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Abstract: Through restoration of the light source information in small
animals in vivo, optical molecular imaging, such as fluorescence molecular
tomography (FMT) and bioluminescence tomography (BLT), can depict
biological and physiological changes observed using molecular probes. A
priori information plays an indispensable role in tomographic reconstruc-
tion. As a type of a priori information, the sparsity characteristic of the
light source has not been sufficiently considered to date. In this paper, we
introduce a compressed sensing method to develop a new tomographic
algorithm for spectrally-resolved bioluminescence tomography. This
method uses the nature of the source sparsity to improve the reconstruction
quality with a regularization implementation. Based on verification of the
inverse crime, the proposed algorithm is validated with Monte Carlo-based
synthetic data and the popular Tikhonov regularization method. Testing with
different noise levels and single/multiple source settings at different depths
demonstrates the improved performance of this algorithm. Experimental
reconstruction with a mouse-shaped phantom further shows the potential of
the proposed algorithm.
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1. Introduction

In vivo small animal optical imaging has become an important tool of biological discovery
and preclinical applications [1][2][3]. When mouse models are labeled using optical molec-
ular probes, the probes acting as light sources, reflect corresponding biological information
through the emission of visible or near infrared (NIR) light photons. Optical molecular imag-
ing equipment is used to detect the photon distribution over the surface of the small animal to
non-invasively investigate these models [4]. In recent years, planar optical molecular imaging,
and more specifically bioluminescence imaging, has been extensively applied in tumorigenesis
studies, cancer diagnosis, metastasis detection, drug discovery and development, and gene ther-
apies given its convenience and ease operation [5][6]. The technology that is capable to acquire
three dimensional information of the light sources will become a next generation instrument for
optical molecular imaging. Bioluminescence tomography (BLT) is one such instrument being
developed for this purpose [7].

An indispensable parameter for bioluminescence tomography is a priori information, which
can be used to localize the optical sources. Theoretically, the source uniqueness proof gives
us an important reference [8]. Practically, the richer the a priori information we apply, the
further improvements BLT reconstruction can yield. Currently, three types of a priori informa-
tion are verified and extensively applied in reconstruction algorithms. These include anatomi-
cal information [9][10], spectrally-resolved measurements [11][12][9][13], and the distribution
of surface photons [14]. Anatomical information is used to assign relevant optical properties
to organs. Spectrally resolved data considers the source spectrum and the tissue absorption
and scattering characteristics. The use of these a priori information significantly improves
source reconstruction. The temperature dependent source spectral shift has recently led to a
temperature-modulated bioluminescence tomography method which uses a focused ultrasound
array [15]. In principle, this should belong to spectrally-resolved a priori information. The a
priori permissible source region is defined by the surface photon distribution and improves the
reconstruction by constraining the permissible source position [14]. Overall, it is necessary to
define additional a priori parameters for BLT reconstruction.

The diffusion approximation is extensively used in BLT reconstruction despite the fact that
higher approximations of the radiative transfer equation lead to improved reconstructed results
in some situations [16]. The finite element method (FEM), analytical formulations and Born
approximation theory have been applied in combination with the diffusion equation [17]. The
FEM has become popular due to its ability to process complex heterogeneous geometries. The
adaptive strategy has also been developed to further improve the reconstruction based on the
FEM [18][19]. In BLT, although nonlinear optimization strategies [20] used in diffuse optical
tomography (DOT) and expectation maximization (EM) algorithms [9] similar with that in
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positron emission tomography (PET) are used, a linear least square (LS) problem is easily
obtained because of the linear nature of the BLT problem [14]. Meanwhile, the inverse crime
needs to be carefully considered especially when new algorithms are evaluated using synthetic
data [21].

BLT reconstruction is an ill-posed problem. Inhibiting noise in measured data and reducing
the ill-posedness is necessary to obtain BLT reconstructions. Regularization is a useful method
for such problems. Currently, the weighted least square method is used to reduce the measured
noise effects [22][14]. The Tikhonov regularization is a popular method and is extensively ap-
plied in BLT reconstruction [23][19]. Mathematically, the Tikhonov method is aiming to stabi-
lize the inverse of an ill-conditioned operator by minimizing a trade-off between a loss function
and the l2-norm of the signals. The advantage of the l2 norm is that the associated optimization
problem can be efficiently solved using a classic quadratic minimization algorithm. The disad-
vantage is that the solution obtained is often smoothed everywhere, resulting the loss of high
frequency structures of the original signal, especially in the case of noise. Over the past several
years, the l1 norm regularization has been investigated in the signal and image processing fields,
such as wavelet thresholding denoising [24], basis pursuit [25], and total variation for edge pre-
serving reconstruction [26]. Moreover, a new sampling theory related to l1 minimization, known
as compressed sensing (or compressed sampling) provides a strong theoretical foundation for
sparse approximations [27][28]. More accurately, this theory allows an exact reconstruction
from a greatly reduced number of measurements through the use of convex programming. In
other words, if the real signals or images are sparse on some basis and the measurement operator
and sparsity basis satisfy certain coherent conditions, then the original sparse signal can be re-
constructed with a greatly reduced sampling rate. In BLT, the unknown sources are contained in
the reconstructed domain (such as a mouse). Non-invasive measurements only acquire the sur-
face distribution of photons emitted by bioluminescence sources. When using small elements
(such as tetrahedron or hexahedron) to discretize the whole domain, the number of the surface
discretized points is significantly fewer than that of the volumetric discretized points. The un-
dersampling is inevitable for BLT reconstruction. Compared with single view measurements,
multi-view data acquisition improves the BLT reconstruction to a certain degree [29][30], but
it limits the high throughput ability of optical imaging. Single view measurements need to be
further investigated for improved BLT reconstruction.

