
Comparing Registration Methods for

Mapping Brain Change using Tensor-Based

Morphometry

Igor Yanovsky a,b,∗, Alex D. Leow c, Suh Lee c,
Stanley J. Osher b, Paul M. Thompson c

aJet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109

bUniversity of California, Los Angeles, Department of Mathematics,
Los Angeles, CA 90095

cUniversity of California, Los Angeles, School of Medicine,
Laboratory of Neuro Imaging, Los Angeles, CA 90095

Abstract

Measures of brain changes can be computed from sequential MRI scans, providing
valuable information on disease progression for neuroscientific studies and clinical
trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visu-
alizing the 3D profile and rates of tissue growth or atrophy. In this paper, we examine
the power of different nonrigid registration models to detect changes in TBM, and
their stability when no real changes are present. Specifically, we investigate an asym-
metric version of a recently proposed unbiased registration method, using mutual
information as the matching criterion. We compare matching functionals (sum of
squared differences and mutual information), as well as large deformation registra-
tion schemes (viscous fluid and inverse-consistent linear elastic registration methods
versus symmetric and asymmetric unbiased registration) for detecting changes in
serial MRI scans of 10 elderly normal subjects and 10 patients with Alzheimer’s
Disease scanned at 2-week and 1-year intervals. We also analyzed registration re-
sults when matching images corrupted with artificial noise. We demonstrated that
the unbiased methods, both symmetric and asymmetric, have higher reproducibil-
ity. The unbiased methods were also less likely to detect changes in the absence
of any real physiological change. Moreover, they measured biological deformations
more accurately by penalizing bias in the corresponding statistical maps.
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1 Introduction

In recent years, computational anatomy has become an exciting interdisci-
plinary field with many applications in functional and anatomic brain map-
ping, image-guided surgery, and multimodality image fusion (Avants and Gee
(2004); Christensen et al. (1996); Chung et al. (2001); Collins et al. (1994);
Grenander and Miller (1998); Miller (2004); Shen and Davatzikos (2003);
Thompson and Toga (2002)). The goal of image registration is to align, or
spatially normalize, one image to another. In multi-subject studies, this re-
duces subject-specific anatomic differences by deforming individual images
onto a population average brain template. When applied to serial scans of
human brain, image registration offers tremendous power in detecting the
earliest signs of illness, understanding normal brain development or aging,
and monitoring disease progression (Camara et al. (2008); Crum et al. (2001);
Hogan et al. (2000); Klein et al. (2009); Pieperhoff et al. (2008); Ridha et al.
(2006); Wang et al. (2003)). Recently, there has been an expanding litera-
ture on various nonrigid registration techniques, with different image match-
ing functionals, regularization schemes, and numerical implementations. Many
algorithms were developed that regularize different differential operators, in-
cluding elastic regularization (Broit (1981)), viscous fluid registration (Chris-
tensen et al. (1996)), and large deformation diffeomorphic metric mapping
(Beg et al. (2005)), among other works. We have argued previously that most
work in tensor-based morphometry (TBM) is interested in relative volume
gain or loss, and if that is to be statistically evaluated, it is preferable to
be working on distributions that have no bias and minimal skew, in order to
obtain correct interpretations.

It is also important to observe that the Unbiased technique, though a novel
concept in medical image registration, can be adapted and combined with
any non-rigid registration algorithm. As such, we chose to add unbiased reg-
istration to work with fluid regularization in order to show its advantages in
measuring biological deformations more accurately, by penalizing bias in the
corresponding statistical maps and generating more stable and reproducible
results than if only fluid regularization were used.

In (Leow et al. (2007); Yanovsky et al. (2007b)), our group systematically
examined the statistical properties of Jacobian maps (the determinant of the
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local Jacobian operator applied to the deformations), and proposed an unbi-
ased large-deformation image registration approach. In this context, unbiased
means that we strive to obtain a zero-mean and symmetric log-Jacobian dis-
tribution under the null hypothesis, when a pair of images is matched. We
argued that this distribution is beneficial when recovering change in regions
of homogeneous intensity, and in ensuring symmetrical results when the order
of two images being registered is switched. An unbiased algorithm is advan-
tageous as it does not detect gain with more likelihood than loss when signals
of equal magnitude log-Jacobian but opposite sign are present. We applied
this method to a longitudinal MRI dataset from a single subject, and showed
promising results in eliminating spurious signals. We also noticed that differ-
ent registration techniques, when applied to the same longitudinal dataset,
may sometimes yield visually very different Jacobian maps, causing problems
in interpreting local structural changes. Given this ambiguity and the increas-
ing use of registration methods to measure brain change, more information
is required concerning the baseline stability, reproducibility, and statistical
properties of signals generated by different nonrigid registration techniques.

The main contribution of this paper is to provide quality calibrations for dif-
ferent non-rigid registration techniques in tensor-based morphometry (TBM).
We systematically investigate and compare the performances of different non-
rigid registration techniques including two common matching functionals: L2,
or the sum of squared intensity differences, versus mutual information, and
four regularization techniques (fluid registration, inverse-consistent linear elas-
tic registration, and the Symmetric and Asymmetric Unbiased registration
techniques). Our experiments are designed to determine which registration
method is more reproducible and more reliable with less artifactual variabil-
ity, especially in regions of homogeneous image intensity. Also, for the first
time we investigate the Asymmetric version of the Unbiased registration (by
contrast with the Symmetric Unbiased model), as well as analyze unbiased
models with mutual information based matching functionals (prior work has
focused on the case where the summed squared intensity differences is used as
the criterion for registration).

Following analyses in the preparatory phase of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (Leow et al. (2006)), the foundation of our cali-
brations is based on the assumption that, by scanning healthy normal human
subjects twice over a 2-week period using the same protocol, serial MRI scan
pairs should not show any systematic biological change. Therefore, any re-
gional structural differences detected using TBM over such a short interval
may be assumed to be errors. We apply statistical analysis to the profile of
these errors, providing information on the reliability, reproducibility and vari-
ability of different registration techniques. Moreover, serial images of 10 sub-
jects from the ADNI follow-up phase (images acquired one year apart) were
analyzed in a similar fashion and compared to the ADNI baseline data. In
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images collected one year apart, real anatomical changes are present; neurobi-
ological changes due to aging and dementia include widespread cell shrinkage,
regional gray and white matter atrophy and expansion of fluid-filled spaces
in the brain. Thus, a good computational technique should be able to dif-
ferentiate between longitudinal image pairs collected for the ADNI baseline
(2-week) and follow-up (1-year) phases. We refer to prior papers for details
of the ADNI acquisition protocol, but briefly, all subjects were scanned with
a standardized MRI protocol, developed after a major effort evaluating and
comparing 3D T1-weighted sequences for morphometric analyses (Jack et al.
(2008)).

In the experiments that follow, all scans were collected according to the stan-
dard ADNI MRI protocol (http://www.loni.ucla.edu/ADNI/Research/Cores/),
which acquires a high-resolution sagittal T1-weighted 3D MP-RAGE sequence
for each subject, with a reconstructed voxel size of 0.9375×0.9375×1.2 mm3.
Additional image corrections were also applied, using a processing pipeline
at the Mayo Clinic, consisting of: (1) a procedure termed GradWarp for cor-
rection of geometric distortion due to gradient non-linearity (Jovicich et al.
(2006)), (2) a “B1-correction”, to adjust for image intensity non-uniformity
using B1 calibration scans (Jack et al. (2008)), (3) “N3” bias field correction,
for reducing intensity inhomogeneity Sled et al. (1998), and (4) geometrical
scaling, according to a phantom scan acquired for each subject (Jack et al.
(2008)), to adjust for scanner- and session-specific calibration errors. Addi-
tional phantom-based geometric corrections were applied to ensure spatial
calibration was kept within a specific tolerance level for each scanner involved
in the ADNI study (Gunter et al. (2006)).

At this point, we would like to motivate the unbiased approach, which couples
the computation of deformations with statistical analyses on the resulting Ja-
cobian maps. As a result, the unbiased approach ensures that deformations
have intuitive axiomatic properties by penalizing any bias in the correspond-
ing statistical maps. In the following sections, we describe the mathematical
foundations of this approach, define energy functionals for minimization, and
perform thorough statistical analyses to demonstrate the advantages of the
unbiased registration models.

2 Unbiased Large-Deformation Image Registration

We first introduce the notation used in this paper. Throughout this paper, we
denote the vectors by bold fonts and scalars by regular fonts. Let Ω be an open
and bounded domain in Rn, for arbitrary n. Without loss of generality, assume
that the volume of Ω is 1, i.e. |Ω| = 1. Let I1 : Ω → R and I2 : Ω → R be the
two images to be registered. We seek to estimate a transformation g : Ω → Ω

4



such that I2 matches I1 when deformed by g. In this paper, we will restrict this
mapping to be differentiable, one-to-one, and onto. We denote the Jacobian
matrix of a deformation g to be Dg. The inverse mapping of g is denoted by
g−1.

