if σ is very small and the “jump” µ− µ̄ is large relative
to the standard deviations σ1 +σ2, it can be safely detected with a small latency
d − c. In the limit where σ → 0, when the function is continuous, it can be
detected instantaneously. If, on the other hand, the deviation of the signal from
its mean before the jump is high, it will take longer to integrate the statistics
and realize that there has indeed been a transition. This suggests making the
area of the “lookout region”, which is the region immediately outside the object
of interest, dependent on the statistics of the image inside.2 We call the ensuing
model, which we describe in the next section, the “Curious Snake.” It is curious,
but cautious, for it peaks over the edge far enough to be sure, but not too far

2In principle, it should depend on the ratio between the gap between the means, and the
sum of the standard deviations, but this would lead to a model that is too complex to optimize,
so we restrict to the model depending only on the standard deviation.
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Figure 2: One scanline from Fig. 1: The detection of the boundary c should
be performed as soon as possible, d, so as not to have irrelevant background
impinge on the decision (past the right-most dashed line).

as to run into trouble due to the statistics of the background away from the
transition of interest.

This seemingly simple modification of the Chan and Vese (C-V) model makes
a significant difference in applications, such as exemplified in Fig. 1, where one
is interested in objects with relatively simple photometry embedded in complex
clutter, without having to spend resources modeling the clutter. We use the
plural “objects,” because this technique, with multiple regions initialized on a
covering of the image, easily allows detecting multiple transitions without the
need for complex interactions of multiple level set functions.

This work naturally relates to a vast body of work in active contours, and in
particular in variational image segmentation methods, as we discuss in Section
5.

2 Formalization

In this section we derive our model in steps. First we consider the simple
problem of segmenting an image at the pixel level, based on binary classification
of its gray levels. We call the image I : D ⊂ R2 → [0, 255] ⊂ R+; x 7→ I(x),
and indicate with θ ∈ Rk the parameters of the model, for instance θ = {µ, σ}
for the case of a Gaussian model. We indicate the likelihood of the model
parameters (foreground model) θ as p(I|θ). We indicate the alternate hypothesis
(background model) with p(I|θ̄). A simple binary classifier can be arrived at
by summing the log-probability of error,3 for both missed detections and false
alarms, and then finding a threshold τ̂ such that

τ̂ = arg min
τ

∫ τ

0

log p(I|θ)dP (I)︸ ︷︷ ︸
missed detections

+
∫ 255

τ

log p(I|θ̄)dP (I)︸ ︷︷ ︸
false alarms

(1)

3An equivalent maximum-likelihood formulation can be derived using likelihood ratios, but
that involves continuous products that require some notational effort.
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where P (I) is a measure on the intensity values, which could be uniform in
[0, 255] if no prior knowledge is available. This basic thresholding model is not
very useful for object detection, as it does not enforce spatial continuity, that we
know to be relevant from empirical studies on the statistics of natural images
[14]. The Mumford-Shah (M-S) model seeks to overcome this limitation, by
minimizing the same cost functional above, but placing the decision boundary
(threshold) not on the gray values, but on the location x instead. For the case
of a single scan-line, assumed to start at the center of the object of interest, we
have

τ̂ = arg min
τ

∫ c

0

log p(I(x)|θ̄)dν(x)︸ ︷︷ ︸
missed detections

+
∫ d

c

log p(I(x)|θ)dν̄(x)︸ ︷︷ ︸
false alarms

(2)

where ν(x) is a measure on the domain D, for instance the uniform measure
dν(x) = dx. If d is fixed, for instance at the boundary of the image domain
d ∈ ∂D, then [6] can be used to localize the boundary c as well as to estimate the
statistics θ, θ̄ that are most discriminative. If, on the other hand, the statistics
are known, then [23] can be used to find d that yields the smallest latency d− c
for a given level of false alarms. For the case of a (two-dimensional) image, the
threshold c (decision boundary) is represented by a curve ∂Ω bounding a region
Ω ⊂ D; the lookout d is represented by a region D ⊃ Ω, so the function being
minimized, given by the integrals above, reads

