A fast algorithm for computing minimal-norm solutions
to underdetermined systems of linear equations

Mark Tygert
July 24, 2009

Abstract

We introduce a randomized algorithm for computing the minimal-norm solution to
an underdetermined system of linear equations. Given an arbitrary full-rank matrix
Apmxn With m < n, any vector b, x1, and any positive real number ¢ less than 1, the
procedure computes a vector x,x1 approximating to relative precision € or better the
vector p,x1 of minimal Euclidean norm satisfying A,,xn Prx1 = bmx1- The algorithm
typically requires O(mn log(y/n /<) +m?3) floating-point operations, generally less than
the O(m?n) required by the classical schemes based on @ R-decompositions or bidiag-
onalization. We present several numerical examples illustrating the performance of the
algorithm.

1 Introduction

Underdetermined systems of linear equations have arisen frequently in modern statistics
and data analysis, and have been attracting much attention recently in various application
domains; see, for example, [3], [4], and [6]. The solutions to underdetermined systems are
not unique; the present article focuses on the solutions whose Euclidean norms are minimal.

Given a full-rank matrix A,,«, and a vector b,,«1, with m < n, we would like to compute
an accurate approximation to the vector p,»; of minimal Euclidean norm satisfying

Amxnpnxl = bm><1- (1)
Classical algorithms using) R-decompositions or bidiagonalization require
C(classical = O(m2 n) (2)

floating-point operations in order to compute p,x1 (see, for example, Chapter 5 in [§]).
The present paper introduces a randomized algorithm that, given any positive real num-

ber € less than 1, computes a vector x,x; approximating p,x; to relative precision € or better

with respect to the Euclidean norm, that is, the algorithm produces a vector x, «; such that

Hxnxl _anIH S € ||pn><1||7 (3)

where || - || denotes the Euclidean norm. This algorithm typically requires

C11“and = O(mn log(\/ﬁ/s) + m3) (4)

floating-point operations. When m is sufficiently large and n is much greater than m (that is,
the system of linear equations is highly underdetermined), then the cost in (4) is less than the
cost in (2). Moreover, in the numerical experiments of Section 7, the algorithm of the present
article runs substantially faster than the standard methods based on () R-decompositions.

The present paper describes an algorithm optimized for the case when the entries of
Apxn and b,,»1 are complex valued. Needless to say, real-valued versions of our scheme
are similar. The present article has the following structure: Section 2 sets the notation.
Section 3 discusses a randomized linear transformation which can be applied rapidly to
arbitrary vectors. Section 4 describes the algorithm of the present paper. Section 5 proves
that the procedure succeeds with high probability. Section 6 estimates the computational
costs of the algorithm. Section 7 illustrates the performance of the scheme via several
numerical examples. Section 8 contains several concluding comments.

2 Notation

In this section, we set notational conventions employed throughout the present paper.

We abbreviate “independent and identically distributed” to “i.i.d.” We consider the
entries of all vectors and matrices in this paper to be complex valued. For any vector x, we
define ||z]| to be the Euclidean (I?) norm of x. For any matrix A, we define A* to be the
adjoint of A. We define the condition number of A to be the [condition number of A, that
is, the greatest singular value of A divided by the least singular value of A.

For any positive integer n, we define the discrete Fourier transform F},4,, to be the matrix
with the entries !

Fjj = ﬁ e~ 2mi(i—1)(k=1)/n (5)

for j,k=1,2,...,n—1, n, where i = v/—1 and e = exp(1).

3 Preliminaries

In this section, we discuss a subsampled randomized Fourier transform. [1], [7], [10], and [11]
introduced a similar transform for similar purposes (these articles motivated us to write the
present paper).