Fortunately, when we use optical probes to observe the specified biological process of in-
terest, the domain of the light source is relatively small and sparse compared with the entire
reconstruction domain, in this case the mouse body. Here, by a combination of this a priori
information and compressed sensing theory, a novel spectrally-resolved bioluminescence re-
construction algorithm is proposed. Specifically, based on the diffusion approximation model,
the linear relationship between the spectrally-resolved measured data and the unknown source
distribution is established by using the FEM. The l1 norm as a regularization term is combined
into the BLT least squares problem, realizing the compressed sensing method. In order to re-
duce memory and time cost, a limited memory variable metric optimization method is used
to solve the bound-constrained BLT problem. In numerical verifications, the inverse crime is
demonstrated for different synthetic data sets from different finite element meshes and different
simulation methods, showing that the Monte Carlo method is necessary for accurate simulation
tests. Furthermore, BLT reconstructions with different noise levels and different source depths
demonstrate the usefulness of the compressing sensing method-based l1 norm regularization,
especially for sources located deep within tissues and having high noise. Finally, the proposed
algorithm is further tested by experimental reconstruction. In the next section, we present the
spectrally-resolved BLT framework based on l1 regularization. In the third section, we evaluate
the performance of the proposed algorithm with various source settings. In the final section,
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we discuss the relevant issues and conclusions. To the best of the authors knowledge, this con-
tribution represents the first time that bioluminescence source sparse characteristic is used to
improve BLT reconstruction with the compressed sensing method.

2. Model

2.1. Photon diffusion model

The available bioluminescence probes typically emit photons in the range of 400-800nm. The
diffusion models as the P1 approximation to the radiative transfer equation have been ex-
tensively applied in bioluminescence imaging. As the optical properties of biological tissues
change depending on the wavelength, the diffusion model is also a function of the wave-
length. Assuming the bioluminescence source intensity is stable when photons are collected,
the steady-state diffusion equation can be used to depict the photon propagation in tissues:

−∇·(D(r,λ )∇Φ(r,λ )
)
+ μa(r,λ )Φ(r,λ ) = S(r,λ ) (r ∈ Ω) (1)

where Ω and λ is the domain and the wavelength respectively; Φ(r,λ ) denotes the pho-
ton flux density; S(r,λ ) is the source energy density; μa(r,λ ) is the absorption coefficient;
D(r,λ )=1/(3(μa(r,λ )+(1−g)μs(r,λ ))) is the optical diffusion coefficient, μs(r,λ ) the scat-
tering coefficient, and g is the anisotropy parameter. On the boundary ∂Ω, the Robin boundary
condition is used to depict the refractive index mismatch between the external medium n′ and
Ω:

Φ(r,λ )+2A(r;n,n′)D(r,λ )
(
v(r)·∇Φ(r,λ )

)
=0 (r ∈ ∂Ω) (2)

where v is the unit outer normal on ∂Ω. A(r;n,n′) can be approximately represented as:

A(r;n,n′) ≈ 1+R(r)
1−R(r)

(3)

where n′ is close to 1.0 when the mouse is in air; R(r) can be approximated by R(r) ≈
−1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n [31]. When practical measurements are per-
formed with a set of bandpass filters, the measured quantity is the outgoing flux density Q(r,λ )
on the discretized wavelength λi, which is:

Q(r,λi) = −D(r,λi)
(
v·∇Φ(r,λi)

)
=

Φ(r,λi)
2A(r;n,n′)

(r ∈ ∂Ω) (4)

2.2. Linear Relationship Establishment

Based on the finite element theory [32], the weak solution of the flux density Φ(r,λi)∈H1(Ω)
is given considering Eqs. (1) and (2) for a specified wavelength λi:

∫

Ω

(
D(r,λi)

(
∇Φ(r,λi)

)·(∇Ψ(r)
)
+ μa(r,λi)Φ(r,λi)Ψ(r)

