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ABSTRACT

Taking photographs under low light conditions with a hand-
held camera is problematic. A long exposure time can
cause motion blur due to the camera shaking and a short
exposure time gives a noisy image. We consider the new
technical possibility offered by cameras that take image
bursts. Each image of the burst is sharp but noisy. In
this preliminary investigation, we explore a strategy to ef-
ficiently denoise multi-images or video. The proposed al-
gorithm is a complex image processing chain involving
accurate registration, video equalization, noise estimation
and the use of state-of-the-art denoising methods. Yet,
we show that this complex chain may become risk free
thanks to a key feature: the noise model can be estimated
accurately from the image burst. Preliminary tests will be
presented. On the technical side, the method can already
be used to estimate a non parametric camera noise model
from any image burst.

1. INTRODUCTION

It is a frustrating experience, even for professional pho-
tographers, to take pictures under bad lighting conditions
with hand-held camera. If the camera is set to a long ex-
posure time, the photograph gets motion blur. If it is taken
with short exposure, the image is noisy. This dilemma can
be solved by taking a burst of images, each with short-
exposure time, as shown in Fig. 1. But then, as classical
in video processing, an accurate registration technique is
required to align the images. Denote by u(x) the ideal
non noisy image color at a pixel x. Such an image can
be obtained from a still scene by a camera in a fixed po-
sition with a long exposure time. The observed value
for a short exposure time τ is a random Poisson variable
with mean τu(x) and standard deviation proportional to√
τu(x). Thus, the SNR increases with the exposure time

proportionally to
√
τ . The core idea of the burst denois-

ing method, which we sketch in these notes, is a slight
extension of the same law. The only assumption is that
the various values at a cross-registered pixel obtained by
a burst are i.i.d.. Thus, averaging the registered images
amounts to averaging several realizations of these random
variables. An easy calculation shows that this increases
the SNR by a factor proportional to

√
n, where n is the

number of shots in the burst. (We call SNR of a given pixel

the ratio of its temporal variance to its temporal mean).
Fig. 1 summarizes the possibilities offered by an image
burst. A long exposure image is exposed to motion blur.
The short exposure image is noisy, but sharp. Finally, the
image obtained by averaging the images of the burst after
registration is both sharp and noiseless. In this real exam-
ple the burst taken in a gallery had 16 images. The noise
should therefore be divided 4.

The idea of combining multiple images to get a de-
sired one is called image fusion. Most recent works on
fusion use a pair of pictures taken with different camera
parameters. Liu et al. [1] combine a blurred image with
long-exposure time, and a noisy one with short-exposure
time for the purpose of both denoising the second and
deblurring the first. In another direction, Beltramio and
Levine [2] improve the dynamic range of the final image
by combining an underexposed snapshot with an overex-
posed one. Combining again two snapshots, one with and
the other without flash, is investigated by Eisemann et. al.
[3] and Fattal et. al [4]. Both papers report spectacular
results. In contrast, we shall only consider classic image
bursts, taken with the very same camera parameters. The
number of images ranges from 9 to 36, thus promising a
division of the noise by 3, 4 or 6. As is apparent in the
above numbers, the denoising power of burst denoising is
eventually hemmed by the low growth of the square root.
On the other hand, dividing the noise by the mentioned
factors and getting an artifact free image is in no way a
negligible ambition. Indeed, even the best state of the art
denoising methods can create slightly annoying artifacts,
such as adhesion effects and shocks in NL-means [5] or
patterns in the transform thresholding methods [6], [7].
Simple accumulation instead is the essence of photogra-
phy. The first Nicephore Niepce photograph [8] was ob-
tained after a several hours exposure. The only objection
to long exposure is the variation of the scene. The more
this variation can be compensated, the longer the exposure
can be.

