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Abstract. Wavelet inpainting problem consists of filling in missed data in the

wavelet domain. In [17], Chan, Shen, and Zhou proposed an efficient method to
recover piecewise constant or smooth images by combining total variation reg-
ularization and wavelet representations. In this paper, we extend it to nonlocal

total variation regularization in order to recover textures and local geometry
structures simultaneously. Moreover, we apply an efficient algorithm frame-
work for both local and nonlocal regularizers. Extensive experimental results
on a variety of loss scenarios and natural images validate the performance of

this approach.

1. Introduction

The discrete wavelet transform is a popular method for transmission coding. An
example is the recently developed JPEG2000 image compression standard. As con-
ventional communication techniques can not provide an error free transmission, bit
errors and data losses in received subbands (see Figure 1) may heavily affect the
signal quality. This problem is often referred as error concealment in the transmis-
sion and communication community. In [17], Chan, Shen and Zhou addressed this
problem as wavelet inpainting, since the problem of filling in missing or damaged
wavelet coefficients is closely related to classical image domain inpainting problems.
In this paper, we use the terminology wavelet inpainting as [17] and propose to use
the nonlocal total variation for this application.

Since the pioneering work of Masnou and Morel in [39], Chan and Shen in [16]
and Bertalmio, Sapiro, Caselles and Balleste in [4], geometrical and variational PDE
models have been well studied for image domain inpainting based on local geomet-
rical information [15, 16, 28, 8]. However, local edges based methods are limited
to non-texture regions. Texture synthesis techniques are additionally introduced
in order to recover textured natural images. In [24], Efros and Leung proposed to
synthesis an unknown pixel by known pixels which have similar neighborhood as
the current one. This technique is very efficient for texture synthesis, and a similar
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idea is applied for image denoising by Buades, Coll and Morel [7] who proposed to
use a nonlocal means filter. The texture synthesis technique has also been applied
to inpainting features by Bertalmio-Vese-Sapiro -Osher in [3], where they proposed
to decompose first an image into a structure part and a textured part, then to apply
different techniques separately to both parts. On the other side, Demanet, Song
and Chan [22] attempted to formulate the heuristic patches copy-paste technique
presented in [24] in a variational framework. Recently, Aujol, Ladjal and Masnou
[2] also aimed to formulate variational models for some exemplar-based algorithms
and investigate the ability of reconstructing local geometric features and textures.
Nevertheless, a unified and well-posed model is still an open problem. Other tech-
niques such as morphological component analysis is also applied on simultaneous
cartoon and texture image inpainting by Elad, Starck, Querre and Donoho in [26].

Motivated by a large amount of work on image domain inpainting, some authors
propose to solve wavelet inpainting (error concealment) by image domain inpaint-
ing. A related scenario is JPEG standard reconstruction, which is based on the
block DCT transform. Errors in the bit stream result in the loss of all the informa-
tion related to the damaged blocks, and in general the damaged blocks can be well
located because of the locality of the DCT transform. Once the damaged blocks are
located, an image domain inpainting or interpolation algorithm is then applied. For
example in [46], Rane, Sapiro, and Bertalmio first classified missing image blocks
into structures and textures and then applied an image domain inpainting algorithm
and texture synthesis separately. In [41], an oriented anisotropic elliptic PDE was
used to repair textures as well as edges to avoid a preprocess of classification as in
[46] or a decomposition in [3] for regular square loss patterns. However, the dam-
aged regions due to wavelet loss are often not well localized and the affected regions
are in general too large to fill in by block-based inpainting methods. In fact, loss in
different wavelet subbands affect the image quality differently and the degradation
is often spatially inhomogeneous. We show the layout of wavelet subbands in Figure
1. By the same principle as image compression, the loss of coefficients in higher
frequency subbands, such as ”HH 1, HH 2, LH 1, HL 1, LH 2,HL 2” in Figure 1,
do not greatly affect visual quality, while the loss of other high frequencies in the
coarsest subband (”HL 3,LH 3” in Figure 1) create Gibbs artifacts or other blur
effects, see Figure 2 and Figure 3. The inpainting area can not be well located since
the artifacts are spread along edges. Visually, the severest degradation is created by
the coarsest low-low subband (”LL 3” in Figure 1). In Figure 5 and Figure 7, loss in
this subband severely create regular or irregular big black squares in the image do-
main. In the following, we use ”LL” to refer this subband. In addition, some noise
might be also present in the received coefficients, in which case image domain in-
painting algorithms are not applicable. In the literature of error concealment, some
effort is also devoted to using explicit interpolation/extrapolation, regularization or
statistic inference in the wavelet domain, such as in [34], where Hemami and Gray
proposed different interpolation strategies for LL subband and higher frequencies.
However, wavelet coefficients (except LL frequencies) are designed to decouple the
correlation between pixels, so retained coefficients usually can not provide enough
information for the missing ones. Moreover, it is well known that a small deviation
of wavelet coefficients may cause displeasing artifacts along the edges in the image
domain.