E
.=
∫

Ω

log p(I(x)|θ̄)dν(x)︸ ︷︷ ︸
missed detections

+
∫
D\Ω

log p(I(x)|θ)dν̄(x)︸ ︷︷ ︸
false alarms

+Γ(Ω) (3)

where Γ denotes a regularizer, for instance the length of ∂Ω. We now focus
on the log-probability of error, i.e.the integrands above. The probability of
missed detection (first integrand) depends on how well the data I at position x
fits the background model θ̄. There is a penalty when data in the foreground
fits the background model well, and this penalty is integrated on the foreground
hypothesis Ω, which is by definition a compact region. The false alarms similarly
depend on how well the data I at a position x outside the foreground region
nevertheless fit the foreground model θ, regardless of where x is relative to the
foreground. If we keep everything else constant and double the region D, the
model above counts twice as many false alarms, contrary to our intuition that a
false alarm becomes less likely as we move away from the decision boundary Ω.
In other words, instead of characterizing the probability of error (both missed
detection and false alarms) based only on photometric properties I of the data,
we wish to account for geometric properties of the data as well, namely proximity
to the decision boundary ∂Ω. This can be accounted for in the measure ν(x).

As suggested in Sect. 1 for the case of a Gaussian model, the probability
p(I|θ) ∝ exp(−d2

σ(I, µ)) is a function of the distance dσ(I, µ) = |I−µ|
σ from

the intensity value to the mean intensity µ; we want to extend it to also be a
function of the distance of the point x from the boundary of Ω. In particular,
we want the distance from the boundary in one region (foreground/background)
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to be a function of the statistics of the data in the other, for instance on the
background we have

dν̄(x) = p(x|Ω, θ)dx (4)

and similarly dν(x) = p(x|Ω, θ̄)dx where, for the case of a Gaussian model, we
have

p(x|Ω, θ) ∝ exp(−d2
σ(x,Ω)) (5)

and

dσ(x,Ω) .= min
y∈Ω

‖x− y‖
σ

. (6)

For the case of missed detection, since the region Ω is by assumption com-
pact and the dispersion σ̄ of the background is large, in general dν(x) =
p(x|D\Ω, θ̄)dx will be essentially constant, and therefore we simply take dν(x) =
dx. Thus, the first term of the error functional E above remains

Einside =
∫

Ω

log p(I(x)|θ̄)︸ ︷︷ ︸
pr.miss.det.

dx. (7)

For the background, however, we have

Eoutside =
∫
D\Ω

log p(I(x)|θ)p(x|Ω, θ)︸ ︷︷ ︸
pr.false alarm

dx (8)

plus the usual regularizer Ereg = Γ(Ω), leading to

Ω̂ = arg min
Ω,λ1,λ2

E = Einside + λ1Eoutside + λ2Ereg. (9)

A simpler version of this functional can be arrived at following the rationale of

[6]; assuming Gaussian densities, the energies above become Einside =
∫

Ω
−
(
I−µ̄
σ̄

)2

dx,

and Eoutside =
∫
D\Ω−

(
I−µ
σ

)2

dx, minimizing which is equivalent to minimiz-

ing Einside =
∫

Ω

(
I−µ
σ

)2

dx, and Eoutside =
∫
D\Ω

(
I−µ̄
σ̄

)2

dx. Note that we have
switched the sign, and as a consequence the roles of the inside and outside statis-
tics have swapped. This is equivalent to assuming that the probability p(x|Ω, θ)
is uniform in D\Ω:

p(x|Ω, θ) ∝ χD\Ω(x) (10)

If we assume σ = σ̄ = 1, we obtain the model of [6]. In our case, rather than
fixing D, we allow it to change as a dilation (lookout) of Ω proportional to the
statistics of the image inside:

D = ∆σ(I|Ω)Ω (11)

where ∆σ denotes a dilation by σ and, for the case of a Gaussian model,

σ2(I|Ω) =

∫
Ω
|I − µ|2dx∫

Ω
dx

. (12)
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Therefore, while the “inside” term of [6] remains the same, the “outside” term
is now controlled by the statistics of the image inside:

E(Ω, µ, µ̄, λ1, λ2) .=
∫

Ω

|I(x)− µ|2dx+

+ λ1

∫
∆σ(I|Ω)Ω\Ω

|I(x)− µ̄|2dx+ λ2Γ(Ω). (13)

The minimization of this functional involves computing its variation with respect
to the unknowns Ω, µ, µ̄, which we do in Sect. 3.

An alternate model that is related to [6] consists of simply pulling the means
of the image inside and outside Ω as far apart as possible. This corresponds to

max |µ− µ̄| (14)

where µ =
∫

Ω
I(x)dx/|Ω| and µ̄ =

∫
D\Ω I(x)dx/|D\Ω|, and yields a minimizing

flow that is similar to that of [6], except for a normalization factor: In the first
case one has d

dt∂Ω = (µ − µ̄)[(I − µ) + (I − µ̄)], whereas in the second case
d
dt∂Ω = (µ − µ̄)

[
I−µ
|Ω| + I−µ̄

|D\Ω|

]
. An additional modification of this model can

be obtained by forcing the means not only to be well separated, but also to
move in opposite directions during the evolution; [25] elucidates the differences
between these models, that in the case of grayscale (non binary) images can be
substantial.