There is a strong argument in favor of denoising by
simple averaging of the registered samples instead of block-
matching strategies. If a fine non-periodic texture is present
in an image, it is virtually indistinguishable from noise,
and actually contains a flat spectrum part which has the
same Fourier spectrum as the white noise. Such fine tex-



Figure 1. From left to right: one long-exposure image (time = 0.4 sec, ISO=100), one of 16 short-exposure images (time =
1/40 sec, ISO = 1600) and the average after registration. All images have been color-balanced to show the same contrast.
The long exposure image is blurry due to camera motion. The middle short-exposure image is noisy, and the third one is
some 4 times less noisy, being the result of averaging 16 short-exposure images.

tures can be distinguished from noise only if several sam-
ples of the same texture are present in other frames and
can be accurately registered. Now, state of the art de-
noising methods are based on nonlocal block matching.
In the case of a burst, the block matching would ideally
find only one block in each image. But it doesn’t. Pre-
cisely because of the noise, low contrasted textures are at
risk of being mismatched across frames. The experimen-
tal section will show that this can cause a loss of resolution
for such textures. A registration process more global than
block matching, using strong features elsewhere in the im-
age, should permit a safer denoising by accumulation.

Yet, this method rises serious technical objections. The
main technical objection is: how to register globally the
images of a burst? Fortunately, there are several situations
where the series of snapshots are indeed related to each
other by a homography, and we shall explore these situa-
tions first. The homography assumption is actually valid
if one of the assumptions is satisfied:

1. the only motion of the camera is an arbitrary rota-
tion around its optic center;

2. the photographed objects share the same plane in
the 3D scene;

3. the whole scene is far away from the camera.

In those cases, image registration is equivalent to com-
puting the underlying image homography. But this regis-
tration should be sub-pixel accurate. To this aim we will
introduce a precise variant of SIFT [9] and a generaliza-
tion of ORSA (Optimized Random Sampling Algorithm,
[10]) to register all the images together.

Yet, in general, the images of 3D scene are not re-
lated by a homography, but by an epipolar geometry [11].
Even if the camera is well-calibrated, 3D point-to-point
correspondence is impossible to obtain without knowing
the depth of the 3D scene. Therefore, we should not ex-
pect that a simple homography will work everywhere in

the image, but only on a significant part. On this part, we
shall say that we have a dominant homography. 1

To go further, we shall need several tools whose list
follows. The main one is the accurate estimation of the
noise model from a partial registration.

• High accurate keypoint detection: By canceling
the subsampling in SIFT, a subpixel precision of the
key point detection will be reached. As a result, the
dominant homography will be computed accurately
from the matching points.

• Noise estimation: At each pixel that is well-registered,
the registered samples are i.i.d. samples of the same
underlying Poisson model. As a result, a signal de-
pendent noise model will be accurately estimated
for each colour channel. This model simply is a
curve of image intensity versus the standard devia-
tion of the noise.

• Color equalization However, the noise estimation
will require an extra step, the histogram equaliza-
tion of all images. Indeed, the images taken with
indoor lights often show fast variations of the con-
trast and brightness. It is only after this equalization
that the empirical standard deviation of the samples
becomes a measurement of the noise standard devi-
ation.

• Hybrid denoising scheme: Averaging does not work
at the mis-registered pixels, and block matching meth-
ods are at risk on the fine image structures. Thus
they will be combined. The simple combination
used here will be a convex combination of them,
the weight function being based on the noise curve
and on the observed standard deviation of the values
for the accumulation at a certain pixel. If this stan-
dard deviation is compatible with the noise model,

1Needless to be said, an accurate camera calibration correcting the
optical distortion could also play a role, particularly on the image bor-
ders.



the denoised value will be the mean of the sam-
ples. Otherwise, the standard deviation test will
imply that the registration at this point is inaccu-
rate, and a conservative denoising will be preferred
at the pixel. (More prudently, the denoised value
will be a weighted average of both denoised values,
the weights being steered by the test.)

References and preliminaries on the used techniques are
given in Sec. 2. The tentative algorithm is described in
Sec. 3 including how to register all the images, estimate
the noise and combine two denoising schemes. Experi-
ments on various kinds of real data sets are examined in
Sec. 4.