An alternative class of approaches, including ours proposed in this paper, is to
use a hybrid method to control both image and wavelet domains. In [48], some
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Figure 1. DWT coefficients layout in JPEG 2000 with three levels decomposition.

constraints related to smoothness and edge continuity were imposed for the recov-
ery of missing coefficients and a projection onto convex sets (POCS) algorithm was
applied to solve the problem. Also in [1], a median filtered image constraint set
was imposed without theoretical convergence proof. Based on a priori hypothe-
sis that the original images are more or less piecewise smooth functions presenting
sharp discontinuities, in [17], Chan, Shen and Zhou proposed two variational models
combining the total variation (TV) minimization technique with wavelet represen-
tations. The authors have also investigated the existence and uniqueness of the
proposed models, and the related numerical schemes are designed to handle the
computation in wavelet domain. Another related but different work is due to Du-
rand and Froment [23]. They considered the TV minimization under a constraint on
the retained wavelet coefficients in order to remove artifacts due to the lost frequen-
cies, created by a threshholding algorithm. The combination of the total variation
and wavelet representations has been demonstrated to have effective and automatic
control over geometric features, even in the presence of loss of low frequency wavelet
coefficients, in which case the image is considerably affected. Other combination
of total variation with harmonic representation can be also found in the applica-
tion of curvelet image reconstruction [10], computerized tomography reconstruction
[51, 33]. An important related topic is called compressive sensing(CS), which is
recently emerged and quickly developed in different research area [11, 12]. The
principle of compressive sensing argues that if a signal can be expressed sparsely
in a proper basis, then it is possible to exactly recover the signal from a set of in-
complete measurements, in a probabilistic setting. In spite of a close connection to
CS, the theory developed for CS can not explain the efficiency of the total variation
inpainting model. According to the CS theory, the sparse signal must be spread
out in the measurement domains, such as Fourier or Gaussian measurements, while
incomplete wavelet measurements mainly capture local information. Nevertheless,
Chan, Shen and Zhou [17] argued that the hybrid model works because the bounded
function space retains sharpness of missing edges, and the minimization of the total
variation can recover the geometry information, which is not explicitly represented
by classical wavelets.

Inverse Problems and Imaging Volume 4, No. 1 (2010), 1–XX
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Although the classical total variation is surprisingly efficient for recovering some
lost wavelet coefficients as presented in [17] and confirmed in this paper, it is well-
known that the total variation regularization is not suitable for images with fine
structures, details and textures, just as other local gradient based methods. In
this paper, we extend it to textured images and explore the feasibility of nonlocal
regularization for different loss cases. The nonlocal total variation is a variational
extension of the nonlocal means filter proposed by Buades, Coll and Morel in [7].
The nonlocal means filter has proven to be very efficient for Gaussian denoising,
on preserving not only sharp edges, but also fine details and repetitive patterns.
Gilboa and Osher [30] extended the classical total variation and H1 norm to nonlocal
functionals based on the nonlocal filters and graph Laplacian theory [18]. Zhou and
Schölkopf in [52] and Elmoataz et al. in [27] also proposed to use a a weighted
graph Laplacian in the discrete setting. The application of these functionals to
different image processing tasks is an active research area, for problems such as
image denoising [30], supervised segmentation [29, 5, 35], several inverse problems
including image domain inpainting in [45], deconvolution and compressive sensing in
[36, 50] and denoising and classification of hyperspectral imaging [13]. The nonlocal
TV regularization has been shown to outperform the classical total variation by
integrating global information, as long as an appropriate (initial) weight is selected.