The displacement field u(x) from the position x in the deformed image I2◦g(x)
back to I2(x) is defined in terms of the deformation g(x) by the expression
g(x) = x − u(x) at every point x ∈ Ω. Thus, we consider the problems of
finding g and u to be equivalent. It is sometimes more convenient to write ex-
pressions in terms of either g or u. For instance, we can denote the determinant
of the Jacobian matrix of deformation g as either |Dg(x)| or |D(x− u(x))|.

We now describe the construction of the Unbiased Large-Deformation Image
Registration. We associate three probability density functions (PDFs) to g,
g−1, and the identity mapping id:

Pg(x) = |Dg(x)|, Pg−1(x) = |Dg−1(x)|, Pid(x) = 1. (1)

By associating deformations with their corresponding global density maps, we
can now apply information theory to quantify the magnitude of deformations
(Yanovsky et al. (2007a)). In our approach, we choose the Kullback-Leibler
(KL) divergence and symmetric Kullback-Leibler (SKL) distance. The KL di-
vergence between two probability density functions, p1(x) and p2(x), is defined
as

KL(p1(x), p2(x)) =
∫

Ω
p1(x) log

p1(x)

p2(x)
dx ≥ 0. (2)

We define the SKL distance as

SKL(p1(x), p2(x)) = KL(p1(x), p2(x)) + KL(p2(x), p1(x)). (3)

The Unbiased method solves for the deformation g (or, equivalently, for the
displacement u) minimizing the energy functional E, consisting of the image
matching term F and the regularizing term R which is based on KL divergence
or SKL distance. The fidelity term F dependents on I2 and I1, as well as the
displacement u. The general minimization problem can be written as

E(I1, I2,u) = F (I1, I2,u) + λR(u),

inf
u

E(I1, I2,u).
(4)

Here, λ > 0 is a weighting parameter.
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2.1 Asymmetric Unbiased Registration

To quantify the magnitude of deformation g, in this paper we introduce a new
regularization term RKL, which is an asymmetric measure between Pid and
Pg:

RKL(g) = KL(Pid, Pg). (5)

This regularization term can be shown to be

RKL(g) =
∫

Ω
Pid log

Pid

Pg

dx =
∫

Ω
− log |Dg(x)|dx

=
∫

Ω
|Dg−1(y)| log |Dg−1(y)|dy.

(6)

Thus, the energy functional in (4) implementing Asymmetric Unbiased regis-
tration can be written as

E(I1, I2,u) = F (I1, I2,u)− λ
∫

Ω
log |D(x− u(x))|dx, (7)

for some distance measure F between I2(x − u) and I1(x). The second term
on the right-hand side of the equality in (7) is equivalent to the logarithmic
barrier in numerical optimization theory (Nocedal and Wright (1999)) and is
well-behaved.

2.2 Symmetric Unbiased Registration

In this section, we describe the regularization functional based on the sym-
metric KL distance between Pid and Pg:

RSKL(g) = SKL(Pid, Pg). (8)

As shown in (Leow et al. (2007); Yanovsky et al. (2007b)), the regularization
term is linked to statistics on Jacobian maps as follows
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RSKL(g) = KL(Pg, Pid) + KL(Pg−1 , Pid)

= KL(Pg, Pid) + KL(Pid, Pg)

= KL(Pid, Pg−1) + KL(Pid, Pg)

= KL(Pid, Pg−1) + KL(Pg−1 , Pid)

=
∫

Ω

(
|Dg(x)| − 1

)
log |Dg(x)|dx

=
∫

Ω

(
|Dg−1(y)| − 1

)
log |Dg−1(y)|dy.

(9)

The energy functional employing Symmetric Unbiased registration can be
rewritten as

E(I1, I2,u) = F (I1, I2,u)

+λ
∫

Ω

(
|D(x− u(x))| − 1

)
log |D(x− u(x))|dx,

(10)

for some distance measure F . Notice that the symmetric unbiased regularizing
functional is pointwise nonnegative, while the asymmetric unbiased regularizer
in equation (6) can take either positive or negative values locally. Although
in theory, the asymmetric KL regularization may potentially favor voxel ex-
pansion over the identity transformation (at least locally), this is not the case
globally. Indeed, given a body force of zero everywhere, the deformation with
minimum asymmetric KL energy is still the identity transformation. This can
be readily appreciated by noticing that the function − log(x), though not
strictly non-negative, is still a convex function with respect to its argument,
x. Thus, expansion in some regions would induce contraction in others, driving
the overall asymmetric KL energy upwards and away from zero. Moreover, al-
though symmetrization was shown to be important in (Christensen and John-
son (2001)), here we show that in practice, the asymmetric unbiased method
does not seem to perform much differently than its symmetric version. This
further supports our conclusion that the log transformation may be a more
fundamental operation than symmetrization in understanding Jacobian maps
in the context of medical imaging.

3 Fidelity Metrics

In this paper, the matching functional F takes two forms: the L2 norm (the
sum of squared intensity differences) and MI (mutual information). These
functionals have each been used widely in the past for nonrigid registration,
to measure the intensity agreement between a deforming image and the target
image. We briefly describe both distances in this section.
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3.1 L2-norm

The L2-norm matching functional is suitable when the images have been ac-
quired through similar sensors and thus are expected to present the same in-
tensity range and distribution. The L2 distance between the deformed image
I2(x− u) and target image I1(x) is defined as

FL2(I1, I2,u) =
1

2

∫

Ω

(
I2(x− u(x))− I1(x)

)2
dx. (11)

Computing the first variation of functional FL2 gives the following gradient

∂uFL2(I1, I2,u) = −[I2(x− u(x))− I1(x)]∇I2|x−u. (12)

3.2 Mutual Information

Mutual information is a measure of how much information one random variable
has about another. The use of mutual information for image registration was
first introduced in (Collignon et al. (1995) and Viola and Wells (1995)). One of
the main advantages of using mutual information is that it can be used to align
images of different modalities, without requiring knowledge of the relationship
(joint intensity distribution) of the two registered images. We refer the readers
to (D’Agostino et al. (2003); Hermosillo et al. (2001); Wells et al. (1996)) for
relevant discussions on mutual information.

To define the mutual information between the deformed image I2(x− u) and
the target image I1(x), we follow the notations in (Hermosillo et al. (2001)),
where pI1 and pI2

u are used to denote the intensity distributions estimated from
I1(x) and I2(x−u), respectively. An estimate of their joint intensity distribu-
tion is denoted as pI1,I2

u . In this probabilistic framework, the link between two
modalities is fully characterized by a joint density.

We let i1 = I1(x), i2 = I2(x − u(x)) denote intensity values at point x ∈ Ω.
Given the displacement field u, the mutual information computed from I1 and
I2 is provided by

MII1,I2
u =

∫

R2
pI1,I2
u (i1, i2) log

pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

di1di2. (13)

We seek to maximize the mutual information between I2(x−u) and I1(x), or
equivalently, minimize the negative of MII1,I2

u :

FMI(I1, I2,u) = −MII1,I2
u . (14)
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The gradient of (14) is derived in Appendix C and is given by

∂uFMI(u) =
1

|Ω|

[
Qu ∗ ∂ψ

∂ξ2

]
(I1(x), I2(x− u))∇I2(x− u), (15)

where |Ω| is the volume of Ω, Qu is defined as

Qu(i1, i2) = 1 + log
pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

, (16)

and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing kernel, which is used to
estimate the joint intensity distribution from I2(x − u) and I1(x). Here, we
use the Gaussian kernel with variance σ2:

ψ(ξ1, ξ2) = Gσ(ξ1, ξ2) =
1

2πσ2
e
−(ξ21+ξ22)

2σ2 . (17)

4 Minimization of Energy Functionals

In general, we expect minimizers of the energy functional E(u) to exist. Com-
puting the first variation of the functional in (4), we obtain the gradient of
E(I1, I2,u), namely ∂uE(I1, I2,u). We define the force field f , which drives I2

into registration with I1, as

f(x,u) = −∂uE(I1, I2,u) = −∂uF (I1, I2,u)− λ∂uR(u). (18)

Here, R(u) is either RKL(u) or RSKL(u). Explicit expressions for components
of ∂uR(u), in both cases, are derived in Appendices A and B for two and three
dimensional cases, respectively. Also, the gradient ∂uF (I1, I2,u) depends on
the choice of the fidelity term.

Given the force field, the most straightforward way to minimize (4) might
seem to involve parameterizing the descent direction by an artificial time τ ,

∂u(x, τ)

∂τ
= f(x,u(x, τ)). (19)

However, in our case, we do not solve Euler-Lagrange equations using the
gradient descent method. In order to regularize the flow, we employ the fluid
regularization proposed in (Christensen et al. (1996)). Given the velocity field
v, the following partial differential equation can be solved to obtain the dis-
placement field u:

∂u

∂τ
= v − v · ∇u. (20)
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The instantaneous velocity as in (D’Agostino et al. (2003)) is obtained by
convolving f with Gaussian kernel Gσ of variance σ2:

v = Gσ ∗ f(x,u). (21)

This equation can be solved efficiently using the Fast Fourier transform (FFT).