2. PRELIMINARIES, ANTERIOR WORKS

2.1. Image matching

To find key points in images and match them is a fun-
damental step for many computer vision and image pro-
cessing applications. One of the most robust is the Scale
Invariant Feature Transform (SIFT) [9]. There are other
attempts to match key points in a more invariant fashion
[12, 13, 14, 15, 16, 17]. Applications of image matching
include scene parsing[18], object/image retrieval [19] and
motion estimation [20]. The image stitching [21, 22] gen-
erates a panorama from several images of the same land-
scape. The underlying technical problems are basically
the same as for the burst denoising problem. In particular,
the registration accuracy is a key issue in image stitching.
In [21], bundle adjustment is used to minimize the homog-
raphy projection error. This technique requires a knowl-
edge of the camera internal parameters for initialization.
Because wrong matches occur in the SIFT method used
here for the registration, an accurate estimate of the dom-
inant homography will require the elimination of outliers.
The standard method to eliminate outliers is RANSAC
(RANdom SAmple Consensus) [23]. However, it is ef-
ficient only when outliers are a small portion of the whole
matching set. There are other variants of RANSAC to im-
prove the performance of outlier elimination and the esti-
mation of fundamental matrix, such as [24, 25, 26, 27].
We chose the method based on a contrario model pro-
posed by Moisan and Stival [10]. It has zero parameter
and is effective even the matching set contains up to 90%
of outliers.

2.2. Noise Estimation

Most computer vision algorithms should adjust their pa-
rameters to the image noise level. Surprisingly, there are
few papers dealing with the noise estimation problem and
most of them only estimate a signal-independent noise.
The standard procedure is the following: (1) compute the
mean and standard deviation for each N ×N block in the
image (N is small, e.g. N = 3 or N = 5); (2) clas-
sify the standard deviations according to their mean, and
(3) take the median value of all standard deviations for
each mean. Instead of computing the variance of patches,
Olsen [28] and posteriorly Rank et. al. [29] consider the

patches of the image derivative, since it is more robust
to the noise. As a variant, Donoho et. al. [6] proposed
to estimate the noise standard deviation as the median of
absolute values of wavelet coefficients at the finest scale.
All the algorithms mentioned above usually give a reason-
able estimation of the standard deviation when the noise
is uniform. Yet, when applying these algorithms to es-
timate signal dependent noise, the results are poor. An
exception is the work of C. Liu et. al. [30], which es-
timates the upper bound on the noise level from a sin-
gle image. However, the real CCD camera noise is not
simply additive, neither is it uniform over the gray levels.
For obvious compression requirements, our experiments
will treat JPEG bursts that have undergone an unknown
contrast change (gamma-correction). As we shall see, the
resulting estimated curve model is strongly image depen-
dent and cannot be estimated by a parametric method.

2.3. Image/Video denoising algorithms that will be in-
volved

Image denoising methods are based on various models
of the original noise-free image, which permit to sepa-
rate it from noise. One of the assumptions is the spar-
sity in an basis, orthogonal or over-complete. Sparsity is
widely used in the many applications of image process-
ing, such as denoising [31], color denoising, inpainting
[32] and super-resolution [33, 34]. Non-Local means [5]
assumes an image self-similarity and restores an unknown
pixel using other similar pixels. The similarity is consid-
ered in terms of a patch centered at each pixel, not just the
intensity of the pixel itself. In order to denoise a pixel, it
is better to average the nearby pixels with similar struc-
tures (patches). This idea was extended to movie denois-
ing [35, 36, 37]. The denoising algorithm by Dabov et. al.
[38] combines self-similarity block matching, and thresh-
old in the transform domain. The sparse representation
is enhanced in transform domain by grouping similar 2D
image patches into a 3D block. The weighted averaging
of all the block-wise estimates are aggregated for the final
output. Extensions to other applications were discussed
by the same group of the authors, such as color denois-
ing [7], grayscale video denoising [39], image sharpen-
ing [40] and restoration [41]. So far BM3D represents
the state of the art for stand alone denoising. G. Borac-
chi and A. Foi [42] extend BM3D or V-BM3D to signal-
dependent noise. They assume a parametric noise model,
in which the parameters can be estimated using [43]. Then
BM3D is applied on the images after a variance-stabilizing
transformation to make noise homogeneous and post-processing
follows.