)
dr

+
∫

∂Ω

1
2An(r)

Φ(r,λi)Ψ(r)dr =
∫

Ω
S(r,λi)Ψ(r)dr (5)

where ∀Ψ(r)∈H1(Ω), H1(Ω) is the Sobolev space, and Ψ(r) is an arbitrary piece-wise test
function. In the numerical finite element computation, the domain Ω needs to be discretized
into a group of small elements τ . Correspondingly in three dimensional computations, Ψ(r)
is disretized as shape functions regarding the element τ . Tetrahedra and hexahedra are usually
used as τ . Regardless of the specified element and shape function, we get the following finite
element-based matrix form when the source term is unknown:

(
K(λi)+C(λi)+B(λi)

)
Φ(λi)=F(λi)S(λi) (6)
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where λi, K(λi), C(λi) and B(λi) are called the mass, stiff and boundary matrix respectively.
These are obtained from the first, second and third term in Eq. 5’s right side [14]. Note that
F(λi) can be flexibly selected depending on the choice of S(λi). Generally, we may select
discretized elements or points as the unknown variables. Here, we use the point-based mode.
When K(λi), C(λi) and B(λi) are summed as M(λi), we have:

Φb(λi) = F (λi)S(λi) (7)

Here, we consider the linear relationship between the unknown source variable S(λi) and the
flux density Φb(λi) at the measurable boundary discretized points. F (λi) can be adjustably
obtained regarding the whole domain, or a priori or a posteriori permissible source region as
unknown source region [19]. When the energy percentage of the wavelength λi is γi, we get:

Φb = A S (8)

where

Φb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φb(λ1)
...

Φb(λi)
...

Φb(λI)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ1F (λ1)
...

γiF (λi)
...

γIF (λI)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

Total energy S at all the wavelengths will be ∑I
i=1 γiS(λi), where I is the total wavelength num-

ber.

2.3. Regularization

In optical tomographic imaging, the physical meaning of the various parameters and constrain-
ing minimization problem by optimization methods have significant impact on object recon-
struction [33]. Therefore, for Eq. 8, we get the following constrained minimization problem for
the measured signal Φmeas which corresponds to Φb:

min
S

1
2
‖A S−Φmeas‖2 s. t. D = {0 ≤ S ≤ Ssup} (10)

where Ssup is a known upper bound vector and ‖ · ‖ denotes l2 norm of a vector. If we ignore
the constraints, this also corresponds to solving the normal equation

A T A S=A T Φmeas

When the spectrum of the operator A T A is unbounded or ill-conditioned, the inverse of this
equation can cause severe numerical instabilities. A standard procedure is to integrate a priori
information in the solution, called regularization. For example, the simplest Tikhonov regular-
ization consists of adding a l2 norm penalty term to the l2 loss functional, i. e.

min
S

1
2
‖A S−Φmeas‖2 +

δ
2
‖S‖2 s. t. D = {0 ≤ S ≤ Ssup}. (11)

where δ is a positive number called the regularization parameter which is used to balance the
fidelity term and the regularization term. The related gradient of the objective function of Eq.
11 is written as:

∇Θ(S) = A T (A S−Φmeas)+δS.
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This quadratic functional can be efficiently solved by a large range of convex programming
technique.

However, this quadratic stabilizer intends to recover a smoothed version of S independent
of the data structure. It is often incapable of recovering local singularities or discontinuities
presented in the object in the case of noise. We are now considering a non-quadratic lp norm
penalty where 1 ≤ p < 2, since the functional ceases to be convex if p < 1. The main advantage
of the non quadratic norm is to promote the sparsity of the solution. Roughly speaking, when
p → 1, large components of S are less penalized when compared to the quadratic norm. How-
ever, the sum of small components are more penalized, thus leading to a sparse solution. In BLT,
an important a priori information is the sparsity of the light source, therefore l1 regularization
is a more natural choice for this ill posed inverse problem. It follows the model:

min
S

Θ(S) :
1
2
‖A S−Φmeas‖2 +

δ
2
‖S‖1 s. t. D = {0 ≤ S ≤ Ssup} (12)

where ‖S‖1 = ∑i |Si| denotes the l1 of the vector S. Since this functional is non-differentiable,
we can use a differentiable approximation defined as ‖S‖1 ≈ ∑n

i=1 Fε(S(i)) [40] defined as

Fε(ξ ) =

{
|ξ |− ε

2 , if |ξ | > ε
ξ 2

2ε , if |ξ | ≤ ε.

where ε is a small positive number.

2.4. Algorithm

Algorithm 1 Regularization-based BLMVM algorithm for BLT reconstruction

Require: Choose S0 ∈ D . Let d0 = −TD∇Θ(S0).