For any positive integers [and n with [< n, we define the [x n SRFT to be the random
matrix

Exn - Glxn anrw (6)

where Gy, and H, ., are defined as follows.
In (6), Gy« is the random matrix given by the formula

Gan = Slxn ann Dn><n7 (7)

where Sy, is the matrix whose entries are all zeros, aside from a single 1 in column s; of
row j for j=1,2, ..., 1—1, [, where sy, so, ..., 5;_1, § are i.i.d. integer random variables,
each distributed uniformly over {1,2,...,n — 1,n}; moreover, F,,, is the discrete Fourier
transform defined in (5), and D,,«,, is the diagonal matrix whose diagonal entries dy, da, ...,
d,_1, d, are i.i.d. complex random variables, each distributed uniformly over the unit circle.
(In our numerical implementations, we drew s, Sg, ..., $_1, s from {1,2,....,n — 1,n}
without replacement, instead of using i.i.d. draws.) We observe that both F,,., and D, «,
are unitary.
In (6), Hy,xy is the random matrix given by the formula

ann = GanHan ZTLX’I’Z éTLXn f[an Zan7 (8)

where TI,,y,, and I, are permutation matrices chosen independently and uniformly at
randgm,Nand ann angl Znxn are diagonal matrices whose diagonal entries (q, (o, ..., Cu_1, Cn
and (i, (o, ..., (o1, ¢, are i.i.d. complex random variables, each distributed uniformly over

the unit circle; furthermore, 0,,.,, and énxn are the matrices defined via the formulae

cos(#y) sin(6;) 0 0 O

—sin(#y) cos(f;) 0 0 O

0. — 0 0 1 0 0
0 0 (N

0 0 0 0 1

o O O O

—
o coc o~
|
2]

o,
o o B
—~
>
[}
S~—
Q
2
o o
>
[}
N~—
o Rro oo

o0 0 0 0
0 1 0 0 0
0 0 cos(f,—2) sin(f,—2) 0
0 0 —sin(f,-2) cos(f,—2) 0O
0 O 0 0 1
1 0 O 0 0
0o . 0 0 0
0 0 1 0 0 (9)
0 0 0 cos(f,1) sin(0,_1)
0 0 0 —sin(f,—1) cos(fy_1)

and (the same as (9), but with tildes)

cos(0~1~) sm(9:1) 0 0 O
—sin(#y) cos(f;) 0 0 O
o .. 0 0 1 0 0
0 0 0o . 0
0 0 0 0 1
1 0~ 0~ 0 O
0 cos(fp) sin(f2) 0 0O
0 —sin(#y) cos(f2) 0 0
0 0 0 1 0
0 0 0 0 .
o0 0 0 0
0 1 0 0 0
0 0 cos(fp—2) sin(fp—2) 0
0 0 —sin(6,2) cos(d,—2) O
0 0 0 0 1
1 0 0 0 0
0o . 0 0 0
0 0 1 0 0 . (10)
0 0 0 cos(bn-1) sin(fy—1)
0 0 0 —sin(6,-1) cos(f,-1)
where 01, 0y, ..., 0,2, 0,1, 51, 9~2, ce én,g, ég,l are i.i.d. real random variables drawn

uniformly from [0, 27]. We observe that ©,xn, Onxn, Unxn, asn, Znxn, and Zosen are all
unitary, and so H,, is also unitary.

We call the transform 7j,, an “SRFT” for lack of a better term.
The following technical lemma is a slight reformulation of Lemma 4.4 of [12].

Lemma 3.1. Suppose that o and 3 are real numbers greater than 1, and l, m, and n are
positive integers, such that

2
s

Suppose further that Tjx, is the SRFT defined in (6), and that Qnxm is a matriz whose
columns are orthonormal.

Then, the least singular value o, of Tixn Qnxm satisfies

l
m > A — 12
Tm = an ()

with probability at least 1 — %

4 Description of the algorithm

Suppose that € is a positive real number less than 1, and [, m, and n are positive integers
with m < [< n. Suppose further that A,,, is a full-rank matrix, b,y is a vector, and p,,»1
is the vector of minimal Euclidean norm satisfying A, xn Pnx1 = bmx1. In order to construct
a vector T, x1 such that ||z,x1 — Paxil|l < €||pnx1|| with high probability (increasingly high
probability as a parameter o > 1 increases), we compute the vector ¢, «; of minimal Euclidean
norm that is a linear combination of random vectors and satisfies A,,xn Chx1 = bmx1, then
use the algorithm of [9] to compute the orthogonal projection of ¢, «; onto the column span
of (Ayxn)*. More precisely, we perform the following five steps:

1. Construct the matrix
Sl><m = Tlxn (Amxn)*; (13)
applying the SRFT T}, defined in (6) to every column of (A,,x,)* (see, for example,
Subsection 3.3 of [12] for details on applying the SRET rapidly).

