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Abstract

Restoring a clear image from a single motion-blurred

image due to camera shake has long been one challenging

problem in digital imaging. Existing blind deblurring tech-

niques either only can remove simple motion blurring, or

need user interactions to work on more complex cases. In

this paper, we present an approach to remove motion blur-

ring from a single image by formulating the blind blurring

as a new joint optimization problem, which simultaneously

maximizes the sparsity of the blur kernel and the sparsity

of the clear image under certain suitable redundant tight

frame systems (curvelet system for kernels and framelet sys-

tem for images). Without requiring any prior information of

the blur kernel as the input, our proposed approach is able

to recover high-quality images from given blurred images.

Furthermore, the new sparsity constraints under tight frame

systems enable the application of a fast algorithm called lin-

earized Bregman iteration to efficiently solve the proposed

minimization problem. The experiments on both simulated

images and real images showed that our algorithm can ef-

fectively removing complex motion blurring from nature im-

ages.

1. Introduction

Motion blur caused by camera shake has been one of the

prime causes of poor image quality in digital imaging, espe-

cially when using telephoto lens or using long shuttle speed.

In past, many researchers have been working on recovering

clear images from motion-blurred images. The motion blur

caused by camera shake usually is modeled by a spatial-

invariant blurring process:

f = g ∗ p+ n, (1)

where ∗ is the convolution operator, g is the clear image to

recover, f is the observed blurred image, p is the blur ker-

nel (or point spread function) and n is the noise. If the blur

kernel is given as a prior, recovering clear image is called a

non-blind deconvolution problem; otherwise called a blind

deconvolution problem. It is known that the non-blind de-

convolution problem is an ill-conditioned problem for its

sensitivity to noise. Blind deconvolution is even more ill-

posed. Because both the blur kernel and the clear image are

unknown, the problem becomes under-constrained as there

are more unknowns than available measurements. Motion

deblurring is a typical blind deconvolution problem as the

motion between the camera and the scene can be arbitrary,

1.1. Previous work

Early works on blind deblurring usually use a single im-

age and assume a prior parametric form of the blur kernel

p such that the blur kernel can be obtained by only esti-

mating a few parameters (e.g., Pavlovic and Tekalp [22]).

linear motion blur kernel model used in these works often

is overly simplified for true motion blurring in practice. To

solve more complex motion blurring, multi-image based ap-

proaches have been proposed to obtain more information of

the blur kernel by either actively or passively capturing mul-

tiple images on the scene (e.g., Bascle et al. [2], Ben-Ezra

and Nayar [3], Chen et al. [10], Lu et al. [19], Raskar [23],

Tai et al. [26]).

Recently, there have been steady progresses on remov-

ing complex motion blurring from a single image. There

are two typical approaches. One is to use some probabilistic

priors on images’ edge distribution to derive the blur kernel

(e.g., Fergus et al. [15], Levin [18], Joshi [17]) or manu-

ally selecting blurred edges to obtain the local blur kernel

(Jia [16]). The main weakness of this type of methods is

that the assumed probabilistic priors do not always hold true

for general images. The other popular approach is to formu-

late the blind deconvolution as a joint minimization problem

with some regularizations on both the blur kernel p and the

clear image g:

E(p, q) = min
p,g

Φ(g ∗ p− f) + λ1Ψ1(p) + λ2Ψ2(g), (2)

where Φ(p∗g−f) is the fidelity term, Ψ1(p) and Ψ2(g) are

the regularization terms on the kernel and the clear image
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respectively. In this paper, we focus on the regularization-

based approach.

Among existing regularization-based methods, TV (To-

tal Variation) norm and its variations have been the dom-

inant choice of the regularization term to solve various

blind deblurring problems (e.g., Bar et al. [1], Chan and

Wong [9], Cho et al. [11]). In these approaches, the Fidelity

term in (2) is usual ℓ2 norm on image intensity similarity;

and the regularization terms Ψ1 and Ψ2 in (2) are both TV-

norms of the image g and the kernel p. Shan et al. [25]

presented a more sophisticated minimization model where

the fidelity term is a weighted ℓ2 norm on the similarity of

both image intensity and image gradients. The regulariza-

tion term on the latent image is a combination of a weighted

TV norm of image and the global probabilistic constraint on

the edge distribution as ([15]). The regularization term on

the motion-blur kernel is the ℓ1 norm of the kernel intensity.

These minimization methods showed good performance on

removing many types of blurring. In particular, Shan et al.’s

method demonstrated impressive performance on removing

modest motion blurring from images without rich textures.