The present paper can be understood as an extension
and explanation of the multiple image denoising attempt
by Zhang et. al. [44]. These authors propose a global reg-
istration of an image burst before applying a block match-
ing multiimage strategy to the registered images. They
remark that their denoising performance stalls when the
number of frames grows and write that this difficulty should
be overcome. Yet, their observed denoising performance



curves grow like the square root of the number of frames,
which indicates that their algorithm relies on accumula-
tion. Thus, this performance is in fact optimal. The only
non-synthetic experiments are made by these authors on a
flat static real scene, actually a white board. The method
proposed here is definitely an extension: It uses a hy-
brid scheme which chooses the best of accumulation or
block denoising, depending on the reliability of the match.
Without the accurate nonparametric noise estimation, this
strategy would be unreliable.

3. THE MAIN TOOLS OF THE BURST
DENOISING CHAIN

In this section, we discuss how to register all the images
into one in the image sequence, which is taken as tem-
plate. The average of the registered images gives a desired
denoising result, but this only works at well-registered
pixels. As for the pixels that are not well-registered, clas-
sic state of the art denoising (NLM, BM3D) will be tested.
The decision maker, i.e. whether to use averaging or a
denoising algorithm, will be based on the noise model,
which will be estimated from the samples of each well-
registered pixel along time. Thus having an accurate noise
model obtained from the burst itself in crucial in the strat-
egy. In summary, burst denoising is a relatively complex
chain that:

• registers the images of the burst by subpixel accu-
rate SIFT and estimation of the best dominant ho-
mography;

• equalizes the histograms of the registered images to
remove lighting effects;

• estimates accurately from the many samples offered
after registration the noise for each channel and at
each level;

• thanks to this estimation, proceeds to denoising by
averaging at all pixels where the correct registration
is confirmed, and applies a state of the art denoising
elsewhere.

Short preliminary discussion: is that safe? In spite of
its complexity the chain is safe. Indeed, the dominant reg-
istration yields many samples permitting robust estima-
tion of the noise. The averaging is applied only at pixels
where the observed standard deviation after registration is
close to the one predicted by the noise model. Thus, there
is no risk whatsoever with averaging. At the other pixels,
standard state of the art video denoising is applied. Block
matching is only made safer by the previous registration
and equalization. The experimental section will confirm
the safety of the method by showing that the final result
always is better than classic video denoising alone.

3.1. Registration of an Image Sequence

We shall use SIFT as the tool for the key point detec-
tion. A sub-pixel precision for denoising is required but,
unfortunately, the precision of the SIFT points decreases

through the octaves. Indeed, SIFT simulates the scale
space by sub-sampling the images by factor two through
each octave. Thus the sub-pixel key point detection, which
is sub-pixel accurate in the first octave, can be several pix-
els inaccurate in the last octaves. To maintain a constant
precision through the octaves, the SIFT sub-sampling be-
tween the octaves was simply canceled.

This cancelation of the sub-sampling entails two ad-
justments of SIFT. The first one is to adjust the Laplacian
threshold, an important parameter in the SIFT method re-
moving key points due to noise. Canceling the sub-sampling
between octaves is equivalent to up-sampling the images
by a power of two. Thus the Laplacian of the pixel on
the twice up-sampled image is four times smaller than the
corresponding one on the original image, because

M
(
u(
x

2
,
y

2
)
)

=
1
4

M u(x, y) (1)

where u(x, y) is the image and M is the Laplace operator.
The second adjustment after the cancelation of the SIFT

sub-sampling is the construction of the descriptors. In our
case, the blur is increasing through octaves, and so is the
size of the domaing associated with each descriptor. To
keep the scale invariance, the domain of each descriptor
in the n-th octave is therefore sub-sampled by a 2n−1 ra-
tio.

In summary, the precision of SIFT key points is im-
proved by canceling the sub-sampling through octaves.
The SIFT descriptor construction and the Laplacian thresh-
old are adapted to keep them as in the original SIFT. As
will be proved in simulations, the accurate SIFT retains a
rather constant precision through octaves.