To avoid possible confusion, we summarize the methods we will be referring to
in our subsequent analyses. In later discussions, minimization of the following
energies

E(I1, I2,u) = FL2(I1, I2,u) + λRKL(u) (22)

and

E(I1, I2,u) = FL2(I1, I2,u) + λRSKL(u) (23)

using equations (18), (21), (20) will be referred to as L2-Asymmetric Unbiased
and L2-Symmetric Unbiased models, respectively. The model above, provided
λ = 0, will be referred to as the L2-Fluid model.

Similarly, minimization of

E(I1, I2,u) = FMI(I1, I2,u) + λRKL(u) (24)

and

E(I1, I2,u) = FMI(I1, I2,u) + λRSKL(u) (25)

will be referred to as the MI-Asymmetric Unbiased and MI-Symmetric Un-
biased models, respectively. Such models, with λ = 0, define the MI-Fluid
model.

We are now ready to give an algorithm for minimizing either one of energy
functionals (22) through (25) above.
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Algorithm 1 Unbiased Nonlinear Registration

1: Initialize t = 0 and u(x, 0) = 0.
2: Given u(x, t), calculate the force field f(x,u(x, t)) using equation (18).

Note that the fluid model, obtains the force field using equation (18) with
λ = 0.

3: Solve (21) for the instantaneous velocity v(x, t).
Steps 4-6 describe the procedure for solving equation (20), advancing
u(x, t) in time.

4: Calculate the perturbation of the displacement field:
R(x) = v(x, t)− v(x, t) · ∇u(x, t).

5: Time step 4t is calculated adaptively so that 4t·max(||R||2) = δu, where
δu is the maximal displacement allowed in one iteration. Results in this
work are obtained with δu = 0.1.

6: Advance equation (20), i.e. ∂u(x, t)/∂t = R(x), in time, with time step
from step 4, solving for u(x, t).

7: If the cost functional, defined in either one of (22) through (25), decreases
in the last fifty iterations by less than 1% of the total decrease in energy,
then stop.

8: Let t := t +4t and go to step 2.

5 Statistical Analysis

5.1 Statistical testing on the deviation of log Jacobian maps in the absence
of changes

Based on the authors’ approach in (Leow et al. (2007); Yanovsky et al. (2007b)),
we observe that, given that there is no systematic structural change within
two weeks, any deviation of the Jacobian map from one should be consid-
ered error. Thus, we expect that a better registration technique would yield
log |Dg| values closer to 0 (i.e., smaller log Jacobian deviation translates into
better methodology). Mathematically speaking, one way to test the perfor-
mance is to consider the deviation map dev of the logged (i.e., logarithmically
transformed) Jacobian away from zero, defined at each voxel as

dev(x) =
∣∣∣ log |Dg(x)|

∣∣∣. (26)

For two different registration methods A and B, we define the voxel-wise
deviation gain of A over B (denoted by SA,B) as

SA,B(x) = devA(x)− devB(x). (27)
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For the ADNI baseline dataset (in which patients are scanned twice with MRI,
two weeks apart), two distinct types of t tests are used, a within-subject paired
t test and a group paired t test. A within-subject paired t test is conducted for
each subject by pooling all voxels inside a region of interest, as defined by the
ICBM whole brain mask (the ICBM brain is a standardized population average
image, defined by the International Consortium for Brain Mapping (Mazziotta
et al. (2001))). This determines whether two methods differ significantly inside
the whole brain (for each subject). A group paired t test, on the other hand,
is performed across subjects, by computing a voxel-wise t-map of deviation
gains. In this case, to statistically compare the performance of two registration
methods, we rely on the standard t test on the voxel mean of S. To construct
a suitable null hypothesis, we notice that the following relation would hold,
assuming B outperforms A

SA,B > 0. (28)

Thus, the null hypothesis in this case would be testing if the mean deviation
gain is zero

H0 : µSA,B = 0. (29)

To determine the ranking of A and B, we have to consider one-sided alterna-
tive hypotheses. For example, when testing if B outperforms A, we use the
following alternative hypothesis

H1 : µSA,B > 0. (30)

For n subjects, the voxel-wise T statistic, defined as

TSA,B(x) =

√
n · SA,B(x)

σSA,B(x)
, (31)

where

SA,B(x) =

∑
i S

A,B
i (x)

n
, (32)

and
(
σSA,B(x)

)2
=

∑
i

(
SA,B

i (x)− SA,B(x)
)2

n− 1
, (33)

thus follows the Student’s t distribution under the null hypothesis and may be
used to determine the p-value that the null hypothesis is true. If the alternative
hypothesis is accepted, we confirm that sequence B outperforms A at point
x. Otherwise, we would rank A and B equally if the null hypothesis is not
rejected.

5.2 Detecting Real Changes - Statistical testing on the mean log Jacobian

For both the ADNI follow-up dataset (in which patients are scanned twice
with MRI, one year apart) and ADNI baseline dataset, we create a voxel-wise
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t map using the local log Jacobian values of the ten subjects, allowing us to
test the validity of the zero mean assumption. To simplify the notation, we
introduce J to denote J = |Dg|. The following voxel-wise T statistic compared
to a two-tailed Student’s t distribution may then be used to test the above
null hypothesis

Tlog J(x) =

√
n · log J(x)

σlog J(x)
, (34)

where

log J(x) =

∑
i log Ji(x)

n
, (35)

and

(
σlog J(x)

)2
=

∑
i

(
log Ji(x)− log J(x)

)2

n− 1
. (36)

We reject the null hypothesis if the p value calculated above exceeds a pre-
set threshold based on a suitable confidence interval. Notice the voxel-wise
variance of log J provides us with a way to assess the repeatability of a de-
formation method, i.e., measuring the voxel-wise spread of the given multiple
observations (with higher variance corresponding to lower repeatability).

5.3 Permutation Testing to Correct Multiple Comparisons

To determine the overall global effects of different registration methods on the
deviation of log Jacobian maps throughout the brain, we performed permuta-
tion tests to adjust for multiple comparisons (Bullmore et al. (1999); Nichols
and Holmes (2001)). Following the analyses in (Leow et al. (2006)), we resam-
pled the observations by randomly flipping the sign of SA,B

i (i = 1, 2, ..., n)
under the null hypothesis. For each permutation, voxelwise t tests are com-
puted. We then compute the percentage of voxels inside the chosen ROI (in
this case the ICBM mask) with T statistics exceeding a certain threshold. The
multiple comparisons corrected p value may be determined by counting the
number of permutations whose above-defined percentage exceeds that of the
un-permuted observed data. This is comparable to ‘set-level inference’ in the
widely-used SPM (Statistical Parametric Mapping) functional image analysis
package (Friston et al. (1995)). For example, we say that sequence B outper-
forms A on the whole brain if this corrected p value is smaller than 0.05 (that
is, less than 5% of all permutations have the above-defined percentage greater
than that of the original data). All possible (210 = 1024) permutations were
considered in determining the final corrected p value.
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5.4 Cumulative Distribution Function (CDF)

To visually assess the global significance level of the voxel-wise t tests on devi-
ation gains and log-Jacobian values, we also employed the cumulative distribu-
tion function (CDF) plot, as in several prior studies (Brun et al. (2007); Chiang
et al. (2007); Lepore et al. (2007); Morra et al. (2009)). In brief, we plot ob-
served cumulative probabilities against the theoretical distribution under the
null hypothesis. These CDF plots are commonly created as an intermediate
step, when using the false discovery rate (FDR) method to assign overall sig-
nificance values to statistical maps (Benjamini and Hochberg (1995); Genovese
et al. (2002); Storey (2002); Zhu et al. (2007)). As they show the proportion
of supra-threshold voxels in a statistical map, for a range of thresholds, these
CDF plots (sometimes called Q-Q plots) offer a measure of the effect size in
a statistical map. They also may be used to demonstrate which methodolog-
ical choices influence the effect size in a method that creates statistical maps
(Brun et al. (2007); Chiang et al. (2007); Lepore et al. (2007)).

In the case of deviation gains S of a worse technique A over a better technique
B in the ADNI baseline data, we expect a CDF curve to lie above the Null
line, in the sense that a better technique exhibits less systematic changes. In
the case of log-Jacobian values, a better registration technique, on the other
hand, should be able to separate the CDF curves between ADNI baseline and
follow-up phases (this is what we refer to as the separation of CDF curves in
the presence of real physiological changes).

6 Computational Considerations

In Sections 7 and 8, we tested the Asymmetric Unbiased and Symmetric Un-
biased models and compared the results to those obtained using the Fluid
registration model (Christensen et al. (1996); D’Agostino et al. (2003)) and
inverse-consistent linear elastic registration (Christensen and Johnson (2001);
Leow et al. (2005)). Of note, even though Asymmetric Unbiased and Symmet-
ric Unbiased methods minimize different energy functionals, our experiments
showed that they generate very similar maps. For each regularization tech-
nique, we employed both L2 and mutual information matching functionals
(see equations (22)-(25)).