Our main contribution in this paper is to extend the total variation based wavelet
inpainting to the nonlocal total variation based model, in order to recover textures
and geometry structures simultaneously. The proposed non-smooth optimization
model is solved by an efficient algorithm. The efficiency of this simple model for
natural images are validated by a large amount of numerical simulations. Specially,
we formulate wavelet inpainting as an inverse problem and describe how some well-
known algorithms for inverse problems can be easily adapted to this application.
The challenges for nonlocal regularization in practice include choosing an appro-
priate and adapted weight, and finding a stable and efficient algorithm. As we
discussed above, the received image, which is obtained by setting unknowns to zero
do not in general provide the right edge and feature information, making it neces-
sary to use weight updating strategies, as proposed in [45] and [50]. We simulate
different subband loss. In particular, the loss in LL subband severely affect the
image quality. On the other hand, since the lowest subband is an approximation of
the image, it can sometimes be modeled as a piecewise smooth function, allowing
some basic interpolation on this subband to greatly improve image quality. In this
paper, we use a simple interpolation for the LL subband loss and use the result
as an initial guess for further iterative regularization, such as total variation and
nonlocal total variation.

The paper is organized as follows. In Section 2, we present the notations for
discrete nonlocal total variation as well as the classical one. In Section 3, we in-
troduce the unified model and general algorithm framework for both regularizers.
The algorithm adopted here is based on operator splitting and Bregman iteration
[42]. In Section 4, we demonstrate the performance of both classical and nonlocal
total variation for different scenarios of coefficients loss for natural images, includ-
ing subband loss, block loss, and random loss. In particular, we discuss two cases
of random loss, one is fully random, and another one includes additional LL sub-
band. Further numerical examples highlight the remarkable inpainting qualities of
nonlocal total variation regularization for natural images.
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2. Discrete Nonlocal Total variation

This section provides the basic notations of discrete formulation instead of the
continuous model presented in [30]. Similar to the digital TV filter defined in [14]
and graph regularization in [18, 27], we model the digital image domain by a graph
(Ω, E), where Ω is a finite set of N nodes (pixels), E is the set of edges. The
notation x ∼ y is used to denote the edge which connects the nodes x and y. An
image u is then a function defined on Ω, which can be represented by a column
vector, and the value at node x is denoted by u(x). In the following, we consider a
weight function w(x, y) for all edges x ∼ y ∈ E. The weight function w is required
to be symmetric and it can be extended over Ω × Ω, that is, if two nodes x and y
are not connected, the weight w(x, y) is set 0. In this setting, nodes may directly
interact with nodes that are not neighbors, unlike classical total variation. For this
reason, we use the term ”nonlocal”.

Now we define the weighted graph gradient and other related operators. For a
given image u(x) defined on Ω, the weighted graph gradient ∇wu(x) is defined as
the vector of all directional derivatives (or edge derivative) ∇wu(x, ·) at x:

∇wu(x) := (∇wu(x, y))y∈Ω,

with

∇wu(x, y) := (u(y) − u(x))
√

w(x, y), ∀y ∈ Ω.

The directional derivatives apply to all the nodes y since the weight w(x, y) is
extended to the whole domain Ω×Ω. A graph divergence of a vector q : Ω×Ω → R
can be defined by the adjoint relation with the gradient operator and the standard
dot product on vectors:

〈∇wu, q〉 = −〈u,divwq〉, ∀u : Ω → R,∀q : Ω × Ω → R,

which leads to the definition of the graph divergence divw(q) : Ω → R such that:

divwq(x) =
∑

y∈Ω

(q(x, y) − q(y, x))
√

w(x, y).

The graph Laplacian is defined by:

∆wu(x) :=
1

2
divw(∇wu(x)) =

∑

y∈Ω

(u(y) − u(x))w(x, y).

Note that a factor 1
2 is used to be consistent with the standard Laplacian definition.