2. Construct the vector z;4; of minimal Euclidean norm solving the system of linear
equations

(Sixm)" 21x1 = b1, (14)
where Sy, is the matrix defined in (13) (see, for example, Algorithm 5.7.2 in [8] for
details on constructing z;x1).

3. Construct the vector
Chx1 = <Tl><n)* Zlx1, (15)
where 21 is the vector of minimal Euclidean norm solving (14), and 7T}, is the same

realization of the SRFT as in (13) (see, for example, Subsection 3.3 of [12] for details
on applying the adjoint of the SRFT rapidly).

4. Use the algorithm of [9] for the construction of a vector y,,»; minimizing

H(Amxn)* Ymx1 _Cn><1H2 (16)

to relative precision €2l/(an) or better, where ¢, is the vector defined in (15). The
parameter [for the algorithm of [9] should be the same as for the present algorithm.

5. Construct the desired vector

Tpxl = (Amxn)* Ymx1, (17)
where y,,x1 is the vector from Step 4.

Remark 4.1. In Step 2 above, we assume that S, defined in (13) is a full-rank matrix.
Lemma 3.1 in Section 3 above guarantees this with high probability when [> m?, by taking
a in the lemma arbitrarily large; numerical experiments indicate that [> m suffices.

Remark 4.2. It is possible to improve the approximation x,; via preconditioned conjugate
gradient iterations similar to those proposed in [9]. However, the approximation produced by
the above algorithm is already highly accurate (see, for example, Section 7 or Theorem 5.4
in Section 5 below), and further iterative improvement may double the running time of the
algorithm.

5 Proof of accuracy

In this section, we prove Theorem 5.4, guaranteeing that the algorithm of Section 4 produces
high accuracy with high probability.

The following lemma states that the orthogonal projection onto the column span of
(Apxn)® of the vector ¢, defined in (15) is the vector of minimal Euclidean norm that the
algorithm aims to approximate.

Lemma 5.1. Suppose thatl, m, and n are positive integers with m <1 < n. Suppose further
that A is a full-rank matriz, b,y is a vector, Sjx., is the matriz defined in (13) and is
a full-rank matriz, and ¢,y is the vector defined in (15).

Then, the orthogonal projection ppx1 of cpx1 onto the column span of (Apyxn)* is the
vector of minimal Fuclidean norm satisfying

Amxnpnxl = bmxl- (18)
Proof. Combining (13), (14), and (15) yields that
Amxn Cnx1 = bm><1- (19)

Combining (19) and the fact that p,x; is the orthogonal projection of ¢, onto the column
span of (A,,xn)* completes the proof.]

The following lemma states that, with high probability, the Euclidean norm of the vector
Cnx1 defined in (15) is not too much greater than the Euclidean norm of its orthogonal
projection p,x1 onto the column span of (A, x,)*.

Lemma 5.2. Suppose that o and 3 are real numbers greater than 1, and l, m, and n are
positive integers, such that (11) holds. Suppose further that A,,x, is a full-rank matriz, by, <1
is a vector, cnxq is the vector defined in (15), and pnx1 is the orthogonal projection of ¢y
onto the column span of (Amxn)*

Then,

an
[enxall < T [Pl (20)

with probability at least 1 — %

Proof. Using the fact that A,,«, is a full-rank matrix, we construct a () R-decomposition

(Amxn)* = anm Rmxm (21>

*

such that the columns of @, ., are an orthonormal basis for the column span of (A,x,)*.
We first show that the SRFT T}y, used in (13) and (15) provides

||Zl><1|| < (anm)* (Tlxn)* Zl><1|| (22)

an ||

[
with probability at least 1 — %, where z;4; is the vector of minimal Euclidean norm solv-
ing (14). We then express the left- and right-hand sides of (22) in terms of ¢,x1 and ppx1,
rather than 2.1, in order to obtain (20).