3.2. Reliable dominant homography estimation

An adaptation to multi-images of the Moisan-Stival ORSA
algorithm [10] will be used. We adapt their notations here.
Assume the set of match pairs is

S =
(
xi = (xi, yi),x′i = (x′i, y

′
i)
)

i=1...n
,

We are interested in the homography matrix H, that is best
compatible with these matches (and not in the fundamen-
tal matrix itself [45, 11]). Also, we want to keep a safe
subset of inliers T in S, with size k (4 < k ≤ n). Follow-
ing [10] define the rigidity of T associated with H by

αH(T ) =
π

A′

(
max

(x,x′)∈T
dist(x′,Hx)

)2

, (2)

where A′ the area of the second image domain. The rigid-
ity is in fact a geometric probability. It is obtained by
dividing the area of a disk with radius the maximal H-
projection error for T , by the image area A′. Following
the a contrario method, if the rigidity is too small to be ex-
plained by randomness, the deduction is that there are only
“inliers” in T . It is difficult to compute the probability
P (infH αH(T ) < t) to select the best subset T , even if we
assume all the points are uniformly distributed in images.
Instead of computing this probability directly, Moisan and



Stival [10] use a Bonferroni-like estimate, namely the ex-
pected number of false alarms (NFA), also referred to as
the meaningfulness:

ε(α, n, k) := (n− 4) · nkC · k4C · α(k−4). (3)

This number incorporates the size of the matching set, the
size of the subset and the rigidity. This algorithm has zero
parameter and does not require any assumptions on the
camera motion or the estimation of noise variance.

In burst denoising the ideal way would be to partition
the image domain into different regions, each of which
shares the same homography, to compute an homography
on each of them and finally to register each image to the
reference one by inverting the homography for each re-
gion. But, if we apply separately ORSA between the tem-
plate and each other image, it is not guaranteed that the
same region with a dominant homography will be chosen
for each pair. A natural solution is to find a region and a
homography common to all pairs of images. Therefore,
ORSA is adapted by defining a “joint meaningfulness” as
indicated in Algorithm 1.

Algorithm 1 multiple ORSA
Input The set S0 of the common SIFT points in the
template and the corresponding matching points in the
j−th image, denoted as Sj .
Set ε = +∞
while the number of trials does not exceed N do

Pick up 4 random points from S0

for (each j > 0) do
Compute the homography using these 4 points and
the corresponding ones in Sj

Find the most meaningful subset of S with respect
to Sj under this homography, save the meaning-
fulness parameter as εj

end for
Compute the joint meaningfulness εjoint =

∑
εj

If εjoint < ε, then ε = εjoint, and save the mean-
ingful subset for each pair of images as Tj and the 4
points, P4.

end while
Return εjoint, Tj and P4.

It is impossible to try all 4 points combinations. In-
stead, an optimized random sampling algorithm (ORSA)is
used as suggested in [10]. The algorithm stops once εjoint <
1.0. Then it is iterated for a small number of trials, typi-
cally N/10.

3.3. Video Equalization

There still is an extra step before noise estimation: the
burst equalization! The images taken under indoor lights
usually consist of fast variations of the contrast and bright-
ness. We want to make them consistent through all the
images, so that the standard deviation along time is in-
deed due to the noise, not to the changes of lights. This is
done by a joint histogram equalization of all images. The

best exponent of joint equalization is the Midway method
[46, 47] which is summarized in a simple and elegant for-
mula. Let v : Ω → [0, 1] be an image and h its intensity
histogram. The cumulative histogram of v is

H(x) =
∫ x

0

h(s)ds.

Starting with a series of images vj , j = 1, · · · , N with
cumulative histogramHj(x), the Midway cumulative his-
togram H is defined as a compromise of all Hj by H =(

1
N (
∑

j H
−1
j )
)−1

. Once H is computed, each image vj

is replaced by φj(vj) = H−1(Hj(vj)). The necessity of
histogram equalization to get a reliable noise model is il-
lustrated in Fig. 4.

3.4. Signal-dependent Noise estimation

Here is the crucial step of the chain. The sequence of
registered images is used to estimate the signal-dependent
noise curve. If one pixel is well-registered, its values along
the time give samples permitting to estimate the noise model.
Therefore the standard deviations are classified according
to their mean. The main question is to have an estimate
robust to the wrongly registered pixels. The histogram
of the mean of each pixel along time is constructed, with
n = 100 uniform bins. Inside each bin, the median value
of the standard deviations of all pixels is computed. This
yields a curve of mean versus standard deviation. The me-
dian is robust to outliers by itself, but several precautions
can be taken to make the estimate still more reliable. First,
all edge points in all images, on which the interpolation
error is stronger, are simply ruled out. This is done by a
simple Canny edge detector. Second, the pixels whose
standard deviation is too large are also considered out-
liers. The threshold is set to be the double of the peak
value in the histogram of all standard deviations. Finally,
bins that contain less than 100 items are simply not re-
tained. The noise curves for the three color channels are
estimated separately, but show a striking coincidence up
to a multiplicative factor.