The graph-based H1 norm and total variation semi-norm are defined by extend-
ing classical L2 and L1 norm of gradient operators respectively. More precisely, the
nonlocal H1 norm, and the nonlocal total variation are defined as follows:

Jw
NLH1(u) :=

∑

x∈Ω

|∇wu(x)|2 =
∑

x∈Ω

∑

y∈Ω

(u(x) − u(y))2w(x, y),(1)

Jw
NLTV (u) :=

∑

x∈Ω

|∇wu(x)| =
∑

x∈Ω

√

∑

y∈Ω

(u(x) − u(y))2w(x, y).(2)

In this paper, we are interested in the nonlocal TV semi-norm because analogous
to classical total variation, the L1 norm is in general more efficient than the L2

norm for sparse reconstruction. The above nonlocal H1 norm can be viewed as a
variational equivalent of the nonlocal means filter, that is, one iteration of gradient
flow is equivalent to the nonlocal means filter [44]. Over the two dimensional image
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domain, if we only consider the immediate neighbor for each pixel, and consider a
constant weight 1 for each neighbor pair, then we have the classical total variation
as proposed by Rudin-Osher-Fatemi [47]. Instead, we can consider a more general
neighbors system, as the nonlocal weight used in the nonlocal means filter [7], which
leads to the nonlocal TV proposed in [30]. The weight function plays an important
role in the regularization functionals (1)(2). Following the notation in [7, 30, 45], for
a given reference image f0, we can compute a data-driven weight function w0(x, y)
by using the difference of patches around each node. The patch px(f0) of size m×m
(m is chosen as an odd number) centered at a pixel x ∈ Ω is given as

px(f0)(t) = f0(x + t), t = [−
m − 1

2
, · · · ,

m − 1

2
]2.

Then the weight between two points x and y is then defined as a function of the
patch distance:

(3) w(f0)(x, y) = e
−

||px(f0)−py(f0)||2

2h2
0 ,

where h0 is a filtering parameter. The weight defined above measures the similarities
of two patches centered at x and y. The nonlocal means filter [7] is obtained by
taking the average of given noisy image with a weight computed from the same noisy
image. In this sense, the filter is a nonlinear data-driven filter. This choice of weight
is very efficient to reduce gaussian noise while preserving textures and contrast of
natural images. For a general regularization, it is crucial to choose a reference image
as close as possible to the true image to introduce relevant information regarding
image structures, while in practice, since a good reference image is not always
available, we therefore need to choose an adapted weight by an appropriate updating
scheme. We will give the detail in the next section.

3. Models and Related Algorithms

In [17], the author proposed two TV regularized wavelet inpainting models de-
pending on whether or not noise is considered. The idea is to combine a regulariza-
tion term in the image domain with a fidelity term in the transform domain. For a
two-dimensional image u, let us denote the standard wavelet representation as

(4) u(β, x) =
∑

j∈Z,k∈Z2

βj,kφj,k(x),

where x ∈ Ω = [1,M ] × [1, N ], and β = (βj,k) denotes wavelet coefficients of u
at level j and location k, and for simplicity φj,k denotes a given orthogonal or
biorthogonal wavelet basis function (for two-dimensional separable wavelet basis,
there are three directions of wavelet functions, but we use the same symbol φ). If
we use an orthogonal basis, the coefficient βj,k = 〈u, φj,k〉, while for biorthogonal

basis, the synthesis basis is different from the analysis one, that is βj,k = 〈u, φ̃j,k〉,

for φ̃j,k being a dual basis of φj,k, see [37]. In discrete case, let I ⊂ Ω be the
uncorrupted known index set, α = (αj,k) for (j, k) ∈ I denotes measured coefficients,
the following two models, respectively for the noiseless case and the noisy one, are
considered in the paper [17]:

β∗ = arg min
β

TV (u(β, x)) = arg min
β

∑

x∈Ω

|∇xu(β, x)|

s. t βj,k = αj,k, (j, k) ∈ I(5)
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and

(6) β∗ = arg min
β

F (β) = arg min
β

∑

x∈Ω

|∇xu(β, x)| +
∑

(j,k)∈I

λj,k(βj,k − αj,k)2,

where ∇xu is a discreet gradient of u at x, λj,k are regularization parameters. The
solutions u∗ are obtained from β∗ by the reconstruction formulae (4). To be more
general and simple, we rewrite the model (5) as :

(7) (P0) β∗ = arg min
β

J(W−1β) s. t PI(β) = α

where J(u) is a convex regularization functional, which could be TV or nonlocal TV,
W−1 denotes the inverse wavelet transform and PI is the subsampling projection
operator from the whole domain onto the known index set I.