It follows from the fact that zy; is the vector of minimal Euclidean norm solving (14)
that z;x; belongs to the column span of S, from (14), that is, there exists a vector wy,x1
such that

2ix1 = Sixm Wmx1- (23>

Combining (23), (13), and (21) yields that
HZZXIHQ = (zlxl)* Rix1 = (wmx1>* (Rmxm>* (anm)* (Tlxn)* Zix1- (24>

The Cauchy-Schwarz inequality yields that

(wmxl)* (Rmxm)* (anm)* (ﬂxn)* Zix1 S ”Rmxm wmxl” ||(Qn><m)* (ﬂxn)* ZZXIH- (25>
It follows from (12) that

an

||Rm><m wmxl” S T ||E><n anm Rmxm wmxl” (26)

with probability at least 1 — % Combining (21), (13), and (23) yields that

ﬂxn anm Rmxm Wmx1 = Rix1- (27>

Combining (24), (25), (26), and (27) yields (22).

We now express the left- and right-hand sides of (22) in terms of ¢,x; and p,x1, rather
than z;x1.

First, we consider the left-hand side of (22). Combining (15) and the fact that the
columns of (1}«,)* are orthonormal yields that

[zl = llensall- (28)

Next, we consider the right-hand side of (22). It follows from the fact that the columns
of Qnxm are an orthonormal basis for the column span of (A,,x,)" that the orthogonal
projection pyx1 of ¢,x1 onto the column span of (A,,x,)* is

Pnx1 = QnXm (QnXm)* Cpx1- (29)

Combining (29) and the fact that the columns of @, «,, are orthonormal yields that

||pn><1|| = ||<C2n><m))k Cn><1||- (30)

Combining (30) and (15) yields that

||pn><1|| = ||(Qn><m)* (Tl><n)* Zl><1||- (31)
Finally, combining (22), (28), and (31) yields (20). O

The following lemma states that the vector x,»; produced by the algorithm is an accurate
approximation to the orthogonal projection onto the column span of (A,,«,)* of the vector
cnx1 defined in (15), provided that the projection p,x; satisfies (20).

7

Lemma 5.3. Suppose that € and o are positive real numbers with € < 1 < «, and [, m, and
n are positive integers with m < [< mn. Suppose further that A,.xn 1S a full-rank matriz,
bimx1 is a vector, Sixm is the matriz defined in (13) and is a full-rank matriz, c,x, is the
vector defined in (15), pnx1 is the orthogonal projection of c,x1 onto the column span of
(Aiscn)®, Ymx1 8 a vector minimizing (16) to relative precision €2l/(an) or better, and T,y
is the vector defined in (17). Suppose in addition that (20) holds.

Then,

[Znx1 = Paxill < € |[paxall- (32)

Proof. It follows from (17) that x,; belongs to the column span of (A,,«,)*. Combining this
fact and the fact that c,x1 — pnx1 is the orthogonal projection of ¢, »; onto the orthogonal
complement of the column span of (A,,x,)* yields that ¢, x1—pnx1 is the orthogonal projection
of ¢ux1 — Tpx1 onto the orthogonal complement of the column span of (A,,x,)*. Similarly,

Pnx1 — Tnx1 18 the orthogonal projection of ¢,x; — 2,1 onto the column span of (A,,x,)*.
We thus obtain the Pythagorean identity

chxl _pn><1||2 + ||pn><1 - 'Tn><1H2 = chxl - xnxll|2' (33>

It follows from the fact that p,; is the orthogonal projection of ¢, onto the column
span of (A,,x,)* that the minimal value of (16) is ||pux1 — Cnx1]|*. Combining this fact, (17),
and the fact that y,,x; minimizes (16) to relative precision £21/(an) or better yields that

e?l

||$nx1 - Cnx1||2 - ||pn><1 - Cnx1||2 < — ||pn><1 - Cn><1||2- (34)
an
Combining (33) and (34) yields that
2 e 2
“:Enxl _pnxl|| S - ||Cn><1 _pn><1|| . (35)
an