1: for k = 0 to kmax do
2: Compute αk using a projected line search.
3: Compute Sk+1 using P[Sk +αkdk].
4: Compute ∇Θ(Sk+1) and its projection TD∇Θ(Sk+1).
5: if ‖TD∇Θ(Sk+1) < ε‖ then
6: Stop.
7: else
8: Compute sk and yk using Sk+1 −Sk and TD∇Θ(Sk+1)−TD∇Θ(Sk) respectively.
9: if yT

k sk > 0 then
10: Update Hk by Eq. 15.
11: end if
12: Compute Hk+1∇Θ(Sk+1) using the L-BFGS two-loop recursion.
13: if 〈−TD(Hk+1∇Θ(Sk+1)),∇Θ(Sk+1)〉 > 0 then
14: d = −Hk+1∇Θ(Sk+1).
15: else
16: d = −∇Θ(Sk+1).
17: end if
18: end if
19: end for

Through minimizing the objective function Θ(S), BLT reconstruction can be obtained. Θ(S) is
a typical bound-constrained regularization-based least square problem. For the constraint prob-
lem, an active-set strategy which includes several types of Hessian matrix based optimization
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algorithms is adopted to obtain a desirable reconstruction [14][19]. Although this least square
problem easily obtains the Hessian matrix, it requires a significant amount of memory during
the optimization procedure, especially for large-scale problems. In addition, when computing
the search direction, it is necessary to invert the Hessian matrix, which is time-consuming and
severely affects the speed of BLT reconstruction. One solution is to use quasi-Newton methods.
Generally, these build up an approximate Hessian matrix by using gradients and iteration algo-
rithms. This approximate matrix is obtained in real-time by vector-vector multiplications and is
easy to invert, saving memory and time requirements. Here, the limited memory variable metric
bound constrained quasi-Newton method (BLMVM) [34] is used for BLT reconstruction. The
detailed algorithm is shown in Algorithm 1.

Specifically, an initial guess S0 for the source distribution should be given and the initial
searching direction d0 is also provided. Here, the operator TD is defined as

[TDd]( j) =

⎧
⎨

⎩

d( j) if S( j) ∈ (0,S( j)sup)
min{d( j),0} if S( j) = 0
max{d( j),0} if S( j) = S( j)sup

(13)

where d( j),S( j) denotes the j-th element of d and S respectively. When the step size αk is
determined, the iterative solution at the next step Sk+1 can be calculated through the projection
operator P onto the box constraint, defined as

[PDS]( j) =

⎧
⎨

⎩

S( j) if S( j) ∈ [0,S( j)sup]
0 if S( j) ≤ 0
S( j)sup if S( j) > S( j)sup

(14)

During the minimization procedure, the approximation Hk+1 of the inverse Hessian matrix at
the next step is updated when yT

k sk > 0

Hk+1 = V T
k HkVk +ρks

T
k sk (15)

where ρk = 1/(yT
k sk),Vk = I − ρk(yksT

k ), I is the identity matrix. Since the inverse Hessian
matrix is usually dense, the memory and time requirements for processing Hk is prohibitive
especially for large scale problems. In the BLMVM algorithm, a limited memory BFGS ma-
trix is obtained by the vector pairs from the last m iterations. Given an initial inverse Hessian
approximation H0

k+1, the updated matrix Hk is obtained

Hk = ( V T
k−1 · · ·V T

k−m)H0
k (Vk−m · · ·Vk−1)

+ ρk−m(V T
k−1 · · ·V T

k−m+1)sk−msT
k−m(Vk−m+1 · · ·Vk−1)

... (16)

+ ρk−2(Vk−1)T sk−2sT
k−1(Vk−1)

+ ρk−1sk−1sT
k−1

3. Results

3.1. Simulation verifications

Much attention should always be given to the inverse crime when new algorithms are verified
using synthetic data. Monte Carlo methods can simulate the photon propagation better given
the ability to incorporate Poisson noise in the simulation. In addition, the same discretized
modes used in the forward simulation and inverse reconstruction will significantly affect the
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evaluation. A cubic domain with a width of 15mm was used to confirm these effects. The syn-
thetic data was obtained through three types of modes, which are hexahedra- and tetrahedra-
based FEM, and Monte Carlo method. The diffusion approximation equation was used in the
FEM-based simulation. The same discretization with hexahedra-based simulation was used in
BLT reconstruction and its element size was 1.0mm in width. The average element diameter
in tetrahedra-based discretization was also 1.0mm. Figures 1(a) and 1(b) show the discretized
meshes. In reconstruction, three wavelengths (600nm, 650nm and 700nm) were used to obtain
spectrally-resolved measurements. We refer to the literature [9] to obtain the corresponding
optical properties as listed in Table 1. Photon attenuation is approximately an exponential func-
tion of the effective attenuation coefficient μe f f (μe f f =

√
3μa(μ ′

s + μa)). In order to preserve
the noise effect for all the wavelengths, we sampled 107 photons for 600nm and half the num-
ber of these photons were used at two other wavelengths. Monte Carlo simulation is severely
time-consuming. To accelerate the simulation, MPI-based parallel code based on the Molecular
Optical Simulation Environment (MOSE) [35] was developed in order to perform spectrally-
resolved simulations. Because the parallel program only records the information of the photons
emitted through the boundary, we can consider that the cubic domain used in the MC method
is not discretized, as shown in Fig. 1(c).