However, solving the resulting optimization problem (2)

usually requires quite sophisticated iterative numerical al-

gorithms, which often fail to converge to the true global

minimum if the initial input of the kernel is not well set.

One well-known degenerate case is that the kernel con-

verges to a delta-type function and the recovered image re-

main blurred. Thus, these methods need some prior infor-

mation on the blur kernel as the input, such as the size of the

kernel (e.g., Fergus et al. [15], Shan et al. [25]). Also, the

classic optimization techniques (e.g. interior point method)

are highly inefficient for solving (2) as they usually requires

the computation of the gradients in each iteration, which

could be very expensive on both computation amount and

memory consumption as the number of the unknowns could

be up to millions (the number of image pixels).

1.2. Our approach

In this paper, we propose a new optimization approach to

remove motion blurring from a single image. The contribu-

tion of the proposed approach is twofold. First, we propose

new sparsity-based regularization terms for both images and

motion kernels using redundant tight frame theory. Sec-

ondly, the new sparsity regularization terms enable the ap-

plication of a new numerical algorithm, namely linearized

Bregman iteration, to efficiently solve the resulting ℓ1 norm

related minimization problem.

Most of nature images have sparse approximation un-

der some redundant tight frame systems, e.g. translation-

invariant wavelet, Gabor transform, Local cosine transform

([20]), framelets ([24]) and curvelets ([8]). The sparsity of

nature images under these tight frames has been success-

fully used to solve many image restoration tasks includ-

ing image denoising, non-blind image deblurring, image in-

painting, etc (e.g. [12, 6, 4]). Therefore, we believe that the

high sparsity of images under certain suitable tight frame

system is also a good regularization on the latent image

in our blind deblurring problem. In this paper, we chose

framelet system ([24, 13]) as the redundant tight frame sys-

tem used in our approach for representing images. The

motion-blur kernel is different from typical images. It can

be viewed as a piece-wise smooth function in 2D image do-

main, but with some important geometrical property: the

support of the kernel (the camera trajectory during expo-

sure) is approximately a thin smooth curve. Thus, the best

tight frame system for representing motion-blur kernel is

Curvelet system, which is known for its optimal sparse rep-

resentation for this type of functions ([8]).

The sparsity-based regularization on images or kernels

is not a completely new idea. Actually, the widely used

TV-norm based regularization can also be viewed as a spar-

sity regularization on image gradients. However, redundant

tight frame systems provide much higher sparsity when rep-

resenting nature images, which will increase the robustness

to the noise. More importantly, as Donoho pointed out in

[14] that the minimal ℓ1 norm solution is the sparsest so-

lution for most large under-determined systems of linear

equations, using tight frame system for representing im-

ages/kernels is very attractive because the tight frame co-

efficients of images/kernels are indeed heavily redundant.

Furthermore, TV-norm or its variations are not very ac-

curate regularization terms to regularize motion-blur ker-

nels, as they do not impose the support of the kernel being

an approximately smooth curve. However, by representing

the blur kernel in the curvelet system, the geometrical prop-

erty of the support of motion kernels are appropriately im-

posed, because a sparse solution in curvelet domain tends

to be smooth curves instead of isolated points.

Another benefit using the sparse constraint under tight

frame system is the availability of more efficient numeri-

cal methods to use the resulting ℓ1 norm minimization. As

we will show later, the perfect reconstruction property of

tight framelet system allows the application of the so-called

linearized Bregmen iteration (Osher et al. [21]), which has

been shown in recent literatures (Cai et al. [6, 5]) that it is

more efficient than classic numerical algorithms (e.g. inte-

rior point method) do when solving this particular type of

ℓ1 norm minimization problems.

The rest of the paper is organized as follows. In Section

2, we formulate the minimization model and the underlying

motivation. Section 3 presented the numerical algorithm

and its convergence analysis. Section 4 is devoted to the

experimental evaluation and the discussion on future work.



2. Formulation of our minimization model

As we see from (1), blind deblurring is an under-

constrained problem with many possible solutions. Extra

constraints on both the image and the kernel are needed to

overcome the ambiguity and the noise sensitivity. In this pa-

per, we present a new formulation to solve (1) with sparsity

constraints on the image and the blur kernel under suitable

tight frame systems.

We propose to use framelet system (Ron and Shen et al.