3.5. Hybrid Denoising Scheme

The noise estimate is crucial to meet a safe decision about
which kind of denoising can be applied at each pixel. Sup-
pose we have two denoising results: the one from averag-
ing uA and the other from NLM or BM3D, uBM3D, the
hybrid scheme will return

uH = α · uBM3D + (1− α) · uA

For each registered pixel x in the template image, the
average u(x) of its samples after registration is looked up
in the noise model. The noise curve gives the expected
standard deviation σ(x) := σ(u(x)). At the same reg-
istered pixel the empirical standard deviation σ̂(x) of the
samples is also computed. If this pixel is correctly reg-
istered, σ̂ should close to σ, in which case a small value



should be given to the weight α. A simple choice for α
uses the sigmoid function:

α(x) :=
1

1 + exp(c− σ̂(x)/σ(x))
.

To avoid any impulse noise created by a local conflict
between estimates, the weight function α(x) is slightly
smoothed out by a 3 × 3 spatial average. Algorithm 2
summarizes the steps of the proposed multi-image denois-
ing.

Algorithm 2 multi-image denoising
Input: ImageSequence V = {V0, · · · , VN}
compute SIFT points on V0, saved as CommonSIFTpts
for (j > 0) do

compute SIFT points on Vj

save the matching points in Vj and V0 as currSIFTpts
update CommonSIFTpts = CommonSIFTpts ∩
currSIFTpts

end for
Apply multiple ORSA (Algo. 1) on the set of Common-
SIFTpts to get the most meaningful 4 points P4

for (j > 0) do
compute homography between Vj and V0 using P4

V regj = register Vj back to V0 by this homography
end for
Video equalization
Noise estimation
Hybrid denoising scheme combining the average and
block mathing denoising applied on V reg

4. EXPERIMENTS

4.1. Accurate SIFT

A check was made on the accuracy gain of the accurate
SIFT described in Sec. 3.1. We applied SIFT and ac-
curate SIFT on two images respectively. One of the im-
ages was generated from the other image by a simple ro-
tation+translation, as shown in Fig. 2. The key points in
both images were matched by using Lowe’s classic match-
ing method. After eliminating the outliers by ORSA the
homograghy from one image to the other image was es-
timated. This homography allows us to project the key
points of one image on the other image, and to estimate the
average error. Table 1 shows the average error estimated
in each octave in the scale space underlying SIFT. The ex-
periment confirms that the precision for the classical SIFT
decreases when the octave index increases. For accurate
SIFT, the precision remains stable through octaves.

4.2. Multi-image Registration

Video data provided by the company DxO Labs capture a
series of images of a rotating pattern with a fixed pedestal.
We show three images from the sequence and the ones af-
ter registration in Fig. 3. In this easy case the dominant ho-
mography is a rotation of the main circular pattern, which
contains more SIFT points than the pedestal region.

Figure 2. Two images used to test the accurate SIFT. The
right image is generated from the left one by a transla-
tion+rotation.

average error
classical SIFT improved SIFT

octave −1 0.036 0.036
octave 0 0.064 0.032
octave 1 0.263 0.033
octave 2 no keypoints 0.040

Table 1. The average error in each octave for Lowe’s clas-
sical SIFT and for accurate SIFT. The precision decreases
for Lowe’s classical SIFT, while accurate SIFT remains
stable through octaves. This is essentially obtained by re-
moving the sub-sampling step in the SIFT method.

4.3. Video Equalization

Fig. 4 shows the efficiency of video histogram equaliza-
tion. The images were taken under ceiling lights with
changing illumination.