Instead of the unconstrained noisy model (6), we consider the constrained model

(8) (P1) β∗ = arg min
β

J(W−1β) s .t ‖PI(β) − α‖2 ≤ ǫ,

where ǫ is the (estimated) noise level.
The formulations (7) and (8) are in terms of wavelet coefficients β. This is

referred as an synthesis prior in [25]. We can also formulate the problem according
to analysis prior in terms of image u as

(9) (P′
0
) u∗ = arg min

u
J(u) s. t. PI(Wu) = α,

and the corresponding L2 constrained problem for the noisy case is then written as

(10) (P′
1
) u∗ = arg min

u
J(u) s .t ‖PI(Wu) − α‖2 ≤ ǫ,

If we denote A = PIW , the both formulations (9) and (10) are examples of in-
verse problem restoration. In [50], the model (9) was considered for nonlocal TV
compressive sensing, and in [45], the unconstrained Lagrangian of (10) was used
for inverse problems because of its simplicity and some efficient algorithms can be
applied for this formulation. Both analysis and synthesis based model for sparse
reconstruction are discussed in detail by Elad, Milanfar and Rubinstein in [25]. In
general the two classes of models give different solutions. Typically, when the trans-
form is an overcomplete dictionary, it is easier to solve the synthesis model than the
analysis one. In the case that the transform is non-singular square, for example,
orthogonal or biorthogonal wavelet transform, the analysis models (9), (10) and the
synthesis models (7), (8) are equivalent respectively. In this paper, we focus on the
analysis model for the wavelet inpainting case due to its simplicity.

To solve (5), a time marching algorithm with projection was proposed in [17],
which is time-consuming. In this paper, we apply the proximal Forward-Backward
Splitting algorithm (PFBS) [19] and Bregman iteration [42] to solve (9) and (10),
as used in [50]. Bregman iteration was originally proposed in [42] to improve TV
regularized results, and it became popular for solving equality constrained problem
such as (P0) and (P ′

0) by solving related Lagrangian subproblems. The Bregman
iteration has several advantages compared to continuation method for equality con-
straint because of its efficiency, especially for sparse reconstruction, and stability
since the scale parameter does not need to go to 0. It is largely used for l1 com-
pressive sensing as Bregmanized FPC [49], linearized Bregman [21, 43], ROF TV
regularization as split Bregman [31], and nonlocal TV compressive sensing with
Bregmanized operator splitting [50]. The idea of PFBS is solving a sum of two con-
vex functionals by one step forward gradient descent on one functional and one-step
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backward inverting on another functional. It has received a large interest recently
as a method for sparse reconstruction, especially l1 compressive sensing such as
[19, 32] because of the efficiency of soft thresholding operator for l1 minimization.
The same idea is also applied for other l1 related regularization, such as NLTV
regularization for inverse problems firstly introduced in [45] and then in [50], and
TV tomographic reconstruction in [38].

We first focus on the solution of the analysis based model (P ′
0). Let A = PIW ,

by Bregman iteration, the equality constraint problem (P ′
0) can be solved by the

iteration scheme: αk = α

(11)

{

uk+1 = arg minu µJ(u) + 1
2 ||Au − αk||2,

αk+1 = αk + (α − Auk+1)

for a positive number µ > 0. The first subproblem is solved by the PFBS algorithm,
which is based on the proximal operator introduced by Moreau in [40]: let uk+1,0 =
uk, for i ≥ 1

(12) uk+1,i = min
β

µJ(u) +
1

2δ
‖u − (uk+1,i − δAT (Auk+1,i − αk))‖2,

where δ is a positive parameter such that 0 < δ < 2
‖AT A‖

. Since A = PIW , then

AT = WT PT
I . We can notice that PT

I is the zero-padding operator, and WT can
be implemented by the inverse wavelet transform for the orthogonal case. However
when the wavelet transform is not orthogonal, for example, biorthgonal, the above
adjoint operator is not easy or can not be efficiently solved. In fact, we can replace
AT by the pseudo inverse A+ for the biorthogonal case as a preconditioned algorithm
[9, 50] where A+ = W−1PT

I . Therefore the step (12) can be solved by two steps
with forward and backward wavelet transform:

vk+1,i+1 = uk+1,i − δW−1PT
I (PIWuk+1,i − αk)(13)

uk+1,i+1 = min
β

J(u) +
1

2δµ
‖u − vk+1,i+1‖2.(14)