It follows from the fact that c,x1 — pnx1 is the orthogonal projection of ¢,.; onto the
orthogonal complement of the column span of (A,,x,)* that

[enx1 = Paxall < llenxall- (36)
Combining (35), (36), and (20) yields (32). O

Combining Lemmas 3.1, 5.1, 5.2, and 5.3 yields the following theorem, guaranteeing that
the algorithm produces high accuracy with high probability.

Theorem 5.4. Suppose that €, o, and (3 are positive real numbers with ¢ < 1 < « and
B > 2, and I, m, and n are positive integers, such that (11) holds. Suppose further that
Apsn 18 a full-rank matriz, b,,«1 1s a vector, and p,x1 1S the vector of minimal Fuclidean
norm satisfying

Amxnpnxl = bm><1' (37)
Then, the vector x,x1 defined in (17) satisfies

Hmnxl _pn><1|| <e Hpnle (38>

with probability at least 1 — %

Remark 5.5. The probability of failure in Theorem 5.4 is 2/, rather than just the proba-
bility 1/ of failure in Lemma 5.2, in order to account for the possibility that the algorithm
of [9] fails to produce a vector y,,x; minimizing (16) to relative precision 2l/(an) or better,
after using at most the number of floating-point operations specified in Section 6 below.

Remark 5.6. Empirically, requiring (11) appears to be excessive. In practice, choosing any
[> 4m and a = 4 makes failure of the algorithm too improbable to detect (¢f. Remark 2
in [9]).

6 Computational costs

In this section, we tabulate the numbers of floating-point operations required by the five
steps in the algorithm of Section 4:

1. Applying T}, to every column of (A,,x,)* costs O(mn log(l)).

2. Constructing zx; costs O(Im?).

3. Applying (T;x,)* to zx1 costs O(n log(n)).

4. Constructing y;x; via the algorithm of [9] costs O(mn log(an/e?) + Im?).
5. Applying (Ayxn)® t0 Ymx1 costs O(mn).

Summing up the costs in the five steps above, and using the facts that m < [< n and
£ < 1 < a, we see that the cost of the entire algorithm is

C1‘cheoretical = O(mn 1Og(\% CYTL/cS) + lmQ) (39)

floating-point operations. Theorem 5.4 in Section 5 above guarantees that the algorithm
produces high accuracy with high probability when [and « satisfy (11). In practice, choosing
[= 4m and a = 4 makes failure of the algorithm too improbable to detect (see also Remark 2
in [9]), and the cost in (39) then becomes

CYtypical = O(mn lOg(\/ﬁ/EE) + m3) (40)

floating-point operations.

7 Numerical Results

In this section, we describe the results of several numerical tests of the algorithm of the
present paper.

For various positive integers m and n with m < n, we use the algorithm to com-
pute a vector x,y; approximating the vector p,y; of minimal Euclidean norm satisfying
Apxn Pnx1 = bmx1, where b,,«1 is a vector, and A,,, is the matrix defined via the formula

Amxn = Ume mem (anm)*; (41)

9

in the experiments described below, U, «., is obtained by applying the Gram-Schmidt process
to the columns of an m xm matrix whose entries are i.i.d. centered complex Gaussian random
variables, V},«,, is obtained by applying the Gram-Schmidt process to the columns of an nxm
matrix whose entries are i.i.d. centered complex Gaussian random variables, and X, ., is a
diagonal matrix, with the diagonal entries

Y= 108G —-1)/(m=1) (42)
for j=1,2,..., m—1, m. Clearly, the condition number x4 of A,,x, is
Ra = Zll,l/zm,m = 10°. (43)

The vector b,,x; is defined via the formula

bm><1 = Amxnpnxla (44)

where p,«1 is the vector defined via the formula

1 < 0
Pnx1 = —F— Zgj CANST) (45)
vm ‘=

n 2

with €1, €2, ..., €m_1, €n being pseudorandom positive and negative ones, and v, 1, v, 1,

(m-1) (m)

nx1 s Unxy being the columns of V.