Table 1. Optical property at three wavelengths for cubic phantom in simulation verifications

Wavelength 600nm 650nm 700nm
μa(λi)[mm−1] 0.19 0.038 0.022
μ ′

s(λi)[mm−1] 1.66 1.53 1.41

When generating the synthetic data, a cubic source with a width of 1mm was placed at the
center of the cubic domain. The source intensity at every wavelength was set to “1.0”. In the
reconstruction, we used the synthetic data on the top surface, while the additional noise was not
considered. Additionly, regularization methods were not used. Based on three different types
of synthetic data, the reconstructed results are shown in Figs. 1(d) to 1(f). When using the hex-
ahedral mesh, the same mathematical model and discretized mesh were used in synthetic data
generation and reconstruction. Although there are some artifacts in the reconstructed results,
the source position is well localized, as seen in Fig. 1(d). However, when the tetrahedral-based
synthetic data is used, the reconstructed results become inaccurate. Also, in Fig. 1(e), it is ob-
served that there are some reconstructed results below the actual source position. MC-based
reconstructed results in Fig. 1(f) are similar with those based on the tetrahedral mesh. The
difference is that the reconstruction around the actual source position becomes increasingly ob-
scure and its position is proximal to the top surface. Actually, the use of different simulation
methods results in different levels of noise in the synthetic data, affecting the reconstructed re-
sults. Therefore, the synthetic data results are compared in terms of the three different methods
and the results are shown in Fig. 2(b). We can find the Hex- and Tet-based synthetic data is al-
most the same. The maximal relative error (RE) (RE = (ΦTet −ΦHex)/ΦHex) between them is
only 10.4%. However, these errors introduce significant effects during reconstruction, showing
the ill-posedness of the BLT problem and the necessity of regularization. Furthermore, we can
see there are large errors between the Hex- and MC-based data especially when the discretized
points are far from the center. It is clear that this produces the poor reconstructed results. From
another aspect, it is necessary to use the MC-based synthetic data for testing the proposed al-
gorithm due to its precise simulation and the inverse crime problem. Note that for convenient
comparison the MC-based data is normalized using the Hex-based data based on its respective
maximal flux density.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Verification to the inverse crime problem. The discretizations of the cubic domain
in Figs. (a), (b) and (c) were used to generate the synthetic data using the finite element
method (Figs. (a) and (b)) and Monte Carlo method (Fig. (c)). Figures (d), (e) and (f) are the
reconstructed results respectively when the real source central position is at (0.0,0.0,0.0).
The synthetic data on the top surface is used in reconstruction.
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Fig. 2. Quantitative comparison between HEX-, TET- and MC-based synthetic data at
650nm
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3.1.1. Single Source Cases with the Homogeneous Media

(a) (b) (c)

(d) (e) (f)

Fig. 3. BLT reconstructions when the real source central position is at (0.0,0.0,0.0) and
106 photons are tracked to generate the synthetic data at 600nm. Figures (a), (b) and (c)
are the photons distribution at 600nm, 650nm and 700nm. Figures (d), (e) and (f) are the
reconstructed results without regularization method and with l2 and l1 methods.

With the MC-based synthetic data, the proposed algorithm is verified. For each method, we
present our results with an optimal parameter δ chosen from a series of values. Generally, based
on the reconstruction experience, the ranges of l1 and l2 parameters are from 10−7 to 10−4 and
from 10−6 to 10−3 respectively. The regularization parameters become larger along with the
noise increase. In the single source case, we use the same settings with those used in the in-
verse crime evaluations and reduce the simulated photon number to 106 at 600nm. Figs. 3(a) to
3(c) show the photon distribution on the top surface of the cubic domain at three wavelengths.
It is obvious that they are different because of the effect of the optical properties at different
wavelengths. When regularization methods are not used in the reconstruction, we get similar
reconstructed results as in Fig. 1(f), and which are shown in Fig. 3(d). We cannot accurately
localize the source position. Figure 3(e) shows the reconstructed results when the l2 regulariza-
tion method is used. The center position of the reconstructed source is at (0.0,0.0,1.5). Due to
the effect of the noise on the source depth information contained in the synthetic data, there is
an 1.5mm error in depth localization. Similar localization information is obtained when the l1
regularization is used. Both of the regularization-based BLT reconstructions show good source
localization when compared with and without regularization.