[24]) to find the sparse approximation to the image under

framelet domain The blur kernel is a very special function

with its support being an approximate smooth 2D curve. We

use the curvelet system (Candes and Donoho [8]) to find the

sparse approximation to the blur kernel under curvelet do-

main. Before we present our formulation on the blind de-

blurring, we first give a brief introduction to framelet system

and curvelet system, which are used in our method. See the

references for more details.

2.1. Tight framelet system and curvelet system

A countable set of functions X ∈ L2(R) is called a tight

frame of L2(R) if

f =
∑

h∈X

〈f, h〉h, ∀f ∈ L2(R).

where 〈·, ·〉 is the inner product of L2(R). The tight frame

is a generalization of an orthonormal basis. The tight frame

allows more flexibility than an orthonormal basis by sacri-

ficing the orthonormality and the linear independence, but

still has the perfect reconstruction as the orthonormal basis

does. Given a finite set of generating functions

Ξ := {ψ1, · · · , ψr} ∈ L2(R),

a tight wavelet frame X is a tight frame ∈ L2(R) defined

by the dilations and the shifts of generators from Ξ:

X := {ψℓ,j,k : 1 ≤ ℓ ≤ r; j, k ∈ Z} (3)

with ψℓ,j,k := 2
j/2

ψℓ(2
j ·−k), ψℓ ∈ Ξ. The construction of

a set of framelets starts with a refinable function φ ∈ L2(R)
such that

φ(x) =
∑

k

h0(k)φ(2x− k)

for some filter h0. Then a set of framelets is defined as

ψℓ(x) =
∑

k

hℓ(k)φ(2x− k)

which satisfies so-called unitary extension principle ([24]):

τh0
(ω)τh0

(ω + γπ) +

r
∑

ℓ=1

τhℓ
(ω)τhℓ

(ω + γπ) = δ(γ)

(a) (b) (c) (d)

Figure 1. (a) and (b) are two framelets in the same scale. (c) and

(d) are one curvelet in different scale.

for γ = 0, 1, where τh(ω) is the trigonometric polynomial

of the filter h:

τh(ω) =
∑

k

h(k)eikω.

h0 is a lowpass filter and hℓ, ℓ = 1, · · · , r are all high-pass

filters. In this paper, we use the piece-wise linear framelet

([24, 13]):

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

2D framelets can be obtained by the tensor product of

1D framelets: Φ(x, y) = φ(x) ⊗ φ(y),

{Ψ} = {ψℓ1(x) ⊗ φ(y), φ(x) ⊗ ψℓ2(y),

ψℓ1(x) ⊗ ψℓ2(y), 1 ≤ ℓ1, ℓ2 ≤ r}

The associated filters are also the Kronecker product of 1d

filters: H0 = h0 ⊗ h0 and

{Hℓ} = {hℓ1 ⊗ h0, h0 ⊗ hℓ2 , hℓ1 ⊗ hℓ2 , 1 ≤ ℓ1, ℓ2 ≤ r}.

Then given a function f ∈ L2(R
2), we have

f(x, y) =
∑

ℓ,j,k1,k2

uℓ,j,k1,k2
Ψℓ,j,k1,k2

, (4)

where {uℓ,j,k1,k2 = 〈f,Ψℓ,j,k1,k2〉} with

Ψℓ,j,k1,k2 = 2j/2Ψℓ(2
jx− k1, 2

jy − k2), j, k1, k2 ∈ Z.

uℓ,j,k1,k2
are called framelet coefficients of f .

The curvelet system ([8, 7]) is also a tight frame in

L2(R
2) where the generating functions are multiple rotated

versions of a given function ψ:

X := {Ψℓ,j,k1,k2
= Ψ(2jRθℓ

((x, y)T − xℓ,j,k1,k2
))} (5)

with

xℓ,j,k1,k2
= R−1

θℓ
(2−jk1, 2

−j/2k2)
T , j, k1, k2 ∈ Z,

where θℓ = 2π2⌊j⌋ℓ is the equi-spaced sequence of rotation

angles such that 0 ≤ θℓ < 2π, Rθ is the 2D rotation by θ

radians and R−1
θ its inverse. It is noted that curvelet system



has different scaling from framelet system: length ≈ 2−j

and width ≈ 2−2j . Thus the scaling in curvelet system

is a parabolic scaling such that the length and width of the

curvelets obey the anisotropic scaling relation:

width2 ≈ length.

The combination of the parabolic scaling and the multiple

rotations of the wavelet give a very sparse presentation for

singularities along curves or hyper-surfaces in the image.