S,V

Remark 7.1. By construction, p,x; is the vector of minimal Euclidean norm such that
Apsen Pax1 = bmx1; the Euclidean norm of p,,; is minimal since p,; belongs to the column
span of (A,,xn)*. The aim of the algorithm is to construct an approximation x,.; t0 ppx1.

For the direct computations, we used the classical algorithm for pivoted) R-decompo-
sitions based on plane (Householder) reflections (see, for example, Chapter 5 in [8]). We
implemented the algorithms in Fortran 77 in double-precision arithmetic, and used the La-
hey/Fujitsu Express v6.2 compiler, with the optimization flag —-02 enabled. We used one
core of a 1.86 GHz Intel Centrino Core Duo microprocessor with 2 MB of L2 cache and
1 GB of RAM. For the algorithm of [9] used in Step 4 of the algorithm of Section 4, we
requested that y,,x; minimize (16) to relative precision (107 - k4)? - m/n or better, where
K4 is the condition number of A,,., given in (43). We used a double-precision version of
P. N. Swarztrauber’s FFTPACK library for fast Fourier transforms.

Table 1 displays timing results with n = 16384 for various values of m; Table 2 displays
the corresponding errors. Table 3 displays timing results with m = 256 for various values of
n; Table 4 displays the corresponding errors.

The headings of the tables have the following meanings:

e m is the number of rows in the matrix A,,.,, as well as the length of the vector b,,x1,
in Amxnpnxl = bm><1-

e 7 is the number of columns in the matrix A,,«,, as well as the length of the vector
Pnx1, in Amxnpnxl = bm><1-

10

Table 1 Table 2

m ‘ n ‘ l ‘ to ‘ t, ‘ to/t: m ‘ n ‘ [‘ €0 ‘ Er
128 | 16384 | 512 | .27E1 | .24E1 | 1.2 128 | 16384 | 512 | .14E-14 | .16E-14
256 | 16384 | 1024 | .11E2 | .56E1 | 2.0 256 | 16384 | 1024 | .11E-14 | .17E-14
512 | 16384 | 2048 | .60E2 | .20E2 | 3.0 512 | 16384 | 2048 | .8OE-15 | .29E-14
Table 3 Table 4
m n l to t, to/t: m n [€0 Er
256 | 4096 | 1024 | .26E1 | .20E1 | 1.3 256 | 4096 | 1024 | .2TE-15 | .31E-14
256 | 8192 | 1024 | .51E1 | .32E1 | 1.6 256 | 8192 | 1024 | .45E-15 | .27TE-14
256 | 16384 | 1024 | .11E2 | .56E1 | 2.0 256 | 16384 | 1024 | .11E-14 | .17E-14
256 | 32768 | 1024 | .29E2 | .16E2 | 2.5 256 | 32768 | 1024 | .22E-14 | .16E-14
e [is the number of rows in the matrix T}y, used in Steps 1 and 3 of the algorithm of
Section 4, as well as the analogous parameter used in the algorithm of [9] needed in
Step 4.
® 1y is the time in seconds required by the direct, classical algorithm.
e ¢, is the time in seconds required by the algorithm of the present paper.
e 1y/t, is the factor by which the algorithm of the present paper is faster than the classical
algorithm.
e ¢ is defined via the formula

20— paal]

€0 = , 46
0= s oo (46)

where £ 4 is the condition number of A,,«,, given in (43), and xflox)l is the vector produced
by the direct, classical algorithm approximating the vector p,«1 of minimal Euclidean
norm such that A,,xn Prx1 = bmx1-

¢, is defined via the formula
I‘ —_
— H nx1 anlH’ (47)
RA Hpnx 1 H
where k 4 is the condition number of A,,x,, given in (43), and x, is the vector produced
by the algorithm of Section 4 approximating the vector p,»; of minimal Euclidean norm
such that A,,xn Prxi = Dmxi-

Remark 7.2. Standard perturbation theory shows that ¢y and e, are the appropriately
normalized measures of the relative precision produced by the algorithms; see, for example,
Section 5.5.3 in [5].