When we reduce the tracking photons number to 104, figures 4(a) to 4(c) show the photon
distribution on the top surface. Because few photons are emitted through the boundary, high
Poisson noise exists in the synthetic data. It is difficult to distinguish the difference between the
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(a) (b) (c)

(d) (e) (f)

Fig. 4. BLT reconstructions when the real source central position is at (0.0,0.0,0.0) and
104 photons are tracked to generate the synthetic data at 600nm. Figures (a), (b) and (c)
are the photons distribution at 600nm, 650nm and 700nm. Figures (d), (e) and (f) are the
reconstructed results without regularization method and with l2 and l1 methods.

three wavelengths. When no regularization method is used, we obtain a degraded reconstruc-
tion, which is shown in Fig. 4(d), compared with that obtained by 106 photons. Even if the l2
regularization is used, we cannot always accurately localize the source position using the re-
constructed results (Fig. 4(e)) no matter how the regularized parameter is adjusted. When the l1
regularization is used, a similar reconstruction, as shown in Fig. 4(f) as that with 106 photons is
obtained. Due to the higher noise level, the center of the reconstructed source is at (0.0,0.0,2.0)
and the localization errors further are increased further. However, compared with the l2 regu-
larization, the l1 method shows improvement especially when the source is at a deeper position
and high noise exists in the measured data.

3.1.2. Dual source cases with the homogeneous media

In this simulated reconstruction, dual source settings are considered in order to evaluate the l1
regularization method. Both sources have the same settings as those used in the single source
cases and are placed at (−3.0,0.0,3.0) and (3.0,0.0,3.0) respectively. First, 106 photons are
tracked at 600nm for each source. Since the sources are close to the top surface and many
photons can be captured, we obtain good reconstructed results without regularization, which
is shown in Fig. 5(a). The center positions of the reconstructed sources are (−2.5,0.0,3.5)
and (2.5,0.0,3.5). Note that even if we set the regularization parameters with the l2 and l1
methods, similar results (Figs. 5(b) and 5(c)) are obtained with those without regularization,
illustrating the robust nature of the regularization methods. When the photon number reduces to
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Dual source BLT reconstructions when the real source central positions is at
(−3.0,0.0,3.0) and (3.0,0.0,3.0). Figures (a), (b) and (c) are the corresponding recon-
structed results without regularization and with l2 and l1 methods when 106 photons are
tracked at 600nm. Figures (d), (e) and (f) are the counterparts corresponding to (a), (b) and
(c) when 104 photons are tracked at 600nm.

104, the reconstructed results are shown in Figs. 5(d) to 5(f). Obviously, without regularization,
we cannot obtain accurate source localization due to the high noise in the synthetic data. The
l2- and l1-based reconstructions show similar source localization with those using 106 photons.
Note that these reconstructions are similar to those in the single source case with 106 photons. In
other words, more photons are required for BLT reconstruction with multiple sources compared
with single sources. This is true even if these sources are closer to the measured surface than
the latter case.

When the two sources are moved to (−3.0,0.0,0.0) and (3.0,0.0,0.0), Figures 6(a) to 3(f)
show the reconstructed results when 106 photons are tracked. We cannot distinguish the source
position accurately without regularization and with the l2 method, although the lower values in
the latter BLT reconstruction show that there are two sources. In contrast, two sources can be
distinguished from the reconstruction with the l1 method despite the fact that the localization
errors (the reconstructed center positions are (−2.0,0.0,2.5) and (2.0,0.0,2.5)), are bigger
than those in the single source case (Fig. 3(f)). Based on the synthetic data with 104 photons,
the reconstruction results are shown in Figs. 6(d) to 4(f). Due to the higher noise, we can’t
distinguish two sources (Fig. 4(e)) in the l2-based reconstruction, or without regularization (Fig.
4(d)). Surprisingly, two sources can be distinguished in the l1-based reconstruction. However,
the localization errors become bigger than those in the 106 photon case.
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(d) (e) (f)

Fig. 6. Dual source BLT reconstructions when the real source central positions is at
(−3.0,0.0,0.0) and (3.0,0.0,0.0). Figures (a), (b) and (c) are the corresponding recon-
structed results without regularization and with l2 and l1 methods when 106 photons are
tracked at 600nm. Figures (d), (e) and (f) are the counterparts corresponding to (a), (b) and
(c) when 104 photons are tracked at 600nm.