To obtain a fair comparison, re-gridding was not employed. Re-gridding is a
method to relax the energy computed from the linear elasticity prior after a
certain number of iterations, which allows large-deformation mappings to be
recovered without any absolute penalty on the displacement field (other than
via the smoothness constraint on the velocity field which is integrated to give
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the displacement) (Christensen et al. (1996)). It is essentially a memory-less
procedure, as how images are matched after each re-gridding is independent
of the final deformation before the re-gridding, rendering the comparison of
final Jacobian fields and cost functionals problematic. Moreover, we consider
the strategy of re-gridding, through the relaxation of deformation fields over
time, to be less rigorous from a theoretical standpoint, as the imposition of
a regularizer can be used to secure distributional properties in the resulting
statistics (e.g., symmetric log-Jacobian).

For the experiments in this paper, different values of parameter σ (the stan-
dard deviation) in equation (21) were chosen. The values we used were σ =
7.0, 9.0, 12.0. Also, different values of parameter λ were employed. For exam-
ple, in our MI-Unbiased experiments, λ was chosen to be 1.0, 2.0, 5.0, 10.0.
As will be shown in the experimental sections, Fluid registration yielded best
results with σ = 9.0 and 12.0, and therefore, all fluid registration results were
visualized with σ = 9.0, unless otherwise mentioned. As will be shown in the
experimental sections, for all values of λ, the unbiased registration outper-
formed the fluid registration with statistical significance when comparing the
value of the data term at convergence (for the 10 subjects used) using a t-
test to compare the results of one set of parameters versus the other. Unless
otherwise mentioned, MI-Unbiased registration results were generated using
values of σ = 9.0 and λ = 5.0. A similar procedure was employed to choose the
parameters for L2-based methods. Notice that our procedure for selecting the
parameters closely follows the approach employed in (Cachier et al. (2003)),
who compared algorithms over a range of regularization constants and picked
the best constant for each algorithm. Alternatively, parameters may be se-
lected as in (Yeo et al. (2008)), where the best regularization constant was
found using cross-validation.

7 ADNI Baseline Scan Experiments

In this section, nonlinear registration was performed on a dataset that we
shall refer to as the “ADNI Baseline” dataset, collected during the preparatory
phase of the ADNI project, which includes serial MRI images of ten normal
elderly subjects acquired two weeks apart. Each of the ten pairs of scans is
represented on a 220 × 220 × 220 grid. Here, the foundation of calibrations
is based on the assumption that, by scanning normal control human subjects
serially within a two-week period using the same MRI protocol, no systematic
structural changes should be recovered.
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L2-Fluid

L2-Asymmetric Unbiased

L2-Symmetric Unbiased

time 2 to time 1 time 1 to time 2 products of Jacobians

Fig. 1. Nonrigid registration was performed on an image pair from one of the subjects
from the ADNI Baseline study (serial MRI images acquired two weeks apart) using
L2-Fluid (row 1), L2-Asymmetric Unbiased (row 2), and L2-Symmetric Unbiased
(row 3) registration methods. Jacobian maps of deformations from time 2 to time 1
(column 1) and time 1 to time 2 (column 2) are superimposed on the target volumes.
The unbiased methods generate less noisy Jacobian maps with values closer to 1; this
shows the greater stability of the approach when no volumetric change is present.
Column 3 examines the inverse consistency of deformation models. Products of
Jacobian maps generated using all three models are shown, for forward direction
(time 1 to time 2) and backward direction (time 2 to time 1). For the L2-based
unbiased methods, the products of the Jacobian maps are less noisy, with values
closer to 1, showing better inverse consistency.

7.1 L2 matching

In our first experiment, we compared methods based on L2 matching (L2-
Fluid, L2-Asymmetric Unbiased, and L2-Symmetric Unbiased). Uniform val-
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Fig. 2. Values of the L2 matching functional are shown per iteration for the L2-Fluid
(solid red), L2-Asymmetric Unbiased (solid blue), and L2-Symmetric Unbiased
(dashed green) methods. All methods cause the intensity mismatch measure to
decrease and converge in a similar way.
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L2−Fluid

L2−Asym.Unbiased

L2−Sym.Unbiased

(a) KL divergence (b) SKL distance

Fig. 3. (a) KL divergence and (b) SKL distance per iteration are shown for L2-Fluid
(solid red), L2-Asymmetric Unbiased (solid blue), and L2-Symmetric Unbiased
(dashed green) methods. For L2-Fluid, both KL and SKL measures increase, while
for Asymmetric Unbiased and Symmetric Unbiased models both measures stabilize.

ues of λ = 500 and λ = 1000 were used for all deformations using L2-
Symmetric Unbiased and L2-Asymmetric Unbiased algorithms, respectively.
Since the Asymmetric Unbiased model quantifies only the forward deforma-
tion, the weight of the corresponding regularization functional is half the mag-
nitude of that of the Symmetric Unbiased model, and hence, a weighting pa-
rameter twice as large should be used.

Registering Serial MRI Scans. Figures 1-4 show the results of registering a
pair of serial MRI images for one of the subjects (subject 3). The deformation
was computed in both directions (time 2 to time 1, and time 1 to time 2) using
methods based on L2 matching. In Figure 1, Jacobian maps of deformations
are superimposed on brain volumes. Both Asymmetric Unbiased and Symmet-
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(a) L2-Fluid vs. L2-Asym.Unbiased

(b) L2-Fluid vs. L2-Sym.Unbiased

Fig. 4. Histograms of voxel-wise deviation gains (a) L2-Fluid over L2-Asymmetric
Unbiased and (b) L2-Fluid over L2-Symmetric Unbiased for one of the subjects for
the forward direction (time 2 to time 1) and backward direction (time 1 to time 2).
The histograms are skewed to the right, indicating the superiority of Asymmetric
Unbiased and Symmetric Unbiased registration methods over Fluid registration. A
paired t test shows significance (p < 0.0001). The histogram of the null distribution
is centered at the point where the deviation gain S = 0, designated in blue.

ric Unbiased methods generate less noisy Jacobian maps with values closer to
the identity mapping, which shows the superior stability of the Unbiased ap-
proach in the absence of physiological changes. We also visually assessed the
inverse consistency of the mappings (Christensen and Johnson (2001)) by con-
catenating forward and backward Jacobian maps (in an ideal situation, this
operation should yield the identity). Again, we observe noticeable visual dif-
ferences between the results obtained using the unbiased methods and Fluid
registration. Figure 2 shows the L2-norm decrease per iteration for all L2-
based models. Figure 3 plots the KL divergence and SKL distance measures
for each of the L2-based methods. For L2-Fluid method, both KL and SKL
measures increase with increasing numbers of iterations. On the other hand,
even though the Asymmetric Unbiased method minimizes the KL divergence

18



1 2 3 4 5 6 7 8 9 10
−600

−400

−200

0

200

400

600

Subject #

T
S

A
,B

 Within−subject paired t test

L2-Fluid vs. L2-Sym.Unbiased

Fig. 5. Global T statistics for all ten subjects testing whether Symmetric Unbiased
registration (method B) outperforms Fluid registration (method A) when coupled
with L2. Here, p < 0.0001 for all subjects, indicating that the Symmetric Unbiased
registration, when coupled with L2 cost functional, outperforms Fluid registration
with confirmed statistical significance, producing more reproducible maps with less
variability.

and the Symmetric Unbiased model minimizes the SKL distance, these two
measures stabilize for both unbiased methods. Figure 4 shows the histograms
of voxel-wise deviation gains of L2-Fluid over L2-Asymmetric Unbiased as well
as L2-Fluid over L2-Symmetric Unbiased. The histograms are skewed to the
right, indicating the superiority of both unbiased registration methods over
Fluid registration.

Of note, we have also considered a different deviation map, defined as dev2(x) =∣∣∣|Dg(x)|−1
∣∣∣, in place of (26). We performed statistical analyses with this def-

inition of deviation gain, which yielded very similar results. These results are
therefore not shown in this paper.

In Figure 5, we compared L2-Fluid and L2-Symmetric Unbiased methods,
conducting a within-subject paired t test inside the ICBM mask for each of
the ten subjects. In this case, p < 0.0001 for all subjects, indicating that
the Symmetric Unbiased registration, when coupled with L2 matching cost
functional, produces more reproducible maps with less variability.

Group Differences. Figure 6 shows the mean Jacobian maps obtained using
L2-Fluid, L2-Asymmetric Unbiased, and L2- Symmetric Unbiased registration
algorithms. Jacobian maps generated using unbiased models have values closer
to 1, whereas L2-Fluid model generated noisy mean maps. Figure 7, shows the
results when performing 3D voxel-wise paired t tests for the deviation gain
of L2-Fluid over L2-Asymmetric Unbiased and L2-Fluid over L2-Symmetric
Unbiased. T maps for the deviation gains are empirically thresholded at 2.28
(p = 0.005 on the voxel level with 9 degrees of freedom) to show statistical
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Baseline Study

(a) L2-Fluid (b) L2-Asym.Unbiased (c) L2-Sym.Unbiased

Fig. 6. Nonrigid registration was performed on the ADNI Baseline study (serial MRI
images acquired two weeks apart) of ten normal elderly subjects using L2-Fluid
(column 1), L2-Asymmetric Unbiased (column 2), and L2-Symmetric Unbiased
(column 3) registration methods. For each method, the mean of the resulting 10
Jacobian maps is superimposed on one of the brain volumes. Visually, L2-Fluid
generates a noisy mean map, while maps generated using L2-Asymmetric Unbiased
and L2-Symmetric Unbiased methods are less noisy with values closer to 1. For all
deformation models, regions with least stability, due to both spatial distortion and
intensity inhomogeneity, are the brain stem, thalamus, and ventricles.

significance.