Given a function f ∈ L2(R), we also have

f(x, y) =
∑

ℓ,j,k1,k2

vℓ,j,k1,k2
Ψℓ,j,k1,k2

, (6)

where {vℓ,j,k1,k2
= 〈f,Ψℓ,j,k1,k2

〉} with Ψℓ,j,k1,k2
defined

in (5). We call vℓ,j,k1,k2 the curvelet coefficients of f .

2.2. Problem formulation and analysis

2.2.1 Sparse representation under framelet and

curvelet system

The perfect reconstruction formulas of both (4) and (6) es-

sentially give us the decomposition and reconstruction of a

function in L2(R
2) under a tight frame system. In the dis-

crete implementation, we have also a completely discrete

form of the decomposition and reconstruction.

If we denote an n × n image f as a vector f ∈ R
n2

by

concatenating all columns of the image, The perfect recon-

struction (4) can be rewritten as

f = ATAf , (7)

where A the decomposition operator of the tight framelet

system in discrete case and the reconstruction operator is its

transpose AT . Thus we have ATA = I . We emphasize that

A usually is a rectangular matrix with row dimension much

larger than column dimension and AAT 6= I unless it is the

orthonormal basis. In our implementation. We use a multi-

level tight framelet decomposition without down-sampling

the same as Cai et al. [4] does. Discrete Curvelet transform

is also linear by thinking of the output as a collection of

coefficients obtained from the digital analog to (6) ([7]).

In summary, given an image (kernel) f ∈ R
n2

, we have

f = AT u = AT (Af); and f = CT v = CT (Cf), (8)

where A and C are decomposition operator under framelet

system and curvelet system respectively, u = Af and v =
Cf are the corresponding framelet coefficients and curvelet

coefficients. In the implementation, there exist fast multi-

scale algorithms for the framelet (curvelet) decomposition

and reconstruction ([20, 7]).

2.2.2 Formulation of our minimization

Given a blurred image f = g ∗ p+ n, our goal is to recover

the latent image g and the blur kernel p. In this paper, we

denote the image g (or the kernel p) as a vector g (or p) in

Rn2

by concatenating its its columns. Let “◦” denote the

usual 2D convolution after column concatenation, then we

have

f = g ◦ p + n. (9)

Let u = Ag denote the framelet coefficients of the clear

image g, and let v = Cp denote the curvelet coefficients

of the blur kernel p. The perfect reconstruction property of

tight frame system (8) yields

f = g ◦ p + n = (AT u) ◦ (CT v) + n. (10)

We take a regularization-based to solve the blind mo-

tion deblurring problem (10). The most commonly used ap-

proach to tackle such a challenging minimization problem is

the alternative iteration scheme. Thus, we formulate the ba-

sic procedure of our approach as follows: for k = 0, 1, · · · ,

1. given the curvelet coefficients of the blur kernel v(k),

compute the framelet coefficients of the latent image

u(k+1) by solving

argmin
u

‖u‖1, s.t. ‖(CT v(k)) ◦ (AT u) − f‖2 ≤ δ;

(11)

2. given the framelet coefficients of the latent image

u(k+1), compute the framelet coefficients of the blur

kernel v(k+1) by solving

argmin
v

‖v‖1, s.t. ‖(AT u(k+1)) ◦ (CT v) − f‖2 ≤ δ.

(12)

δ in (11) and (12) is the noise parameter of the observed

image f .

The role of the objective function and the constraint in

(11)–(12) is explained as follows. It is known that ℓ1 norm

is a good measurement on the sparseness of the solution

when the linear system is under-determined. Thus, the first

term in (11) measures the ℓ1 norm of framelet coefficients

of the latent image g, which penalizes the sparsity of the

image g under framelet system. The constraint in (11) is the

fidelity constraint between the observed blur image and the

resulted blur image. The same argument is also applicable

to (12).

Therefore, the motivation in our formulation is among all

solutions which have reasonable good ℓ2 norm approxima-

tion to the given blurred image f , we are seeking for the one

whose recovered image g is the sparsest solution in framelet

domain and the estimated blur kernel g is the sparsest so-

lution in curvelet domain. At a quick glance, (11) and (12)



are quite challenging large-scale minimization problems. In

next section, we will present an alternative minimization ap-

proach to solve these two minimizations efficiently. The key

idea is to adopt a modified version of linearized Bregman

iteration technique which recently is emerging as a power-

ful technique in sparse approximation for visual informa-

tion process.

