
A fast algorithm for computing minimal-norm solutions
to underdetermined systems of linear equations

Mark Tygert

July 24, 2009

Abstract

We introduce a randomized algorithm for computing the minimal-norm solution to
an underdetermined system of linear equations. Given an arbitrary full-rank matrix
Am×n with m < n, any vector bm×1, and any positive real number ε less than 1, the
procedure computes a vector xn×1 approximating to relative precision ε or better the
vector pn×1 of minimal Euclidean norm satisfying Am×n pn×1 = bm×1. The algorithm
typically requires O(mn log(

√
n/ε)+m3) floating-point operations, generally less than

the O(m2 n) required by the classical schemes based on QR-decompositions or bidiag-
onalization. We present several numerical examples illustrating the performance of the
algorithm.

1 Introduction

Underdetermined systems of linear equations have arisen frequently in modern statistics
and data analysis, and have been attracting much attention recently in various application
domains; see, for example, [3], [4], and [6]. The solutions to underdetermined systems are
not unique; the present article focuses on the solutions whose Euclidean norms are minimal.

Given a full-rank matrix Am×n and a vector bm×1, with m < n, we would like to compute
an accurate approximation to the vector pn×1 of minimal Euclidean norm satisfying

Am×n pn×1 = bm×1. (1)

Classical algorithms using QR-decompositions or bidiagonalization require

Cclassical = O(m2 n) (2)

floating-point operations in order to compute pn×1 (see, for example, Chapter 5 in [8]).
The present paper introduces a randomized algorithm that, given any positive real num-

ber ε less than 1, computes a vector xn×1 approximating pn×1 to relative precision ε or better
with respect to the Euclidean norm, that is, the algorithm produces a vector xn×1 such that

‖xn×1 − pn×1‖ ≤ ε ‖pn×1‖, (3)

1



where ‖ · ‖ denotes the Euclidean norm. This algorithm typically requires

Crand = O(mn log(
√

n/ε) + m3) (4)

floating-point operations. When m is sufficiently large and n is much greater than m (that is,
the system of linear equations is highly underdetermined), then the cost in (4) is less than the
cost in (2). Moreover, in the numerical experiments of Section 7, the algorithm of the present
article runs substantially faster than the standard methods based on QR-decompositions.

The present paper describes an algorithm optimized for the case when the entries of
Am×n and bm×1 are complex valued. Needless to say, real-valued versions of our scheme
are similar. The present article has the following structure: Section 2 sets the notation.
Section 3 discusses a randomized linear transformation which can be applied rapidly to
arbitrary vectors. Section 4 describes the algorithm of the present paper. Section 5 proves
that the procedure succeeds with high probability. Section 6 estimates the computational
costs of the algorithm. Section 7 illustrates the performance of the scheme via several
numerical examples. Section 8 contains several concluding comments.

2 Notation

In this section, we set notational conventions employed throughout the present paper.
We abbreviate “independent and identically distributed” to “i.i.d.” We consider the

entries of all vectors and matrices in this paper to be complex valued. For any vector x, we
define ‖x‖ to be the Euclidean (l2) norm of x. For any matrix A, we define A∗ to be the
adjoint of A. We define the condition number of A to be the l2 condition number of A, that
is, the greatest singular value of A divided by the least singular value of A.

For any positive integer n, we define the discrete Fourier transform Fn×n to be the matrix
with the entries

Fj,k =
1√
n

e−2πi(j−1)(k−1)/n (5)

for j, k = 1, 2, . . . , n− 1, n, where i =
√
−1 and e = exp(1).

3 Preliminaries

In this section, we discuss a subsampled randomized Fourier transform. [1], [7], [10], and [11]
introduced a similar transform for similar purposes (these articles motivated us to write the
present paper).