The advantage of (14) is that it lends itself to easy generalizations, obtained
by separating, rather than the means, other statistics. For instance, one can
separate the entire distributions, by maximizing the χ2, Bhattacharyya or any
other distance, or Kullbach-Liebler’s divergence, and controlling the dilation,
rather than by the standard deviation, by the entropy of the inside region. For
the case of Kullback-Liebler, one has

max
Ω

KL
(
p(I|Ω); p(I|D\Ω

)
)
| Γ(Ω) ≤ ε (15)

where D is defined as in (11), except that now

σ2(I|Ω) .= H(p(I|Ω)) (16)

is the entropy the histogram of the image restricted to Ω. In the next section we
discuss the details of the minimization of the model (13), that is the simplest
rendition of the general model (15) for the case of Gaussian statistics. The
optimization of (15) is significantly more involved and outside the scope of this
manuscript. It is introduced primarily to illustrate the fact that the model
(13) is not restricted to Gaussian statistics, but instead admits rather wide
generalizations.

3 Implementation

To solve the optimization problem (13), we implement an (infinite-dimensional)
gradient flow, corresponding to a partial differential equation (PDE), that evolves
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an initial contour towards a fixed point, corresponding to a (local) minimum of
(13), as customary in the active contour framework. The PDE is implemented
on a discrete grid using Level Set methods [16]. To this end, we need to com-
pute the first variation of the functional (13) with respect to changes of the
boundary of the region Ω, and perform an incremental update in the (opposite)
direction of the gradient. To this end, we call C .= ∂Ω the contour, and use t
to indicate the iteration. Therefore, C = C(x, t) evolves over “time,” with only
changes along the (outward) normal direction N ∈ S1 affecting the deformation
of the contour, in a way that is proportional to −∇E, so that at the fixed point
∇E = 0, i.e.the first-order optimality conditions are satisfied. We call s the
arc-length parameterization of the contour C.

The derivation of the first variation of E is standard, for instance [6], except
for the derivative of Eoutside, and specifically for its dependency of the domain
Ω, now represented by the boundary C. So, we focus our attention on that
term, which for convenience we write as∫

f(x)H(σ(I|C)− d(x,C)︸ ︷︷ ︸
.
=F (C,x)

)dx (17)

where f(x) .= (I(x) − µ̄)2, H is the Heaviside function, d(x,C) is the distance
function from the point x ∈ R2 to the contour C, and σ(I|C) is defined in (12),
except that the dependency on the region Ω is now written, with a slight abuse
of notation, in terms of its boundary C = ∂Ω. The first variation is computed
by taking the total derivative of E with respect to time, which in turn depends
on the partial derivative of C with respect to time Ct

.= ∂C
∂t , and consists of two

terms. The first is standard:∫
C

〈Ct,−f(C(s))H(F (C,C(s)))N〉ds (18)

the second is∫
D\Ω

f(x)H′(F (C, x))
d

dt
F (C, x)︸ ︷︷ ︸R

C
〈Ct,∇CF (C,x)(s)〉ds

dx =

=
∫
C

〈Ct,
∫
D\Ω

f(x)H′(F (C, x))∇CF (C, x)(s)dx〉ds. (19)

Consequently, the gradient flow is given by

Ct = f(C)N +

(∫
D\Ω

f(x)H′(F (C, x))∇CF (C, x)(s)dx

)
. (20)

A straightforward but suboptimal implementation can be arrived at by dis-
counting the second term, and only focusing on the first.

Note that the first term, f(C) can be written in terms of an optimal con-
stant value µ∗, which can be found by taking the derivative of f(x)H(d(x,C)−
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σ(I|C)), yielding (I−µ∗)H(d(x,C)−σ(I|C)) = 0, that brings the dependency of
the statistics of the image inside the region Ω into the first variation of the com-
ponent of the cost functional outside of it. This is the model we test empirically
in the experimental section that follows.