4.4. Noise Estimation

In the real scenario, the noise is inherent to the image,
each pixel being modeled as a Poisson process. This model
is valid except in the very dark regions where thermal and
electronic noise dominate, and in the bright regions be-
cause the sensor gain is anyway nonlinear. The original
image was simulated as a Poisson noise whose mean was
a good quality image, after geometric homographies simu-
lating the camera shaking. The noise estimation algorithm
is demonstrated on three examples: Barbara, Couple and
Hill. As shown in Fig. 5, the standard deviation (Y-axis)
of the noise curves follows nicely the square root of the
intensity (X-axis). The noise curves of the real datasets
are given in Fig. 6.

4.5. Multi-image Denoising

For the experiments on synthetic data, the quantitative mea-
surement of the denoising performance will be measured
by the root-mean-square errors (RMSE) of different de-
noising methods in Tab. 2. The accumulation is based on
16 images, thus yielding a theoretical noise reduction by
4. A 3.5 noise reduction is experimentally attained in the
images. In all cases, the difference between the theoret-
ical factor 4 and the observed one is probably due to the



Figure 3. Multi-image registration. Top: three frames from an image sequence with a rotating pattern and a fixed
pedestal. Bottom: the corresponding ones after registration. The dominant homography we find is on the plane of the
rotating pattern, since it contains more SIFT points than the pedestal region. As a result we observe the rotating pedestal
and its background after registration. The images are a courtesy of DxO Labs, Boulogne.

Figure 4. Video Equalization. Top: three frames from an image sequence with different illuminations. Bottom: after
registration and equalization.



Figure 5. Noise curve. From top to bottom: the original image, one of the simulated images by moving the image and
adding Poisson noise, and the noise curve from our algorithm using 16 images. The standard deviation of the noise
(Y-axis) fits to the square root of the intensity (X-axis).



Figure 6. Noise curves of the real data sets. Left: one of the images in the sequence; right: the noise curves of the three
color channels.



Table 2. RMSE for different methods
Barbara Couple Hill

noisy 11.30 11.22 10.27
NLM 10.83 5.43 6.73

BM3D 4.33 3.39 3.90
AR 3.55 3.03 2.73
GT 2.85 2.89 2.63

Table 3. RMSE on synthetic data with 16 images. AR
and GT stand for “average after registration” and “ground-
truth” in the sense of registration back by the ground-truth
motion. In principle GT divides the RMSE by 4, while AR
is very close but higher than GT due to misregistration and
interpolation errors. In all cases video BM3D gets close
to the ratio 4 limit, but is overcome by AR.

fact that the simulated images are seriously aliased, which
caused interpolation errors after registration.

The denoising results are now given for several real
data sets, each of which consists of 16 JPEG images bursts.
For a better illustration, the comparison shows the inter-
mediate steps: the simple average, Non-Local Means on
the registered images, BM3D on the registered images,
and the result of the hybrid scheme. These results are
shown on several well-chosen zoomed-in regions.

Since the proposed algorithm only finds a dominant
homography, which is the rotating pattern in Fig. 3, the
simple average fails to denoise the region of the fixed pedestals.
It also fails to remove some dust that was incidentally stick
to the camera objective, as zoomed-in and shown in Fig. 7.
On the other hand, fine texture details are dramatically lost
by Non-Local Means, which instead gives good denoising
on contrasted regions such as the pedestals. The hybrid
scheme with NLM, combining both averaging and NLM
captures the virtue of each method. As expected the result
is still better with a hybrid scheme using BM3D: Indeed
BM3D is the best denoising algorithm and is actually quite
close in performance to the direct averaging, as has been
shown in Table 2.

The images in Fig. 4 captured a 3D scene with a single-
lens reflex (SLR) camera, Canon EOS 30D. The scene
consists of 2 books, a newspaper and a moving mouse.
We enlarge three illustrative parts in Fig. 8, in which the
structure lines on the book and letters in the newspaper
are smoothed out by non-local means. In contrast, the let-
ters turn out to be readable when averaging. As for the
moving mouse, the average fails completely, while block-
matching succeeds, since it uses the similarity patches in
the template image itself.

Finally we show a burst of images of a painting. This
is a good direct application for our algorithm, since the
images of the painting are in principle related by homog-
raphy if the painting is flat and the camera distortion-free.
As a result, the average is always favored by the hybrid
scheme. The details are compared in Fig. 9, where the dy-
namics of the patches are equalized for a fair comparison.
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