For any positive integers l and n with l ≤ n, we define the l×n SRFT to be the random
matrix

Tl×n = Gl×n Hn×n, (6)

where Gl×n and Hn×n are defined as follows.
In (6), Gl×n is the random matrix given by the formula

Gl×n = Sl×n Fn×n Dn×n, (7)

2



where Sl×n is the matrix whose entries are all zeros, aside from a single 1 in column sj of
row j for j = 1, 2, . . . , l− 1, l, where s1, s2, . . . , sl−1, sl are i.i.d. integer random variables,
each distributed uniformly over {1, 2, . . . , n − 1, n}; moreover, Fn×n is the discrete Fourier
transform defined in (5), and Dn×n is the diagonal matrix whose diagonal entries d1, d2, . . . ,
dn−1, dn are i.i.d. complex random variables, each distributed uniformly over the unit circle.
(In our numerical implementations, we drew s1, s2, . . . , sl−1, sl from {1, 2, . . . , n − 1, n}
without replacement, instead of using i.i.d. draws.) We observe that both Fn×n and Dn×n

are unitary.
In (6), Hn×n is the random matrix given by the formula

Hn×n = Θn×n Πn×n Zn×n Θ̃n×n Π̃n×n Z̃n×n, (8)

where Πn×n and Π̃n×n are permutation matrices chosen independently and uniformly at
random, and Zn×n and Z̃n×n are diagonal matrices whose diagonal entries ζ1, ζ2, . . . , ζn−1, ζn

and ζ̃1, ζ̃2, . . . , ζ̃n−1, ζ̃n are i.i.d. complex random variables, each distributed uniformly over
the unit circle; furthermore, Θn×n and Θ̃n×n are the matrices defined via the formulae

Θn×n =


cos(θ1) sin(θ1) 0 0 0
− sin(θ1) cos(θ1) 0 0 0

0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 ·

·


1 0 0 0 0
0 cos(θ2) sin(θ2) 0 0
0 − sin(θ2) cos(θ2) 0 0
0 0 0 1 0

0 0 0 0
. . .

 · · ·

· · ·


. . . 0 0 0 0
0 1 0 0 0
0 0 cos(θn−2) sin(θn−2) 0
0 0 − sin(θn−2) cos(θn−2) 0
0 0 0 0 1

 ·

·


1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0
0 0 0 cos(θn−1) sin(θn−1)
0 0 0 − sin(θn−1) cos(θn−1)

 (9)

3



and (the same as (9), but with tildes)

Θ̃n×n =


cos(θ̃1) sin(θ̃1) 0 0 0

− sin(θ̃1) cos(θ̃1) 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 ·

·


1 0 0 0 0

0 cos(θ̃2) sin(θ̃2) 0 0

0 − sin(θ̃2) cos(θ̃2) 0 0
0 0 0 1 0

0 0 0 0
. . .

 · · ·

· · ·


. . . 0 0 0 0
0 1 0 0 0

0 0 cos(θ̃n−2) sin(θ̃n−2) 0

0 0 − sin(θ̃n−2) cos(θ̃n−2) 0
0 0 0 0 1

 ·

·


1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0

0 0 0 cos(θ̃n−1) sin(θ̃n−1)

0 0 0 − sin(θ̃n−1) cos(θ̃n−1)

 , (10)

where θ1, θ2, . . . , θn−2, θn−1, θ̃1, θ̃2, . . . , θ̃n−2, θ̃n−1 are i.i.d. real random variables drawn
uniformly from [0, 2π]. We observe that Θn×n, Θ̃n×n, Πn×n, Π̃n×n, Zn×n, and Z̃n×n are all
unitary, and so Hn×n is also unitary.

We call the transform Tl×n an “SRFT” for lack of a better term.
The following technical lemma is a slight reformulation of Lemma 4.4 of [12].

Lemma 3.1. Suppose that α and β are real numbers greater than 1, and l, m, and n are
positive integers, such that

n > l ≥ α2 β

(α− 1)2
m2. (11)

Suppose further that Tl×n is the SRFT defined in (6), and that Qn×m is a matrix whose
columns are orthonormal.