The weights computed from the initial image is not in general sufficient to give
a good estimation, especially when the initial image is in a very poor quality, as
in the case of LL frequency loss. Therefore it is necessary to adapt the weight
used in nonlocal regularization according to (3) during the iteration. The idea of
updating the weight of the nonlocal means filter is first proposed in [6] for texture
pattern reconstruction. In [45, 50], an adapted weight during the minimization are
proposed for non local reconstruction. In this paper, we apply the same idea, that

is, the regularization functional is replaced with J
w(u)
NLTV (u) instead of Jw0

NLTV (u).
This functional is non-convex due to the dependence of the weight on the unknown
image. In practice, we add a weight updating step in the Bregman iteration and
proximal algorithm, as in [45][50]. Nevertheless, a theoretical convergence of this
algorithm is not yet established.

Inverse Problems and Imaging Volume 4, No. 1 (2010), 1–XX
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Finally, the unified algorithm for both noise free (9) and noisy (10) cases, TV
and nonlocal TV regularization, is described in Algorithm 1.

input: u0, v0 = u0, α0 = α, h0: weight filter parameter, µ, δ, nOuter (outer
iterations number), nInner (inner iterations number);

while not stopping criterion do

for i = 0 to nInner do

uk+1,0 = uk;

Update vk+1,i+1 = uk+1,i − δW−1PT
I (PIWuk+1,i − αk) using forward

and inverse wavelet transform;

Solving uk+1,i+1 by ROF/NL-ROF algorithm:

uk+1,i+1 = arg min
u

µδJ(u) +
1

2
‖u − vk+1,i+1‖2;

end

New image uk+1 := uk+1,nInner; If J is nonlocal TV, update the nonlocal
weight according to uk+1: w(k) = w(uk+1) by (3);

Update αk+1 = αk + α − PIWuk+1;

end

Algorithm 1: Nonlocal TV and TV Wavelet Inpainting Algorithm

4. Numerical Results

Now we present some numerical results. We use the standard Peak Signal to
Noise (PSNR) to quantify the performance of wavelet coefficient filling:

(15) PSNR(u, u) = 10 log10(
1

‖u − u‖2
)

where 1 is the maximum intensity value of gray scale images since we normalize
the images to [0, 1]), u is the noise free reference image, and ‖ · ‖ is the standard l2

norm. A higher PSNR will imply a better performance. In all examples presented
in this section, we apply the Daubechies 7-9 biorthogonal wavelets with symmetric
extension, which is used in standard JPEG2000 for lossy compression. We use
the WaveLab1 to implement the forward and the backward biorthogonal wavelet
transforms. The size of the coarsest subband is 32 × 32 for 256 × 256 images and
64 × 64 for 512 ∗ 512 images.

The computation of the nonlocal weights (3) over the whole domain is expensive
and difficult to compute. As [7], we choose a searching window of size d × d and
the size of patch to be m × m for two integers d, m. Also we adopt two strategies
to accelerate the computation without degrading the image quality. First, the dif-
ference between every two patches are implemented by a fast translation algorithm
proposed by Darbon et al. [20]. Secondly, in practice, a number of best neighbors
are enough to recover a pixel with a good quality, as is done in most nonlocal appli-
cations [7, 30, 36, 45, 50]. On the other hand, decreasing the number of neighbors
can dramatically speed up the efficiency of minimization of the nonlocal TV norm.
Therefore we only use the k-best neighbors for each pixel to compute the nonlocal
weight. More precisely, for each pixel x = (x1, x2), we consider a neighborhood
N(x) containing k most similar neighbors in the d × d searching window around x
(sort the distance between px(f) and pz(f) for each z belongs to the d×d searching

1http://www-stat.stanford.edu/∼wavelab/
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window and take the k smallest distances neighbors) and the four nearest neighbors.
Note that it may happen that x ∈ N(y) but y /∈ N(x). To make the weight matrix
symmetric, we set x ∈ N(y) if y ∈ N(x), and vice versa. By this construction, we
have w(x, y) = w(y, x), and the maximum number of neighbors for each pixel is up
to 2k + 4.