4 Experiments

In the first synthetic example we illustrate the behavior of our approach depend-
ing on the statistics of the data. The common heuristic of tying the lookout
region to the size of the foreground fails since the probability of detection of
discontinuities between two regions depends on the statistics of the images on
both sides of the decision boundary, not on how large these regions are. Tying
the lookout region on each side to the statistics on the other side, on the other
hand, scales nicely with the levels of noise as well as with the size of the regions
(Fig. 3). In the second experiment we test our generalization of the Chan and

Figure 3: Synthetic experiment: A number of squares of different sizes, with
varying intensity gaps from the immediate background (light) and a random-
ized far background (dark), with additive noise of varying standard deviation.
Initialization is randomized within three classes: The entire initial contour is
contained within the target square, contains it, or intersects its boundary. Con-
vergence is considered successful when the contour captures the boundaries of
the square, with accuracy measured by the set-symmetric difference between the
“true” and the estimated regions. Failure is declared when the contour escapes
to capture the structure of the background (right), and the percentage of occur-
rences measures the robustness of the algorithm to initialization. Quantitative
results are reported in Figs. 6–8.

Vese model (13) on the same data of Fig. 1. As one can see in Fig. 4, the
contour adapts nicely based on its local context, regardless of the complexity
of the background far away from it. Note, however, that in this example many
variants of the simple model of [6], for instance the full M-S model (Fig. 1
bottom-right) gives satisfactory results, albeit at an increased computational
cost. In the third experiment, in Fig. 5, we try a challenging example where
even the general M-S model, as well as the standard C-V model with all the lat-
est bells and whistles [22], fails to detect the boundaries of the flatworm (left).
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Figure 4: Heart chambers: Although the C-V model fails (Fig. 1), the full
M-S model can successfully detect the boundaries of the heart chambers, at
the cost of expending most of the modeling efforts on the background (Fig. 1
bottom). Our generalization of the C-V model (13), on the other hand, only
focuses on an outer neighborhood of the boundary, controlled by the statistics
of the object of interest.

Our model (13), on the other hand, successfully detects it despite the complex
background and significant variation in the intensity gap along the boundary.
Fig. 4 also highlights the fact that our model allows dealing with multiple re-

Figure 5: Flatworm: Even the C-V model with the Sobolev metric, as well as
the full M-S model, fail to detect the boundaries of the flatworm. Our model
(15), however, successfully detects it despite the complex background (right).

gions in a straightforward way that does not involve logic combinations of level
set functions. A systematic covering of the image with multiple initializations
yields multiple convergent runs to each region of interest, so the two chambers
are detected individually.

In order to arrive at a quantitative comparison between the M-S model,
the C-V model with the Sobolev metric, and the model (13), we consider the
experiment in Fig. 3, and vary the size of the target, the noise level, the gap
between the means, and the initialization, which is randomized within three
classes: All inside the target, all outside, and partially overlapping the boundary.
We measure accuracy by the set-symmetric difference between the true region Ω
and the estimated one Ω̂, normalized by the area of Ω. We measure robustness
by the percentage of runs that converge to within a 10% accuracy, starting from
each of the three classes of randomized initial conditions. Finally, we evaluate
computational complexity by measuring the number of iterations necessary to
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Inside Init. Outside Init. In/Out Init.
C-S 1130 (21) 830 (16) 882 (17)

σ = 0 C-V 3440 (53) 2820 (44) 3976 (62)
M-S 1580 (1216) 1140 (877) 1208 (930)
C-S 808 (15) 304 (6) 1062 (20)

σ = 0.01 C-V 1610 (25) 1020 (16) 2900 (45)
M-S 906 (697) 610 (469) 1260 (970)
C-S 888 (17) 551 (10) 1202 (23)

σ = 0.05 C-V 710 (11) 1722 (27) 3480 (54)
M-S 1180 (908) 915 (704) 1670 (1285)
C-S 970 (18) 522 (10) 1470 (28)

σ = 0.1 C-V 730 (11) 1877 (29) 3570 (55)
M-S 1181 (909) 730 (562) 1800 (1386)

Figure 6: Computational Cost: Number of iterations and processor time
per iterations in milliseconds in parenthesis. M-S refers to the Mumford-Shah
model, C-V to the Chan-Vese model, and C-S to the “Curious Snake” model
presented here. The table shows that our approach is competitive both in
terms of number of iterations to reach a specified accuracy, as well as in the
computational cost per iteration. The figures are averaged over 10 trials per each
configuration, with initial condition starting all inside, all outside, or partially
overlapping the target region.

reach a 1% accuracy, conditioned on convergence, as well as the computational
complexity of each iteration. The results are summarized in the tables in Figs.
6–8.

5 Discussion

We have presented a semi-local region-based segmentation model that general-
izes that of [6] to an adaptive lookout region. The basic idea is that of tying the
size of the region not to the size of the object of interest, but to the fitness of its
model, following a robust-statistical perspective, as well as common practice in
minimum-latency optimal stopping time detection. We have presented both a
simple version of the model (13), generalizing [6] under the assumption of Gaus-
sian statistics, and a more sophisticated one (15) based on general distributions
and on an information-theoretic measure of uncertainty.