Then, the least singular value σm of Tl×n Qn×m satisfies

σm ≥
√

l

αn
(12)

with probability at least 1− 1
β
.

4



4 Description of the algorithm

Suppose that ε is a positive real number less than 1, and l, m, and n are positive integers
with m < l < n. Suppose further that Am×n is a full-rank matrix, bm×1 is a vector, and pn×1

is the vector of minimal Euclidean norm satisfying Am×n pn×1 = bm×1. In order to construct
a vector xn×1 such that ‖xn×1 − pn×1‖ ≤ ε ‖pn×1‖ with high probability (increasingly high
probability as a parameter α > 1 increases), we compute the vector cn×1 of minimal Euclidean
norm that is a linear combination of random vectors and satisfies Am×n cn×1 = bm×1, then
use the algorithm of [9] to compute the orthogonal projection of cn×1 onto the column span
of (Am×n)∗. More precisely, we perform the following five steps:

1. Construct the matrix
Sl×m = Tl×n (Am×n)∗, (13)

applying the SRFT Tl×n defined in (6) to every column of (Am×n)∗ (see, for example,
Subsection 3.3 of [12] for details on applying the SRFT rapidly).

2. Construct the vector zl×1 of minimal Euclidean norm solving the system of linear
equations

(Sl×m)∗ zl×1 = bm×1, (14)

where Sl×m is the matrix defined in (13) (see, for example, Algorithm 5.7.2 in [8] for
details on constructing zl×1).

3. Construct the vector
cn×1 = (Tl×n)∗ zl×1, (15)

where zl×1 is the vector of minimal Euclidean norm solving (14), and Tl×n is the same
realization of the SRFT as in (13) (see, for example, Subsection 3.3 of [12] for details
on applying the adjoint of the SRFT rapidly).

4. Use the algorithm of [9] for the construction of a vector ym×1 minimizing

‖(Am×n)∗ ym×1 − cn×1‖2 (16)

to relative precision ε2l/(αn) or better, where cn×1 is the vector defined in (15). The
parameter l for the algorithm of [9] should be the same as for the present algorithm.

5. Construct the desired vector

xn×1 = (Am×n)∗ ym×1, (17)

where ym×1 is the vector from Step 4.

Remark 4.1. In Step 2 above, we assume that Sl×m defined in (13) is a full-rank matrix.
Lemma 3.1 in Section 3 above guarantees this with high probability when l > m2, by taking
α in the lemma arbitrarily large; numerical experiments indicate that l > m suffices.

Remark 4.2. It is possible to improve the approximation xn×1 via preconditioned conjugate
gradient iterations similar to those proposed in [9]. However, the approximation produced by
the above algorithm is already highly accurate (see, for example, Section 7 or Theorem 5.4
in Section 5 below), and further iterative improvement may double the running time of the
algorithm.

5



5 Proof of accuracy

In this section, we prove Theorem 5.4, guaranteeing that the algorithm of Section 4 produces
high accuracy with high probability.

The following lemma states that the orthogonal projection onto the column span of
(Am×n)∗ of the vector cn×1 defined in (15) is the vector of minimal Euclidean norm that the
algorithm aims to approximate.

Lemma 5.1. Suppose that l, m, and n are positive integers with m < l < n. Suppose further
that Am×n is a full-rank matrix, bm×1 is a vector, Sl×m is the matrix defined in (13) and is
a full-rank matrix, and cn×1 is the vector defined in (15).

Then, the orthogonal projection pn×1 of cn×1 onto the column span of (Am×n)∗ is the
vector of minimal Euclidean norm satisfying

Am×n pn×1 = bm×1. (18)

Proof. Combining (13), (14), and (15) yields that

Am×n cn×1 = bm×1. (19)

Combining (19) and the fact that pn×1 is the orthogonal projection of cn×1 onto the column
span of (Am×n)∗ completes the proof.