3. Numerical algorithm and analysis

In practice, the minimizations (11) and (12) may not al-

ways yield a physical solution. Thus, we chose to impose

the following physical conditions:

{

p = CT v ≥ 0, and
∑

p = 1;
g = AT u ≥ 0.

(13)

which says both the kernel and the image are non-negative

and the kernel is normalized. Algorithm 1 outlines our al-

ternative iteration approach. Among all steps of Algorithm

Algorithm 1 Outline of the algorithm for blind motion de-

blurring

1. Set v(0) = Cf ,u(0) = Aδ0,, where δ0 is the Delta

function.

2. Iterate on k until convergence.

a Fixing the curvelet coefficients v(k), solve (11) w.r.t.

u, i.e., set u(k+1/2) be a solution of

min
u

‖u‖1 s.t. ‖(CT v(k)) ◦ (AT u) − f‖2 ≤ δ,

(14)

Then impose u(k+1) = Ag(k+1), where

g(k+1)(j) =

{

AT u(k+ 1
2 )(j), ifAtu(k+ 1

2 )(j) ≥ 0,
0, otherwise.

b Fixing the framelet coefficients u(k+1), solve (12)

w.r.t. v, i.e., set v(k+1), be a solution of

min
u

‖v‖1 s.t. ‖(AT u(k+1)) ◦ (CT v)− f‖2 ≤ δ.

(15)

Then impose v(k+1) = C p
(k+1)

‖p(k+1)‖1
, where

p(k+1)(j) =

{

CT v(k+ 1
2 )(j), if CT v(k+ 1

2 )(j) ≥ 0,
0, otherwise.

followed by the normalization p(k+1) := p
(k+1)

‖p(k+1)‖1
.

1, there exist only two difficult problems (14) and (15) of

the same type. For such a large-scale minimization problem

with up to millions of variables, there exists a very efficient

algorithm based on so-called linearized Bregman iteration

technique. Let [p]∗ denote the matrix form of the convo-

lution operator by the kernel p. The algorithm for solving

(14) is presented in Algorithm 2. And Algorithm 2 can be

applied to solve (15) with little modifications.

Algorithm 2 Algorithm for solving (14)

1 Set w(0) = x(0) = 0.

2 Iterate on i until ‖CT v(k)) ◦ (AT w(i+1) − f‖2 ≤ δ,

{

x(i+1) = x(i) −AΩ(k)[Cv(k)]T∗ ([Cv(k)]∗(AT w(i) − f)),
w(i+1) = νΓµ(x(i+1)),

(16)

where Γµ is the soft-thresholding operator defined by

Γµ(x)(j) = sign(x(j)) max(|x(j)| − µ, 0),

and Ω(k) is a pre-conditioning matrix defined by

Ω(k) =
(

[Cv(k)]T∗ ([Cv(k)]∗) + λ∆)−1, (17)

with ∆ being the discrete Laplacian.

3 u = w(i+1).

Proposition 3.1[6] The sequence w(i) generated via (16)

with a proper ν converges to the unique solution of

{

minu ‖u‖1 + 1
2νµ‖u‖2

2,

s.t. (CT v(k)) ◦ (AT u) = f ,
(18)

if there exists at least one solution of (CT v(k))◦(AT u) = f .

Proposition 3.1 showed that the sequence w(i) generated

by (16) actually converges to an approximated solution of

(14) when νµ → ∞. In other words, the larger is the value

of ν or µ in (16), the better the solution from Algorithm 2

approximates the true solution of (14). The method (16) is

extremely efficient. In the implementation, the value of µ is

set to be small for solving (16) until the last few iterations

in Algorithm 1. Usually it takes only a few iterations for

(16) to get a fair approximation to the solution of (14) ([6]),

and the accuracy of the approximation is adequate during

the iterations of Algorithm 1 until the last a few steps.

4. Experiments and conclusions

In our implementation, the initial kernel is set as a delta

function and the initial image is the given blurred image.

The maximum iteration number of Algorithm 1 is set to 100.

λ in (17) is set as 0.001. The parameters in (16) are chosen



(a) Iteration 10 (b) Iteration 20 (c) Iteration 30 Iteration 40 Iteration 50

Figure 3. (a)–(e) are the recovered images during k-th iteration when applying the algorithm in Section 3 on deblurring the image shown in

Fig. 2 (a) and (b) respectively, for k = 10, 20, · · · , 50. The estimated blur kernels are shown on the top right of the corresponding images.