The models we have presented, like any other model, are neither right nor
wrong, to paraphrase the statistician Box. They just reflect different modeling
assumptions, and can therefore be useful to the extent in which real data and ap-
plication problems reflect these assumptions. This can only be validated empiri-
cally, which we do, by showing that on common detection/localization/segmentation
problems arising in medical imaging and tracking, our model can successfully
discount background statistics away from the decision boundary. The C-V
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Inside Init. Outside Init. In/Out Init.
C-S 0.0000 0.0000 0.0000

σ = 0 C-V 0.3640 0.3634 0.3990
M-S 0.0000 0.0000 0.0000
C-S 0.0001 0.0005 0.0006

σ = 0.01 C-V 0.3705 0.3804 0.3990
M-S 0.0000 0.0002 0.0008
C-S 0.0004 0.0002 0.0010

σ = 0.05 C-V 0.3742 0.3634 0.4210
M-S 0.0003 0.0002 0.0007
C-S 0.0010 0.0012 0.0043

σ = 0.1 C-V 0.3842 0.3910 0.4337
M-S 0.0015 0.0017 0.0032

Figure 7: Accuracy: The normalized set-symmetric difference between the
estimated region and the contour. Zero means perfect matching, 1 means that
the region is disjoint. The figures are averaged over 10 trials starting from each
initial configuration. Our approach performs nearly as well as M − S, but at a
fraction of the computational cost.

Inside Init. Outside Init. In/Out Init.
C-S 100 100 100

σ = 0 C-V 100 100 100
M-S 100 100 100
C-S 100 100 100

σ = 0.01 C-V 100 90 100
M-S 100 100 100
C-S 90 100 100

σ = 0.05 C-V 80 70 80
M-S 100 100 100
C-S 90 90 90

σ = 0.1 C-V 70 60 70
M-S 90 90 90

Figure 8: Robustness: The percentage of trials where the contour converged
to within 10% accuracy (Fig. 7). M-S performs best, since it relies on a global
model. C-V performs the worst; although, in principle, it relies on an equally
universal model (piecewise constant statistics), limiting the model to two phases
causes significant convergence problems in the presence of complex background
clutter.
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model assumes that the scene exhibits piecewise constant statistics, which can
be done without loss of generality if the image is in L2(D) and one is willing to
let the number of regions grow large, thus expending precious modeling power
to represent the background. The M-S model assumes that the scene exhibits
piecewise smooth statistics, which again can be done with no loss of generality
if the image is in L2(D), and trades off the benefit of segmenting the image
into fewer larger regions with the cost of a more involved computation, again
spending modeling resources on the background.

Our assumption is that, for each object of interest for which a statistical
model can be easily specified, the detection of its boundary depends on a vio-
lation of this model, a hypothesis that can be tested locally, with the locality
controlled by the deviation of the data from the model.

This affords us the added benefit of simultaneously detecting multiple objects
in an image, by initializing several regions on a cover of the image, without
having to manage logical combinations of level set functions [20, 8], or other
global models that, unavoidably, yield non-convex optimization problems [5].

Our results naturally relate to the wealth of research on active contour mod-
els, pioneered by [11, 1], imported into the framework of geometric variational
optimization by [3, 12]. Contributions that are particularly relevant in the con-
text of our paper include [13, 17, 4, 7], as well as various “unilateral” region
segmentation approaches based on fast-marching methods [9].

Our implementation neglects some terms of the optimizing flow, that is there-
fore only a sub-optimal solution of (13). Investigating efficient approaches to
minimizing the full energy functional is the subject of future investigation, along
with an empirical characterization of the loss from optimality in the simplified
algorithm we have reported in Sect. 3, and extensions to more general models
such as (15).

Our technique is subject to the same limitations of any region-based active
contour model: The model is based on the first-order optimality conditions,
which are only necessary but not sufficient for a global minimum. Furthermore,
because of the simplifications of the flow, our scheme is not even guaranteed to
converge to a local minimum, although in all the experiments we have performed
we have always experienced convergence to a fixed point, and very rarely have
noticed convergence to local minima, especially when using regularized met-
rics such as the Sobolev metric. In particular, improvement from the C-V is
significant in all circumstances, both in terms of accuracy, robustness and com-
putational efficiency. It is certainly possible to construct examples that break
down the model, so our approach can only validated in the field. Our initial
experiments indicate promise in this direction.
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