Figure 8 shows results obtained using Multiple Comparison Analysis using
permutation testing on deviation gains of L2-Fluid over L2-Symmetric Un-
biased. The results indicate that out of 1024 permutations, no permutation
yields a larger percentage of voxels with p < 0.05 than the observed data,
which indicates that L2-Symmetric Unbiased method outperforms L2-Fluid
with p < 0.001.

To emphasize the differences between the distributions of log Jacobian values
for Fluid and unbiased (both asymmetric and symmetric) methods, in Figure
9, we plotted the cumulative distribution function of the p-values in deviation
gains as defined in (27). In these plots, the interval p ∈ [0, 0.005] is the most
important. For a null distribution, this cumulative plot falls along the line
y = x in xy-plane, as represented by the dashed black line. Larger upward
inflections of the CDF curve near the origin are associated with significant
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Baseline Study

L2-Fluid vs. L2-Asym.Unbiased L2-Fluid vs. L2-Sym.Unbiased

Fig. 7. Voxel-wise paired t test for the deviation gain S empirically thresholded
at 2.82 (p = 0.005 on the voxel level with 9 degrees of freedom), showing
where L2-Asymmetric Unbiased and L2-Symmetric Unbiased registration outper-
form L2-Fluid registration (regions in red) with statistical significance on a voxel
level. In contrast, there are no voxels with T values smaller than -2.82, indicating
that Fluid registration does not outperform unbiased methods at any voxel. Hence,
the visualization of voxel-wise paired t test with a threshold of -2.82 is omitted.

deviation gains, indicating that both Asymmetric Unbiased and Symmetric
Unbiased methods outperform Fluid method in being less likely to exhibit
structural changes in the absence of systematic biological changes.

7.2 MI matching

In our second experiment, we compared the performance of methods based on
mutual information matching (MI-Fluid, MI-Asymmetric Unbiased, and MI-
Symmetric Unbiased). Uniform values of λ = 5 and λ = 10 were used for all
deformations using MI-Symmetric Unbiased and MI-Asymmetric Unbiased al-
gorithms, respectively. Since the Asymmetric Unbiased model quantifies only
the forward deformation, the weight of the corresponding regularization func-
tional is half the magnitude of that of the Symmetric Unbiased model, and
hence, a weighting parameter twice as large should be used.

Registering Serial MRI Scans. Figures 10-13 show the results of registering
a pair of serial MRI images for one of the subjects (subject 3). The deformation
was computed in both directions (time 2 to time 1, and time 1 to time 2)
using methods based on Mutual Information matching. In Figure 10, Jacobian
maps of deformations are superimposed on brain volumes. Both Asymmetric
Unbiased and Symmetric Unbiased methods generate less noisy Jacobian maps
with values closer to the identity mapping, which shows the superior stability
of the Unbiased approach in the absence of physiological changes. We also
observed that MI-Asymmetric Unbiased and MI-Symmetric Unbiased methods
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Fig. 8. Multiple Comparison Analysis using permutation testing on the deviation
gain S of L2-Fluid over L2-Symmetric Unbiased for baseline ADNI dataset. Each
permutation randomly assigns a positive or negative sign to each of the 10 log-Ja-
cobian maps. Here, results are plotted with respect to the number of positive signs
(from 0 to 10) with 10 positive signs indicating the observed data. Dark blue, light
blue, and green colors indicate the minimum, average, and maximum percentage of
voxels with p < 0.05 of all possible permutations with a given number of positive
signs. There is only one observation for the observed data, and thus, minimum,
maximum, and average values are equal for the rightmost bar. The result indicates
that out of 1024 permutations, no permutation gives a greater percentage of voxels
with p < 0.05 than the observed data does. This indicates that unbiased regulariza-
tion technique outperforms Fluid method with p < 0.001. Since the results obtained
using Asymmetric Unbiased method are similar to those obtained using Symmetric
Unbiased method, they are not shown here.

produce inverse consistent maps with less variability. Figure 11 shows the
mutual information decrease per iteration for all MI-based models. Figure
12 plots the KL divergence and SKL distance measures for each of the MI-
based methods. For MI-Fluid method, both KL and SKL measures increase
with increasing numbers of iterations. On the other hand, these two measures
stabilize for both unbiased methods. Figure 13 shows the histograms of voxel-
wise deviation gains of MI-Fluid over MI-Asymmetric Unbiased as well as
MI-Fluid over MI-Symmetric Unbiased. The histograms are skewed to the
right, indicating the superiority of both unbiased registration methods over
Fluid registration.

In Figure 14, we compared MI-Fluid and MI-Symmetric Unbiased methods,
conducting a within-subject paired t test for each of the ten subjects. In this
case, p < 0.0001 for all subjects, indicating that the Symmetric Unbiased
registration, when coupled with mutual information matching cost functional,
produces more reproducible maps with less variability.

Group Differences. Figure 15 shows the mean Jacobian maps obtained us-
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(a) L2-Fluid vs. L2-Asym.Unbiased (b) L2-Fluid vs. L2-Sym.Unbiased

Fig. 9. Cumulative distribution of p-values for the deviation gain S of (a) L2-Fluid
over L2-Asymmetric Unbiased and (b) L2-Fluid over L2-Symmetric Unbiased. Here,
the ADNI baseline dataset is used. In both (a) and (b), the CDF line is well above the
Null line (y = x), indicating that both asymmetric and symmetric unbiased methods
outperform Fluid method (i.e. less deviation) in being less likely to exhibit structural
change in the absence of biological change. Note that the interval p ∈ [0, 0.005] is
of most importance for observation.

ing MI-Fluid, MI-Asymmetric Unbiased, and MI- Symmetric Unbiased reg-
istration algorithms. Jacobian maps generated using unbiased models have
values closer to 1, whereas MI-Fluid model generated noisy mean maps. Fig-
ure 16, shows the results when performing 3D voxel-wise paired t tests for
the deviation gain of MI-Fluid over MI-Asymmetric Unbiased and MI-Fluid
over MI-Symmetric Unbiased. T maps for the deviation gains are empirically
thresholded at 2.28 (p = 0.005 on the voxel level with 9 degrees of freedom)
to show statistical significance.

Figure 17 shows results obtained using Multiple Comparison Analysis using
permutation testing on deviation gains of MI-Fluid over MI-Symmetric Un-
biased. The results indicate that out of 1024 permutations, no permutation
yields a larger percentage of voxels with p < 0.05 than the observed data,
which indicates that MI-Symmetric Unbiased method outperforms MI-Fluid
with p < 0.001.

In Figure 18, we plotted the cumulative distribution function of the p-values
in deviation gains. Larger upward inflections of the CDF curve near the origin
are associated with significant deviation gains, indicating that both Asym-
metric Unbiased and Symmetric Unbiased methods outperform Fluid method
in being less likely to exhibit structural changes in the absence of systematic
biological changes.
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MI-Fluid

MI-Asymmetric Unbiased

MI-Symmetric Unbiased

time 2 to time 1 time 1 to time 2 products of Jacobians

Fig. 10. Nonrigid registration was performed on an image pair from one of the sub-
jects from the ADNI Baseline study (serial MRI images acquired two weeks apart)
using MI-Fluid (row 1), MI-Asymmetric Unbiased (row 2), and MI-Symmetric Un-
biased (row 3) registration methods. Jacobian maps of deformations from time 2
to time 1 (column 1) and time 1 to time 2 (column 2) are superimposed on the
target volumes. The unbiased methods generate less noisy Jacobian maps with val-
ues closer to 1; this shows the greater stability of the approach when no volumetric
change is present. Column 3 examines the inverse consistency of deformation mod-
els. Products of Jacobian maps generated using all three models are shown, for the
forward direction (time 1 to time 2) and backward direction (time 2 to time 1).
For the mutual information-based unbiased methods, the products of the Jacobian
maps are less noisy, with values closer to 1, showing better inverse consistency.