(a) One clear image (b) the blurred image

(c) Another clear image (d) the blurred image

Figure 2. (a) and (c) are two clear images; (b) and (d) are the

blurred image of (a) and (c) with the kernel shown on the bottom

left of the images.

as µ = 0.2 and ν = 1. Each iteration in Algorithm 1 takes

roughly 9 seconds on a windows PC with an Intel 2 GHz

CPU for blurred color images with the resolution 1280 ×
1024.

4.1. Simulated images

In the first part of the experiment, we synthesized two ex-

amples to verify the efficiency and performance of the algo-

rithm proposed in Section 3. The first example used in the

experiment is shown in Fig. 2 (a)–(b). (a) is the image of a

clear flower with an out-of-focus blurred background. The

synthesized blurred image is shown in Fig. 2 (b) with the

corresponding blur kernel is shown on the bottom left of the

blurred image. The second example is shown in Fig. 2 (c)–

(d). (a) is the clear image of a clear flower with a clear

background. Its blurred version is shown in Fig. 2 (d) with

a more complicated blur kernel.

The intermediate results obtained on each 10 iteration

are shown to illustrate the convergence behavior of our al-

gorithm. The intermediately recovered image are shown in

Fig. 3 (a)–(f). with the estimated kernel shown on the top

right of the corresponding image. Our algorithm is quite ef-

ficient, as it only takes fifty iterations to obtain a clear image

with accurate estimation on the blur kernel.

4.2. Real images

In the second part of the experiment, We tested Algorithm 1

on two real tele-photos taken by a Nikon D80 DSLR camera

and one image from [15]. We compared our results against

the results of other single-image based methods with avail-

able codes. One is Fergus et al.’s method ([15]); and the

other is Shan et al. ’s method ([25]). Both methods require

the input of the kernel size, which could be very important

when the size of motion-blur kernel is the large (≥ 30 pix-

els). Therefore, we run both methods on the blurred image

using three kernel sizes {25, 35, 45} as the input. Then the

best result are manually selected by visually inspection on

all three recovered images.

Fig. 4–6 showed the comparisons among three differ-

ent methods on three tested real blurred images of different

structures. Fig. 7 showed one small region of the results

from Fig. 4–6 for easier visual inspection. The blur ker-

nels estimated by Algorithm 1 are shown on the top right

of the corresponding recovered images. The blurred image

in Fig. 4 is from [15], and our algorithm also successfully

recovered the image as Fergus et al.’s method did. In Fig. 5,

Both Fergus et al.’s method and Shan et al.’s method only

partially deblurred the image and the resulted image still

looks blurred. The result from Algorithm 1 is the most vi-

sually pleasant. In Fig. 6, the result from Algorithm 1 is

more crisp than the results from both Fergus et al.’s method

and Shan et al.’s method. One possible cause why Fergus



(a) Blurred image (b) Fergus et al. [15] (c) Shan et al. [25] (d) Algorithm 1

Figure 4. (a): the blurred image; (b)–(d): recovered images using the method from [15]; from [25] and from Algorithm 1 respectively.

(a) Blurred image (b) Fergus et al. [15] (c) Shan et al. [25] (d) Algorithm 1

Figure 5. (a): the blurred image; (b)–(d): recovered images using the method from [15], [25] and Algorithm 1 respectively.

et al.’s method and Shan et al.’s method did not perform

well on some tested images is that these images do not obey

the edge distribution rules used in these two method. Also

the local prior edge model used in Shan et al.’s method

depends on the pre-processing of extracting local smooth

structure from blurred image, which could be instable for

heavily blurred image with rich textures.

4.3. Conclusions

In this paper, a new algorithm is presented to remove cam-

era shake from a single image. Based on the high sparsity

of the image in framelet system and the high sparsity of

the motion-blur kernel in curvelet system, our new formu-

lation on motion deblurring leads to a powerful algorithm

which can recover a clear image from the image blurred by

complex motion. Furthermore, the curvelet-based represen-

tation of the blur kernel also provides a good constraint on

the curve-like geometrical support of the motion blur ker-

nel, thus our method will not converge to the degenerate

case as many other approaches might do. As a result, our

method does not require any prior information on the kernel

while existing techniques usually needs user interactions to

have some accurate information of the blurring as the input.

Moreover, a fast numerical scheme is presented to solve the

resulted minimization problem with convergence analysis.

The experiments on both synthesized and real images show

that our proposed algorithm is very efficient and also effec-

tive on removing complicated blurring from nature images

of complex structures. In future, we would like to extend

this sparse approximation framework to remove local mo-

tion blurring from the image caused by fast moving objects.
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