3.1.3. Dual source cases with the heterogeneous media

Furthermore, heterogeneous BLT reconstructions with dual source settings are performed. Two
sources are placed at (−3.0,0.0,0.0) and (3.0,0.0,0.0) respectively. The heterogeneous charac-
teristics of the domain are realized by placing a 5×5×5 cube within the homogeneous domain.
The center of this cube is the same as that of the source at (−3.0,0.0,0.0). The absorption
and reduced scattering coefficients at three wavelengths are set to 0.038 and 1.82, 0.015 and
1.73, and 0.004 and 1.57 respectively. When 106 photons are used to generate the measured
data at 600nm, the reconstructed results are shown in Figs. 7(a) to 7(c). They are similar with
the BLT reconstructions in the homogeneous domain and two sources can not be distinguished
without regularization and with the l2 method. When the l1 regularization is used, the recon-
structed results have little difference between using heterogeneous and homogeneous domains,
as shown in Figs. 6(c) and 7(c). Due to the heterogeneous media characteristics, the recon-
structed positions become (−1.5,0.45,2.55) and (1.5,−0.45,2.55) respectively. Although the
depth localization is similar in heterogeneous and homogeneous domains, the reconstructed
precisions at X and Y directions become worse. When the photon number is reduced to 104, the
reconstructed results are shown in Figs. 7(d) to 7(f). Note that the depth localization is improved
with the l1 regularization due to the heterogeneous media characteristics, and the reconstructed
positions are (−1.35,−0.6,2.7) and (1.8,−0.6,3.45). With the reduced number of photons, the
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Fig. 7. Dual source BLT reconstructions with the heterogeneous media when the real source
central positions is at (−3.0,0.0,0.0) and (3.0,0.0,0.0). Figures (a), (b) and (c) are the cor-
responding reconstructed results without regularization and with l2 and l1 methods when
106 photons are tracked at 600nm. Figures (d), (e) and (f) are the counterparts correspond-
ing to (a), (b) and (c) when 104 photons are tracked at 600nm.

heterogeneous characteristics improve the reconstruction precision.

3.1.4. Multiple source cases

With respect to different source intensities, three sources with different depths are set in the ho-
mogeneous domain to test the l1-based reconstruction method. Their positions and intensities
are (−2.0,2.0,4.0) and 1.0, (0.0,0.0,0.0) and 5.0, and (3.0,−3.0,2.0) and 3.0 respectively. In
this simulation, 104 photons are tracked at 600nm. The reconstructed results are shown in Figs.
8(a) to 8(c). Without regularization methods, the three sources cannot be distinguished (Fig.
8(a)). When the l2 and l1 methods are used, the three sources can be distinctly distinguished.
However, overall there is a coupling between the source depth and intensity, and the source
depth localizations become worse, while the source intensities cannot be reconstructed accu-
rately. When comparing the reconstructed results based on the l2 and l1 methods, there is an
artifact in the l2-based reconstruction, which is shown in Fig. 8(b). To obtain good source depth
and intensity reconstruction, more sophisticated l1-based reconstruction algorithms should be
developed.

3.2. Experimental data reconstructions

In order to test the spectrally-resolved l1-based BLT reconstruction algorithm, a commercially
available solid mouse shaped homogeneous phantom was used. This phantom was fabricated
with a polyester resin, TiO2 and Disperse Red. Table 2 shows the optical properties (μa and
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(a) (b) (c)

Fig. 8. Triple source BLT reconstructions with the homogeneous media when the real
source central positions is at (−2.0,2.0,4.0) , (0.0,0.0,0.0), and (3.0,−3.0,2.0). Figures
(a), (b) and (c) are the corresponding reconstructed results without regularization and with
l2 and l1 methods when 104 photons are tracked at 600nm.

Table 2. Optical properties of Caliper mouse phantom at six wavelengths

Wavelength 560nm 580nm 600nm 620nm 640nm 660nm
μa(λi)[mm−1] 0.091 0.038 0.015 0.006 0.004 0.0043
μ ′

s(λi)[mm−1] 1.88 1.82 1.73 1.66 1.57 1.46

μ ′
s) at six wavelengths measured with the inverse adding doubling method [36]. To imitate the

bioluminescence source, an optical fiber coupled to a green LED was embedded within the
phantom. The emission spectrum of the LED ( wavelength range was from 500nm to 700nm
and the peak was at about 567nm) was similar to that of a bioluminescence source. More de-
tailed information about this phantom can be obtained elsewhere in [22]. To acquire the shape of
this phantom and localize the source position, an Imtek microCAT system (Siemens Preclinical
Solutions, Knoxville, TN) was used. Since the diameter of the optical fiber was only 200μm,
the source could be considered as a point source. GFP (515−575nm) and DsRed (575−650nm)
emission filters were used to acquire the spectrally-solved measured data. In the reconstruc-
tion, the optical properties at 560nm were used for the GFP filter-based data. The averaged
μa and μ ′

s from 580nm to 660nm (0.013mm−1 and 1.68mm−1) was considered for the DrRed
filter-based measurement. To avoid the effects of the curved surface in the measured data, the
photon distribution was obtained from the bottom surface of the phantom in a Caliper IVIS 100
imaging system (Caliper Life Sciences Alameda, CA). Using the commercial software Amira
3.0 (Mercury Computer Systems, Inc. Chelmsford, MA), the tetrahedral-based finite element
volumetric mesh shown in Fig. 10(a) for reconstruction was generated based on the CT images.
With respect to the photons distribution, about 2/3 of the whole phantom was selected for mesh
generation. The mesh had the average element diameter of 3.0mm and included 1929 nodes and
7766 elements. The measured data was manually registered using the simultaneously obtained
photograph in Amira.