For the total variation denoising algorithm, we adopt PDHG [53] based ROF code
2 to solve the second subproblem, although other ROF solvers can be also applied.
The patch size and the searching window for the nonlocal weight are fixed as m = 5
and d = 15 and we choose k = 10 best neighbors and four nearest neighbors for
each pixel. The split bregman algorithm [31] adapted for NLTV regularization [50]
is used for the denoising step. For all the experiments presented in the following, we
use µ = 0.05 for TV and µ = 0.01 for nonlocal TV since empirically these choices
give good results. By default, the parameter δ used in proximal iteration is set to
1. Since the image is essentially not noisy, we only use 5 steps of NLTV denoising,
and use the default setting of PDHG for TV denoising. The inner iteration step
is set as 10. The stopping criterion is ‖PIWu − α‖ < 10−5 for the noiseless case.
In the following, we simulate several cases with different loss scenarios as well as
with the presence of noise. In all experiments, the received image is compared to
the reconstruction by setting unknowns to be zeros. The code for the experiments
presented here is available online 3.

4.1. LH and HL Subbands loss. It is well known that any loss in the coarsest
subband (LL suband) will heavily degrade visual image quality since the coarsest
band is a smoothed estimation of the image, where the big structure information
is contained. In this subsection, we consider the lowest LH and HL subband loss
(see Figure 1) simulation and deal with the LL subband loss in the subsection
4.3. For both cases, the maximum outer iterations are set as 15. In Figure 2 and
Figure 3, the received images are of fair quality with small oscillations, and they are
used as the initial guess for both TV and NLTV reconstruction. The images and
their zoomed in views show that TV and NLTV regularization can remove small
oscillations created by lost coefficients, while NLTV gives more than 2db higher
PSNR and better edge reconstruction.

4.2. Block loss. In the JPEG-2000 compression standard, the image is decom-
posed into wavelet subbands and then each subband is divided into codeblocks.
Hence, loss or corruption of bits could affect the whole codeblock it belongs to.
We crop a subimage of size 128 ∗ 128 from the Barbara image and we simulate a
block loss mask, shown in Figure 4. The outer iterations number is chosen as 100
for both TV and NLTV. The results of reconstructed images and two zoomed in
regions are shown in Figure 5. Both TV and NLTV improve the PSNR dramatically
compared to the received image and NLTV performs even 7.42db higher(it could
be even higher if we stop earlier for NLTV) than TV. Due to the loss of some low
frequencies, there is a black square region (red zone) in the received image. Both
TV and nonlocal TV can recover the corrupted low frequencies, but there is still a
dark line presented in TV reconstructed image. For the second zoomed zone, the
cloth pattern is corrupted. The TV regularization is unable to recover the pattern,
while NLTV reconstructs perfectly the direction of cloth patterns.

2http://pages.cs.wisc.edu/∼swright/TVdenoising/index.html
3http://www.math.ucla.edu/∼xqzhang/html/code.html
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(a) Original (256 × 256) (b) Received (PSNR= 29.13)

(c) TV (PSNR=31.92) (d) NLTV (PSNR= 34.31)

Zoom of (a) Zoom of (b) Zoom of (c) Zoom of (d)

Figure 2. Whole HL subband (32 ∗ 32) loss. We can observe the
artifacts on the forehead and along the mouth in (b). Both TV(c)
and NLTV(d) remove almost all the artifacts, and NLTV achieves
2db higher PSNR than TV does.

4.3. Random loss. Analogous to compressive sensing application, we consider
random loss of wavelet coefficients. We first consider the case of random loss but
keeping all LL frequencies. Figure 6 shows the results with 50% randomly chosen
coefficients and all LL frequencies. The random loss in the higher frequencies causes
edge artifacts and incomplete structure, but the initial image is of fair quality.
Thus we can use it to estimate an initial weight. As above, NLTV outperforms
TV regularization in terms of PSNR and visual image quality, especially for the
repeating cloth pattern.

Inverse Problems and Imaging Volume 4, No. 1 (2010), 1–XX
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(a) Original (512 × 512) (b) Received (PSNR= 27.91)

(c) TV (PSNR=32.88) (d) NLTV (PSNR= 35.33)

Zoom of (a) Zoom of (b) Zoom of (c) Zoom of (d)

Figure 3. Whole LH subband (64 ∗ 64) loss. Similar to Figure 2,
TV and NLTV regularization recover cleaner edges and NLTV has
even higher PSNR than the one of TV.