7.3 L2 versus MI matching

Lastly, we compared L2 and mutual information cost functionals for both
Fluid and Symmetric Unbiased regularization. (Since Asymmetric Unbiased
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Fig. 11. Values of the mutual information matching functional are shown per it-
eration for the MI-Fluid (solid red), MI-Asymmetric Unbiased (solid blue), and
MI-Symmetric Unbiased (dashed green) methods. Again, all methods cause the in-
tensity mismatch measure to decrease and converge in a similar way.
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Fig. 12. (a) KL divergence and (b) SKL distance per iteration are shown for the
MI-Fluid (solid red), MI-Asymmetric Unbiased (solid blue), and MI-Symmetric Un-
biased (dashed green) methods. For MI-Fluid, both KL and SKL measures increase,
while for Asymmetric Unbiased and Symmetric Unbiased models both measures sta-
bilize.

and Symmetric Unbiased regularizations produce similar results, we do not
show the results for the asymmetric version). We again conducted within-
subject paired t tests (Figure 19) as well as group paired t tests (Figure 20)
on the voxel-wise deviation gains for all voxels inside the ICBM brain mask.
We showed that MI-Fluid outperforms L2-Fluid with p < 0.0001. However,
the result of the comparison of L2-Symmetric Unbiased and MI-Symmetric
Unbiased is inconclusive.
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(a) MI-Fluid vs. MI-Asym.Unbiased

(b) MI-Fluid vs. MI-Sym.Unbiased

Fig. 13. Histograms of voxel-wise deviation gains (a) MI-Fluid over MI-Asymmetric
Unbiased and (b) MI-Fluid over MI-Symmetric Unbiased for one of the subjects, for
the forward direction (time 2 to time 1) and backward direction (time 1 to time 2).
The histograms are skewed to the right, indicating the superiority of Asymmetric
Unbiased and Symmetric Unbiased registration methods over Fluid registration.
Paired t test shows significance (p < 0.0001). The histogram of the null distribution
is centered at the point where the deviation gain S = 0, designated in blue.

8 ADNI Follow-up Scan Experiments

In this section, we analyze a dataset we shall call the “ADNI Follow-up” phase
dataset, which includes serial MRI images (220 × 220 × 220) of ten subjects
acquired one year apart. These data were collected as part of a larger study
to track degenerative brain changes in MRI in 800 subjects, ages 55 to 90, in-
cluding 200 elderly controls, 400 subjects with mild cognitive impairment, and
200 patients with AD. As the images are now one year apart, real anatomical
changes are present, which allows methods to be compared in the presence of
true biological changes.
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Fig. 14. Global T statistics for all ten subjects testing whether Symmetric Unbiased
registration (method B) outperforms Fluid registration (method A) when coupled
with mutual information. Here, p < 0.0001 for all subjects, indicating that the
Symmetric Unbiased registration, when coupled with MI matching cost functional,
outperforms Fluid registration with confirmed statistical significance, producing
more reproducible maps with less variability.

In Figures 21 and 22, nonlinear registration was performed using Fluid, Asym-
metric Unbiased, and Symmetric Unbiased methods. Visually, the Fluid method
generates noisy mean Jacobian maps, while maps generated using unbiased
methods suggest a volume reduction in gray matter as well as ventricular en-
largement. Here, both Asymmetric Unbiased and Symmetric Unbiased meth-
ods perform equally well. Figure 23 displays the cumulative distribution of
p-values for the voxel-wise log Jacobian t-maps for both ADNI Baseline and
ADNI Follow-up datasets. We expect a better method to separate these two
CDF curves, indicating that a real biological change has occurred between
the two time points. A greater separation is accomplished when Asymmetric
Unbiased and Symmetric Unbiased methods are used, while the Fluid method
does not differentiate between the two datasets.

In Figures 24 and 25, we further compared different registration methods
by matching images artificially corrupted with Gaussian noise (zero mean;
variance 12.0). Figure 25 displays the cumulative distribution of p-values for
the voxel-wise log Jacobian t-maps for both ADNI Baseline and ADNI Follow-
up datasets. A greater separation is accomplished when Unbiased methods are
used.

We also compared Fluid registration and Unbiased registration methods using
different values for the two parameters σ and λ (Figure 26). We used λ =
1.0, 2.0, 5.0, 10.0 (for the Unbiased registration), and σ = 7, 9, 12 (for both
Fluid and Unbiased registration). In general, Fluid registration and Unbiased
registration with smaller λ values generated noisier mean maps, while maps
generated using Unbiased registration with larger λ values suggest a volume
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Baseline Study

(a) MI-Fluid (b) MI-Asym.Unbiased (c) MI-Sym.Unbiased

Fig. 15. Nonrigid registration was performed on the ADNI Baseline study (serial
MRI images acquired two weeks apart) of ten normal elderly subjects using MI-Fluid
(column 1), MI-Asymmetric Unbiased (column 2), and MI-Symmetric Unbiased
(column 3) registration methods. For each method, the mean of the resulting 10
Jacobian maps is superimposed on one of the brain volumes. Visually, MI-Fluid
generates a noisy mean map, while maps generated using MI-Asymmetric Unbiased
and MI-Symmetric Unbiased methods are less noisy with values closer to 1. For all
deformation models, regions with least stability, due to both spatial distortion and
intensity inhomogeneity, are the brain stem, thalamus, and ventricles.

reduction in gray matter as well as ventricular enlargement. As the value of
the smoothing parameter σ increased, the resulting Jacobian maps became
smoother, making the biological effects, such as reduction in gray matter,
harder to detect.

In Figures 27 and 28, we compared Unbiased registration methods with the
inverse-consistent linear elastic matching of (Christensen and Johnson (2001);
Leow et al. (2005)). Figure 28 displays the cumulative distribution of p-values
for the voxel-wise log Jacobian t-maps for both ADNI Baseline and Follow-up
datasets for Unbiased technique with different values of λ, Fluid registration,
and inverse-consistent linear elastic matching. Unbiased methods, especially
with larger values of parameter λ, show a bigger separation between the base-
line and follow-up curves than Fluid and inverse-consistent linear elasticity
methods do, indicating that Unbiased methods, with any λ value, were able
to better differentiate between the two datasets.
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Baseline Study

MI-Fluid vs. MI-Asym.Unbiased MI-Fluid vs. MI-Sym.Unbiased

Fig. 16. Voxel-wise paired t test for the deviation gain S empirically thresholded
at 2.82 (p = 0.005 on the voxel level with 9 degrees of freedom), showing where
MI-Asymmetric Unbiased and MI-Symmetric Unbiased registration outperform
MI-Fluid registration (regions in red) with statistical significance on a voxel level.
In contrast, there are no voxels with T values smaller than -2.82, indicating that
Fluid registration does not outperform unbiased methods at any voxel. Hence, the
visualization of voxel-wise paired t test with a threshold of -2.82 is omitted.
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Fig. 17. Multiple Comparison Analysis using permutation testing on the deviation
gain S of MI-Fluid over MI-Symmetric Unbiased, for baseline ADNI dataset. See
caption of Figure 8 for interpretation of the results.

9 Discussion

This is the first paper which aims to provide quality calibrations for differ-
ent non-rigid registration techniques in TBM. We systematically investigated
and compared the performances of different non-rigid registration techniques
including common matching functionals (L2-metric and mutual information),
and regularization techniques (fluid registration, inverse-consistent linear elas-
tic matching, Asymmetric Unbiased, and Symmetric Unbiased techniques).
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(a) MI-Fluid vs. MI-Asym.Unbiased (b) MI-Fluid vs. MI-Sym.Unbiased

Fig. 18. Cumulative distribution of p-values for the deviation gain S of (a) MI-Fluid
over MI-Asymmetric Unbiased and (b) MI-Fluid over MI-Symmetric Unbiased.
Here, ADNI baseline dataset is used. In both (a) and (b), the CDF line is well
above the Null line, indicating that both asymmetric and symmetric unbiased meth-
ods outperform Fluid method in being less likely to exhibit structural change in the
absence of biological change. Note that the interval p ∈ [0, 0.005] is of most impor-
tance for observation.
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(a) L2-Fluid vs. MI-Fluid (b) MI-S.Unbiased vs. L2-S.Unbiased

Fig. 19. Global T statistics for all ten subjects testing (a) whether MI-Fluid
(method B) outperforms L2-Fluid (method A), and (b) whether L2-Symmetric
Unbiased (method B) outperforms MI-Symmetric Unbiased (method A). MI-Fluid
outperforms L2-Fluid with p < 0.0001. However, the result of the comparison of
L2-Symmetric Unbiased and MI-Symmetric Unbiased is inconclusive.

Experiments were conducted to determine which registration method is more
reproducible, more reliable, with less artifactual variability in regions of ho-
mogeneous image intensity. We also introduced a novel asymmetric unbiased
registration model (the Asymmetric Unbiased model) and for the first time,
analyzed unbiased models with mutual information based matching function-
als.
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(a) L2-Fluid vs. MI-Fluid (b) MI-S.Unbiased vs. L2-S.Unbiased

Fig. 20. Multiple Comparison Analysis using permutation testing on the devia-
tion gain S of (a) L2-Fluid over MI-Fluid and (b) MI-Symmetric Unbiased over
L2-Symmetric Unbiased, both for baseline ADNI dataset. Each permutation ran-
domly assigns positive or negative sign to each of the 10 log-Jacobian maps. Here,
results are plotted with respect to the number of positive signs (from 0 to 10) with
10 positive signs indicating the observed data. Dark blue, light blue, and green colors
indicate the minimum, average, and maximum percentage of voxels with p < 0.05
of all possible permutations with a given number of positive signs. There is only
one observation for the observed data, and thus, minimum, maximum, and average
values are equal for the rightmost bar. The result in (a) indicates that out of 1024
permutations, no permutation gives a greater percentage of voxels with p < 0.05
than the observed data does. This indicates that MI-Fluid method outperforms
L2-Fluid method with p < 0.001. However, the comparison of MI-Symmetric Unbi-
ased and L2-Symmetric Unbiased in (b) is inconclusive. Since the results obtained
using Asymmetric Unbiased method are similar to those obtained using Symmetric
Unbiased method, they are not shown here.