11

The values for e, reported in the tables are the worst (maximal) values encountered
during 10 independent randomized trials of the algorithm, as applied to the same matrix
Apxn and vector b,,«1. The values for t, reported in the tables are the average values
over 10 independent randomized trials. None of the quantities reported in the tables varied
significantly over repeated randomized trials.

The following observations can be made from the examples reported here, and from our
more extensive experiments:

1. When m = 512, n = 16384, and the condition number of A,,x,, is 10°, the randomized
algorithm runs 3 times faster than the classical algorithm based on plane (Householder)
reflections, even at full double precision.

2. Our choice | = 4m appears to make failure of the algorithm too improbable to detect.

3. The algorithm of the present article reliably produces high precision at reasonably low
cost.

8 Conclusion

This article provides a fast algorithm for computing the minimal-norm solution to an under-
determined system of linear equations. If the matrices A,,x, and (A,,xn)* associated with
the system of linear equations can be applied sufficiently rapidly to arbitrary vectors, then
the algorithm of the present paper can be accelerated further.

The theoretical bounds in Lemma 3.1, Lemma 5.2, and Theorem 5.4 should be considered
preliminary. Our numerical experiments indicate that the algorithm of the present article
performs better than our estimates guarantee. Furthermore, there is nothing magical about
the subsampled randomized Fourier transform defined in (6). In our experience, several other
similar transforms seem to work at least as well, and we are investigating these alternatives
(see, for example, [2]).

Acknowledgments

We would like to thank Vladimir Rokhlin and Arthur Szlam for helpful discussions.

12

References

1]

2]

[11]

[12]

N. AmLoN AND B. CHAZELLE, The fast Johnson-Lindenstrauss transform and approx-
imate nearest neighbors, SIAM J. Comput., 39 (2009), pp. 302-322.

N. AILON AND E. LIBERTY, Fuast dimension reduction using Rademacher series on
dual BCH codes, Discrete Comput. Geom., (2008). To appear.

A. M. BRUCKSTEIN, D. L. DONOHO, AND M. ELAD, From sparse solutions of systems
of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34-81.

E. CANDES AND T. TAO, Near-optimal signal recovery from random projections: Uni-
versal encoding strategies, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406-5425.

G. DAHLQUIST AND A. BJORCK, Numerical Methods, Dover Publications, Mineola,
New York, 1974.

D. DoNoHO, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289
1306.

P. DRINEAS, M. W. MAHONEY, S. MUTHUKRISHNAN, AND T. SARLOS, Faster
least squares approzimation, Tech. Rep. 0710.1435, arXiv, October 2007. Available
at http://arxiv.org/.

G. H. GoLuB AND C. F. VAN LOAN, Matriz Computations, Johns Hopkins University
Press, Baltimore, Maryland, third ed., 1996.

V. ROKHLIN AND M. TYGERT, A fast randomized algorithm for overdetermined linear
least-squares regression, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 13212-13217.

T. SARLOS, Improved approzimation algorithms for large matrices via random projec-
tions, in Proceedings of FOCS 2006, the 47th Annual IEEE Symposium on Foundations
of Computer Science, October 2006, pp. 143-152.

—, Improved approximation algorithms for large matrices via random projections, re-
vised, extended long form. Manuscript in preparation for publication, currently available
at http://www.ilab.sztaki.hu/~stamas/publications/rp-long.pdf, 2006.

F. WoOOLFE, E. LIBERTY, V. ROKHLIN, AND M. TYGERT, A fast randomized al-

gorithm for the approzimation of matrices, Appl. Comput. Harmon. Anal., 25 (2008),
pp. 335-366.

13