We also simulate a completely random loss in the whole wavelet domain. Since
the received image is in very poor quality because of LL frequencies loss, we consider
an interpolated image as the initial guess for TV and nonlocal TV reconstruction
instead of the received one. Even though the loss in LL is very crucial, a simple
interpolation (nearest neighbor) only on LL subband allows us to remove those ill-
posed black squares. One important reason to choose this initialization is that the
algorithm for NLTV regularization approximately solve a non-convex functional,
thus we need to choose a good weight to avoid a bad local minimum. The initial-
ization is very cheap to obtain and the weight computed from this image, which is

Inverse Problems and Imaging Volume 4, No. 1 (2010), 1–XX
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Figure 4. Inpainting mask: white (kept coefficients, 88%).

used for the NLTV, is better conditioned. Figure 7 compares these results. Both
TV and NLTV can recover much better results than the direct interpolation and
NLTV outperforms TV.

Moreover, in Figure 8, we plot PSNR versus sampling rate for the cases of random
loss with LL, and random loss on the Barbara image. The nonlocal TV regulariza-
tion gives a higher PSNR than TV since NLTV can recover more global information
than TV. In the random case, we also compare the different initializations for NLTV
reconstruction. The initialization with TV is slightly better than interpolated one,
but it is more expensive to obtain and it depends on TV minimization performance.

4.4. Noisy data. In Figure 9, we test the case when there is noise in the random
loss data. As with the noise free case, the (c) of Figure 9 is obtained by a nearest
neighbor interpolation on the LL subband, and it is dramatically better than the
received one (b). The figure (d) is obtained by TV regularization with (c) as the
initial guess. With the presence of the noise, the cloth pattern in the image can
barely be reconstructed by TV regularization since it penalizes noises as well as fine
details. For NLTV reconstructed images (e) and (f), we test two initial guesses.
One is with (c) and one is with (d). Both have similar PSNR, while (e) has a better
cloth pattern inherited from (c) and (f) has a better edge inherited from (e). This
result is due to the fact the weight-updating model by itself is nonconvex, and the
initial weight more or less dominates the final result.

5. Discussion

We studied the performance of TV and nonlocal TV regularization for wavelet
coefficient inpainting of natural images. We discussed different loss scenarios in the
wavelet domain, with and without noise. The numerical examples have shown that
the nonlocal TV regularization is very effective not only for restoring geometric
features but also for filling in some image patterns with global similarity.
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(a) Original (128 × 128) (b) Received (PSNR= 17.51)

(c) TV (PSNR=28.64) (d) NLTV (PSNR= 36.06)

Zoom 1 of (a) Zoom 1 of (b) Zoom 1 of (c) Zoom 1 of (d)

Zoom 2 of (a) Zoom 2 of (b) Zoom 2 of (c) Zoom 2 of (d)

Figure 5. Block loss. For both TV and NLTV, the initial guess is
the received image (b). TV can almost recover the dark region due
to some LL frequencies loss (Zoom 1 of (c)), but it can not recover
correctly the cloth pattern(Zoom 2 of (c)). Comparatively, NLTV
recovers perfectly the dark region and the directions of cloth pat-
tern, using non-local geometry information. And PSNR of NLTV
is dramatically higher (7.42db) than TV’s.
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the difference of PSNR is about 4db.
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Figure 8. PSNR vs sampling rates (on Barbara 256×256, Figure
6, nOuter = 25). Top: random loss keeping LL frequencies. Both
TV and NLTV improve the image quality by removing artifacts
and recovering clean edges, and NLTV has much higher PSNR
than the other two. Bottom: random loss. The interpolation, TV
and NLTV can dramatically improve the PSNR by removing dark
regions created by LL loss. NLTV regularization with TV and the
interpolated one as an initial guess gives similar results and they
both perform more effectively than TV.
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(a) Original (128 × 128) (b) Received (PSNR=7.09)

(c)Interpolated (PSNR=19.26) (d) TV (PSNR=21.19)

(e) NLTV(u0 = uInter,PSNR= 22.33) (f)NLTV(u0 = uTV , PSNR= 22.52)

Figure 9. Random loss with noise: 50% random kept frequencies,
noise level σ = 0.1. NLTV with different initial guesses have similar
PSNR, while (e) has better cloth patterns inherited from (c) and
(f) has better edges inherited from (d).
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