We showed that both Asymmetric and Symmetric Unbiased models generate
very similar results. Although in theory, the asymmetric KL regularization
may potentially favor voxel expansion over the identity transformation, this
is not the case globally. Indeed, given a body force of zero everywhere, the
deformation with minimum asymmetric KL energy is still the identity trans-
formation. Thus, expansion in some regions would induce contraction in oth-
ers, driving overall asymmetric KL energy upwards and away from zero. Here
we show that in practice, the asymmetric unbiased method does not seem to
perform much differently than its symmetric version. This further supports
our conclusion that the log transformation may be a more fundamental oper-
ation than symmetrization in understanding Jacobian maps in the context of
medical imaging.

We compared Fluid registration and Unbiased registration methods with dif-
ferent values of parameters σ and λ. Fluid registration, as well as Unbiased
registration with smaller values of λ, generated noisier mean maps, while maps
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Follow-up Study

(a) L2-Fluid (b) L2-Asym.Unbiased (c) L2-Sym.Unbiased

Fig. 21. Nonrigid registration was performed on the ADNI Follow-up study (serial
MRI images acquired 12 months apart) using L2-Fluid (column 1), L2-Asymmetric
Unbiased (column 2), and L2-Symmetric Unbiased (column 3) registration methods.
For each method, the mean of the resulting 10 Jacobian maps is superimposed on
one of the brain volumes. Visually, L2-Fluid generates a noisy mean map, while maps
generated using the L2-Asymmetric Unbiased and L2-Symmetric Unbiased methods
suggest a volume reduction in gray matter as well as ventricular enlargement.

generated using Unbiased registration with larger values of λ suggest a volume
reduction in gray matter as well as ventricular enlargement. As the value of
smoothing parameter σ increased, the Jacobian map became smoother, mak-
ing the biological effects, such as reduction in gray matter, harder to detect.
Our analyses showed that both Asymmetric Unbiased and Symmetric Unbi-
ased models perform significantly better than the fluid registration technique
and demonstrated that the Unbiased registration, with any choice of parame-
ters, has more power differentiating between regions of change and no change
than the inverse-consistent linear elastic matching of (Christensen and John-
son (2001); Leow et al. (2005)).

The fluid registration is indeed a useful nonrigid registration technique for
many applications since it generates a close alignment between the images be-
ing registered. Even so, as we showed in this paper, the fluid registration has its
limitations in tensor-based morphometry. Unbiased regularization, however,
ensures that the resulting deformations have intuitive axiomatic properties
by penalizing any bias in the corresponding statistical maps. With Unbiased
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Follow-up Study

(a) MI-Fluid (b) MI-Asym.Unbiased (c) MI-Sym.Unbiased

Fig. 22. Nonrigid registration was performed on the ADNI Follow-up study (serial
MRI images of patients with Alzheimer’s disease acquired 12 months apart) using
MI-Fluid (column 1), MI-Asymmetric Unbiased (column 2), and MI-Symmetric Un-
biased (column 3) registration methods. For each method, the mean of the resulting
10 Jacobian maps is superimposed on one of the brain volumes. Visually, MI-Fluid
generates a noisy mean map, while the map generated using MI-Asymmetric Un-
biased and MI-Symmetric Unbiased methods suggest a volume reduction in gray
matter as well as ventricular enlargement.

registration, we can generate accurate alignment while ensuring that deforma-
tions have intuitive axiomatic properties.

This also leads to a key issue in the field of non-linear registration, as validation
studies have been relatively difficult to perform as ground truth is not generally
available. Even in cases where test images were transformed using simulated
deformations and thus the ground truth is known a priori, one may still wonder
whether these simulated deformations correspond to anatomically plausible
brain changes. As a result, efforts such as the ADNI project are important,
as it provides a platform for researchers to compare nonlinear registration
techniques using standardized imaging data. Along this direction, here we
reported one of the first studies using the ADNI dataset, and with potentially
interesting results for the rest of the registration community.

Importantly, the proposed Unbiased framework, though a novel concept in
medical image registration, can be easily adapted and combined with any
non-rigid registration algorithm. In this paper, we implemented the unbiased
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L2−Sym.Unbiased (baseline)
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Null

(a) (b) (c)

Fig. 23. Cumulative distribution of p-values for the voxelwise log Jacobian t-maps (as
defined in Equation (34)) for both ADNI Baseline (in blue) and Follow-up (in green)
using (a) L2-Fluid, (b) L2-Asymmetric Unbiased, and (c) L2-Symmetric Unbiased
methods. Here, a better method should separate these two CDF plots (see Section
5.4), indicating a real biological change has occurred between these two time points.
Hence, L2-Asymmetric Unbiased and L2-Symmetric Unbiased methods outperform
L2-Fluid method. Note that the interval p ∈ [0, 0.005] is of most importance for
observation.

Follow-up Study

(a) MI-Fluid (b) MI-Asym.Unbiased (c) MI-Sym.Unbiased

Fig. 24. Nonrigid registration was performed on the ADNI Follow-up study im-
ages artificially corrupted with Gaussian noise (mean zero; variance 12.0). For each
method, the mean of the resulting 10 Jacobian maps is superimposed on one of the
brain volumes.

registration by adapting a fluid regularization algorithm in order to show its
advantages in measuring biological deformations. The construction of Unbi-
ased nonlinear elastic registration algorithm (Yanovsky et al. (2008a,b)) is
another example of how an arbitrary nonrigid registration algorithm can be
extended to compute unbiased deformations.

In addition to investigating various regularizers, we compared L2 and Mutual
Information matching functionals in detecting changes in tensor-based mor-
phometry. When applied to serial scans obtained using the same protocol,
the results were inconclusive when comparing L2-Unbiased and MI-Unbiased
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Fig. 25. Random Gaussian noise (zero mean; variance 12.0) was added to ADNI
Baseline and Follow-up datasets. Cumulative distributions of p-values for the vox-
elwise log Jacobian t-maps for Baseline (solid lines) and Follow-up (dashed lines)
using Fluid and Unbiased methods are displayed. Here, Unbiased methods show a
bigger separation between the baseline and follow-up curves, indicating that they
were able to better differentiate between the two datasets.

(both asymmetric and symmetric) models. However, L2-Fluid performs less
favorably than MI-Fluid. In other words, mutual information performs better
as a fidelity metric when coupled with Fluid registration, but not in the case
of unbiased registration.

To explain this result, we postulate that by not constraining the final deforma-
tions (as in Fluid registration), assuming intensity 1-to-1 correspondence (i.e.,
matching using L2) may lead to local oscillations of the deformation maps, as
minimizing L2 forces a local search for the smallest intensity differences. One
result of this is a Jacobian map with locally extreme values, translating into
spurious signals and, in our case, less reproducibility. On the other hand, the
Unbiased method eliminates local oscillations, allowing better realization of
true physiological signals even when L2 is used as a data fidelity term. Again,
this supports our conclusion that unbiased framework is fundamental in the
understanding and realization of physiological signals.

Although various techniques have been extensively applied to detect disease
effects and monitor brain changes with TBM, this paper is the first calibra-
tion study to systematically compare registration models for tensor-based mor-
phometry. We believe our results are important, as they provide greater insight
into the interpretation of TBM results in the future.
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Follow-up Study

σ = 7

σ = 9

σ = 12

Fluid λ = 1 λ = 2 λ = 5 λ = 10

Fig. 26. Nonrigid registration was performed on the ADNI Follow-up study using
Fluid and Unbiased registration methods with different values of λ and σ. For each
method, the mean of the resulting 10 Jacobian maps is superimposed on one of
the brain volumes. Fluid and Unbiased registration with smaller λ values generate
noisier mean maps, while maps generated using Unbiased registration with larger λ
values suggest a volume reduction in gray matter as well as ventricular enlargement.
As the value of the smoothing parameter σ increases, the resulting Jacobian maps
become smoother, making the biological effects, such as reduction in gray matter,
harder to detect.

A Derivations of Gradient of R(u) in Two Spatial Dimensions

In this Appendix, we derive explicit expressions for ∂uR(u) in (18) when
Ω ⊂ R2. Let us denote the components of vector x to be (x1, x2) and the
components of vector u be (u1, u2). We also denote ∂jui = ∂ui/∂xj.