The following lemma states that, with high probability, the Euclidean norm of the vector
cn×1 defined in (15) is not too much greater than the Euclidean norm of its orthogonal
projection pn×1 onto the column span of (Am×n)∗.

Lemma 5.2. Suppose that α and β are real numbers greater than 1, and l, m, and n are
positive integers, such that (11) holds. Suppose further that Am×n is a full-rank matrix, bm×1

is a vector, cn×1 is the vector defined in (15), and pn×1 is the orthogonal projection of cn×1

onto the column span of (Am×n)∗.
Then,

‖cn×1‖ ≤
√

αn

l
‖pn×1‖ (20)

with probability at least 1− 1
β
.

Proof. Using the fact that Am×n is a full-rank matrix, we construct a QR-decomposition

(Am×n)∗ = Qn×m Rm×m (21)

such that the columns of Qn×m are an orthonormal basis for the column span of (Am×n)∗.
We first show that the SRFT Tl×n used in (13) and (15) provides

‖zl×1‖ ≤
√

αn

l
‖(Qn×m)∗ (Tl×n)∗ zl×1‖ (22)

with probability at least 1 − 1
β
, where zl×1 is the vector of minimal Euclidean norm solv-

ing (14). We then express the left- and right-hand sides of (22) in terms of cn×1 and pn×1,
rather than zl×1, in order to obtain (20).

6



It follows from the fact that zl×1 is the vector of minimal Euclidean norm solving (14)
that zl×1 belongs to the column span of Sl×m from (14), that is, there exists a vector wm×1

such that
zl×1 = Sl×m wm×1. (23)

Combining (23), (13), and (21) yields that

‖zl×1‖2 = (zl×1)
∗ zl×1 = (wm×1)

∗ (Rm×m)∗ (Qn×m)∗ (Tl×n)∗ zl×1. (24)

The Cauchy-Schwarz inequality yields that

(wm×1)
∗ (Rm×m)∗ (Qn×m)∗ (Tl×n)∗ zl×1 ≤ ‖Rm×m wm×1‖ ‖(Qn×m)∗ (Tl×n)∗ zl×1‖. (25)

It follows from (12) that

‖Rm×m wm×1‖ ≤
√

αn

l
‖Tl×n Qn×m Rm×m wm×1‖ (26)

with probability at least 1− 1
β
. Combining (21), (13), and (23) yields that

Tl×n Qn×m Rm×m wm×1 = zl×1. (27)

Combining (24), (25), (26), and (27) yields (22).
We now express the left- and right-hand sides of (22) in terms of cn×1 and pn×1, rather

than zl×1.
First, we consider the left-hand side of (22). Combining (15) and the fact that the

columns of (Tl×n)∗ are orthonormal yields that

‖zl×1‖ = ‖cn×1‖. (28)

Next, we consider the right-hand side of (22). It follows from the fact that the columns
of Qn×m are an orthonormal basis for the column span of (Am×n)∗ that the orthogonal
projection pn×1 of cn×1 onto the column span of (Am×n)∗ is

pn×1 = Qn×m (Qn×m)∗ cn×1. (29)

Combining (29) and the fact that the columns of Qn×m are orthonormal yields that

‖pn×1‖ = ‖(Qn×m)∗ cn×1‖. (30)

Combining (30) and (15) yields that

‖pn×1‖ = ‖(Qn×m)∗ (Tl×n)∗ zl×1‖. (31)

Finally, combining (22), (28), and (31) yields (20).

The following lemma states that the vector xn×1 produced by the algorithm is an accurate
approximation to the orthogonal projection onto the column span of (Am×n)∗ of the vector
cn×1 defined in (15), provided that the projection pn×1 satisfies (20).