The photon distributon for 2 minute acquisitions using two types of filters is shown in Fig. 9.
Since the optical properties at two wavelength ranges are different, we can clearly observe the
difference in the photon distribution. Using the CT images, the actual source position was local-
ized at (114.5,131.0,3.0). When the BLT reconstruction without regularization was performed,
the reconstructed results are shown in Fig. 10(b), indicating a distributed source. The difference
between the corresponding maximal values in several distributed regions is small. When the
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(a) (b)

Fig. 9. Surface radiance images of the mouse-shaped phantom with embedded fiber optic
source using GFP and DsRed emission filters.

(a)

(b) (c) (d)

Fig. 10. Experimental BLT reconstructions with mouse-shaped phantom. Figure (a) are the
volumetric mesh used in reconstruction. Figures (b), (d) and (d) show the reconstructed
results without regularization and with l2 and l1 methods.

(C) 2009 OSA 11 May 2009 / Vol. 17,  No. 10 / OPTICS EXPRESS  8078
#109156 - $15.00 USD Received 26 Mar 2009; revised 25 Apr 2009; accepted 26 Apr 2009; published 29 Apr 2009



maximal reconstructed values are used to decide the reconstructed position, its center is local-
ized at (111.7,132.6,2.7). Overall, there are large reconstruction errors especially along X-axis
direction. When the l2 regularization-based reconstruction was performed, the reconstructed re-
sults are shown in Fig. 10(c). Due to the smoothness function of the l2 regularization, the whole
reconstructed region is almost filled by the values close to the maximal. However, the center
position of the reconstructed results is easily localized at (115.1,131.7,2.4). The errors at three
axes are 0.6, 0.7, 0.6 compared with the actual position. Compared with the reconstruction
without regularization, this localization is better. Figure 10(d) shows the reconstructed results
with l1 regularization, and the reconstructed position (114.7,131.7,2.9) is similar with that
based on l2 method. However, the reconstructed results are compact, which shows that the BLT
reconstruction is significantly improved when sparse a priori information is used.

4. Conclusion

In this paper, a spectrally-resolved l1 regularization based reconstruction algorithm is pro-
posed. Based on the linear relationship between the unknown source variable and the bound-
ary measurements, the spectrally-resolved information is used to improve BLT reconstruction.
Sparse source characteristics are considered in a graceful way along with the l1 regularization
method. The use of quasi-Newton optimization methods accelerates the BLT reconstruction.
Simulation verifications with MC-based synthetic data show that the use of the sparse a priori
information significantly improves the BLT reconstruction compared with the popular l2 reg-
ularization. Particularly the case when the sources exist at deeper positions and the measured
data contains high noise, the l1-based methods are necessary to obtain improved location recon-
struction. Reconstruction of experimental data further shows the effectiveness of the proposed
algorithm.

In BLT reconstruction, it is vital to solve the ill-posed and unique problems. Regularization
and a priori information significantly improve the reconstruction. From the results obtained
here, reconstruction without regularization is not stable. Although l2 regularization improves
performance, its smooth characteristic is not apropriate for the BLT problem. Since the l1 reg-
ularization considers sparse information, it is more suitable for BLT reconstruction especially
when multiple sources exist. Note that to strictly meet the condition of compressed sensing
theory, signal incoherence should be considered further. In practice, for a more general inverse
problem, it is not simple to check the incoherence condition. Perfect matching between the-
ory and practice is limited in some simple cases [37]. It is still standard to use a nonquadratic
norm to promote sparsity, roughly speaking, for most large under-determined systems of linear
equations, the minimal of l1 norm solution is also the sparsest solution [38]. Fortunately, the
improved reconstructed results show the inherent characteristics of BLT problem can meet the
compressed sensing theory to a certain extent.

Although in vivo mouse BLT reconstructions with the diffusion approximation theory ob-
tain good results, the nature of photon propagation in biological tissues demonstrates that more
precise mathematical models should be considered for the BLT problem when the biolumines-
cence source is in or close to specific tissues. Several improved models have been proposed to
improve the reconstruction quality [16][39]. Since BLT reconstruction is a linear inverse source
problem in nature, as a regularization method, the l1 method can be used in improved precise
model based reconstructions.

In conclusion, we have developed a spectrally-resolved compressed sensing based recon-
struction method for BLT, obtained encouraging preliminary results in both numerical simula-
tions and physical phantom experiments, and established that our proposed method is effective
for BLT. In vivo mouse studies using the proposed method will be reported in the future.
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