To simplify the notation, we let J = |Dg| = |D(x− u)|. Also, denote L(J) =
LKL(J) = − log J , when R = RKL and L(J) = LSKL(J) = (J−1) log J , when
R = RSKL. Note that J : M2×2(R) → R, where M2×2(R) is the set of 2 × 2
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Fig. 27. Inverse-consistent linear elastic registration was performed on the ADNI
Follow-up study. The mean of the resulting 10 Jacobian maps is superimposed on
one of the brain volumes.

matrices with real elements, and L : R→ R. Jacobian J is a function of ∂jui,
for i, j = 1, 2, and is given by

J
(
∂1u1, ∂2u1, ∂1u2, ∂2u2

)
= (1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2.

We would like to minimize the functional

R(u) =
∫

Ω
L

(
∂1u1, ∂2u1, ∂1u2, ∂2u2

)
dx.

We find the first Euler-Lagrange equation. For some η ∈ C1
c (Ω):

dR

dε
(u1 + εη, u2)

∣∣∣
ε=0

=
∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η +

dL

dJ

∂J

∂(∂2u1)
∂x2η

]
dx

= −
∫

Ω


 ∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)
η dx.

(A.1)

With notation L′ = dL/dJ , the first Euler-Lagrange equation becomes:

− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)
= 0. (A.2)

Thus, minimizing the energy R(u) with respect to u1, for fixed u2, yields the
first component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
1− ∂2u2

)
L′

)
+

∂

∂x2

(
∂1u2 L′

)
. (A.3)
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Note that L′KL(J) = −1/J and L′SKL(J) = 1 + log J − 1/J .
Similarly, the Euler-Lagrange equation for the second component of ∂uR(u)
can be found to be:

∂u2R(u) =
∂

∂x1

(
∂2u1 L′

)
+

∂

∂x2

((
1− ∂1u1

)
L′

)
. (A.4)

B Derivations of Gradient of R(u) in Three Spatial Dimensions

In this Appendix, we derive an explicit expression for ∂uR(u) in (18) when
Ω ⊂ R3. Let us denote the components of vector x to be (x1, x2, x3) and the
components of vector u be (u1, u2, u3). Here, we will use the same notation we
used in Appendix A.

Jacobian J is a function of ∂jui, for i, j = 1, 2, 3, and is given by

J
(
∂1u1, ∂2u1, ∂3u1, ∂1u2, ∂2u2, ∂3u2, ∂1u3, ∂2u3, ∂3u3

)

= (1− ∂1u1)(1− ∂2u2)(1− ∂3u3) − ∂1u2 ∂2u3 ∂3u1

− ∂2u1 ∂3u2 ∂1u3 − ∂3u1(1− ∂2u2)∂1u3

− ∂2u1 ∂1u2(1− ∂3u3) − ∂3u2 ∂2u3(1− ∂1u1).

(B.1)

We would like to minimize the functional

R(u) =
∫

Ω
L

(
J(∂jui)

)
dx, 1 ≤ i, j ≤ 3.

For some η, we have

dR

dε
(u1 + εη, u2, u3)

∣∣∣
ε=0

=
∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η

+
dL

dJ

∂J

∂(∂2u1)
∂x2η +

dL

dJ

∂J

∂(∂3u1)
∂x3η

]
dx

= −
∫

Ω


 ∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)

+
∂

∂x3

(
dL

dJ

∂J

∂(∂3u1)

)
η dx.

(B.2)

Hence, the first Euler-Lagrange equation becomes:
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− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)
− ∂

∂x3

(
L′

∂J

∂(∂3u1)

)
= 0. (B.3)

Thus, minimizing the energy R(u) with respect to u1, for fixed u2 and u3,
yields the first component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
(1− ∂2u2)(1− ∂3u3)− ∂3u2 ∂2u3

)
L′

)

+
∂

∂x2

((
∂3u2 ∂1u3 + ∂1u2(1− ∂3u3)

)
L′

)

+
∂

∂x3

((
∂1u2 ∂2u3 + (1− ∂2u2)∂1u3

)
L′

)
.

(B.4)

Similarly, the other two Euler-Lagrange equations can be found to be:

∂u2R(u) =
∂

∂x1

((
∂2u3 ∂3u1 + ∂2u1(1− ∂3u3)

)
L′

)

+
∂

∂x2

((
(1− ∂1u1)(1− ∂3u3)− ∂3u1 ∂1u3

)
L′

)

+
∂

∂x3

((
∂2u1 ∂1u3 + ∂2u3(1− ∂1u1)

)
L′

)
,

(B.5)

and

∂u3R(u) =
∂

∂x1

((
∂2u1 ∂3u2 + ∂3u1(1− ∂2u2)

)
L′

)

+
∂

∂x2

((
∂1u2 ∂3u1 + ∂3u2(1− ∂1u1)

)
L′

)

+
∂

∂x3

((
(1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2

)
L′

)
.

(B.6)

C Derivation of equations for maximization of Mutual Information

In this Appendix, we derive the gradient ∂uFMI(u) of the mutual information
matching functional in (14), adopting the approach of (Chefd’Hotel et al.
(2001); Hermosillo et al. (2001)), modeling the joint intensity distribution
pI1,I2
u+εη(i1, i2) of deformed image I2(x − u) and image I1(x) as a continuous

function using the Parzen windowing method.

We compute the first variation of FMI(u) by perturbing u in the following
way

dFMI(u + εη)

dε
= − d

dε

∫

R2
pI1,I2
u+εη(i1, i2) log

pI1,I2
u+εη(i1, i2)

pI1(i1)p
I2
u+εη(i2)

di1di2. (C.1)
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Thus, we have

dFMI(u + εη)

dε

= −
∫

R2

(
1 + log

pI1,I2
u+εη(i1, i2)

pI1(i1)p
I2
u+εη(i2)

)
dpI1,I2

u+εη(i1, i2)

dε
di1di2

+
∫

R2

pI1,I2
u+εη(i1, i2)

pI2
u+εη(i2)

dpI2
u+εη(i2)

dε
di1di2.

(C.2)

However, note that ∫

R
pI1,I2
u+εη(i1, i2) di1 = pI2

u+εη(i2) (C.3)

and ∫

R
pI2
u+εη(i2) di2 = 1. (C.4)

Hence, the second term on the right hand side of the equality in (C.2) reduces
to

∫

R2

pI1,I2
u+εη(i1, i2)

pI2
u+εη(i2)

dpI2
u+εη(i2)

dε
di1di2

=
∫

R

dpI2
u+εη(i2)

dε

1

pI2
u+εη(i2)

( ∫

R
pI1,I2
u+εη(i1, i2) di1

)
di2

=
∫

R

dpI2
u+εη(i2)

dε

1

pI2
u+εη(i2)

pI2
u+εη(i2) di2 =

d

dε

∫

R
pI2
u+εη(i2) di2 = 0.

(C.5)

Equation (C.1) becomes

dFMI(u + εη)

dε
= −

∫

R2

[(
1 + log

pI1,I2
u+εη(i1, i2)

pI1(i1)p
I2
u+εη(i2)

)
dpI1,I2

u+εη(i1, i2)

dε

]
di1di2.

(C.6)
The joint intensity distribution estimated from I2(x − u) and I1(x) is given
by

pI1,I2
u+εη(i1, i2) =

1

|Ω|
∫

Ω
ψ

(
I1

(
x

)
− i1, I2

(
x− u(x)− εη(x)

)
− i2

)
dx, (C.7)

where |Ω| is a volume of Ω and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing
kernel.

The derivative of (C.7) can also be computed:

dpI1,I2
u+εη(i1, i2)

dε
=− 1

|Ω|
∫

Ω

∂ψ

∂ξ2

(
I1

(
x

)
− i1, I2

(
x− u(x)− εη(x)

)
− i2

)

×∇I2

(
x− u(x)− εη(x)

)
· η(x) dx.

Let us denote
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Qu(i1, i2) = 1 + log
pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

.

If we let ε = 0, equation (C.6) gives the first variation of FMI(u):

dFMI(u + εη)

dε

∣∣∣∣∣
ε=0

=
∫

R2
Qu(i1, i2)

1

|Ω|
∫

Ω

∂ψ

∂ξ2

(
I1(x)− i1, I2(x− u(x))− i2

)

×∇I2(x− u(x)) · η(x) dx di1di2

=
1

|Ω|
∫

Ω

[
Qu ∗ ∂ψ

∂ξ2

](
I1(x), I2(x− u(x))

)
∇I2(x− u(x)) · η(x) dx.

Here, ∗ denotes a convolution. Thus,

∂uFMI(u) =
1

|Ω|

[
Qu ∗ ∂ψ

∂ξ2

]
(I1(x), I2(x− u))∇I2(x− u). (C.8)
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(a) σ = 7

(b) σ = 9

(c) σ = 12

Fig. 28. Cumulative distributions of p-values for the voxelwise log Jacobian t-maps
for both ADNI Baseline (solid lines) and Follow-up (dashed lines) using Fluid,
Inverse-Consistent Linear Elasticity, and Unbiased methods with different sets of
parameters of λ and (a) σ = 7, (b) σ = 9, and (c) σ = 12. Unbiased methods,
especially with larger values of λ, show a bigger separation between the baseline
and follow-up curves than Fluid and Inverse-Consistent Linear Elasticity methods
do, indicating that Unbiased methods were able to better differentiate between the
two datasets.
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