7



Lemma 5.3. Suppose that ε and α are positive real numbers with ε < 1 < α, and l, m, and
n are positive integers with m < l < n. Suppose further that Am×n is a full-rank matrix,
bm×1 is a vector, Sl×m is the matrix defined in (13) and is a full-rank matrix, cn×1 is the
vector defined in (15), pn×1 is the orthogonal projection of cn×1 onto the column span of
(Am×n)∗, ym×1 is a vector minimizing (16) to relative precision ε2l/(αn) or better, and xn×1

is the vector defined in (17). Suppose in addition that (20) holds.
Then,

‖xn×1 − pn×1‖ ≤ ε ‖pn×1‖. (32)

Proof. It follows from (17) that xn×1 belongs to the column span of (Am×n)∗. Combining this
fact and the fact that cn×1 − pn×1 is the orthogonal projection of cn×1 onto the orthogonal
complement of the column span of (Am×n)∗ yields that cn×1−pn×1 is the orthogonal projection
of cn×1 − xn×1 onto the orthogonal complement of the column span of (Am×n)∗. Similarly,
pn×1 − xn×1 is the orthogonal projection of cn×1 − xn×1 onto the column span of (Am×n)∗.
We thus obtain the Pythagorean identity

‖cn×1 − pn×1‖2 + ‖pn×1 − xn×1‖2 = ‖cn×1 − xn×1‖2. (33)

It follows from the fact that pn×1 is the orthogonal projection of cn×1 onto the column
span of (Am×n)∗ that the minimal value of (16) is ‖pn×1− cn×1‖2. Combining this fact, (17),
and the fact that ym×1 minimizes (16) to relative precision ε2l/(αn) or better yields that

‖xn×1 − cn×1‖2 − ‖pn×1 − cn×1‖2 ≤ ε2l

αn
‖pn×1 − cn×1‖2. (34)

Combining (33) and (34) yields that

‖xn×1 − pn×1‖2 ≤ ε2l

αn
‖cn×1 − pn×1‖2. (35)

It follows from the fact that cn×1 − pn×1 is the orthogonal projection of cn×1 onto the
orthogonal complement of the column span of (Am×n)∗ that

‖cn×1 − pn×1‖ ≤ ‖cn×1‖. (36)

Combining (35), (36), and (20) yields (32).

Combining Lemmas 3.1, 5.1, 5.2, and 5.3 yields the following theorem, guaranteeing that
the algorithm produces high accuracy with high probability.

Theorem 5.4. Suppose that ε, α, and β are positive real numbers with ε < 1 < α and
β > 2, and l, m, and n are positive integers, such that (11) holds. Suppose further that
Am×n is a full-rank matrix, bm×1 is a vector, and pn×1 is the vector of minimal Euclidean
norm satisfying

Am×n pn×1 = bm×1. (37)

Then, the vector xn×1 defined in (17) satisfies

‖xn×1 − pn×1‖ ≤ ε ‖pn×1‖ (38)

with probability at least 1− 2
β
.

8



Remark 5.5. The probability of failure in Theorem 5.4 is 2/β, rather than just the proba-
bility 1/β of failure in Lemma 5.2, in order to account for the possibility that the algorithm
of [9] fails to produce a vector ym×1 minimizing (16) to relative precision ε2l/(αn) or better,
after using at most the number of floating-point operations specified in Section 6 below.

Remark 5.6. Empirically, requiring (11) appears to be excessive. In practice, choosing any
l ≥ 4m and α = 4 makes failure of the algorithm too improbable to detect (cf. Remark 2
in [9]).

6 Computational costs

In this section, we tabulate the numbers of floating-point operations required by the five
steps in the algorithm of Section 4:

1. Applying Tl×n to every column of (Am×n)∗ costs O(mn log(l)).

2. Constructing zl×1 costs O(lm2).

3. Applying (Tl×n)∗ to zl×1 costs O(n log(n)).

4. Constructing yl×1 via the algorithm of [9] costs O(mn log(αn/ε2) + lm2).

5. Applying (Am×n)∗ to ym×1 costs O(mn).

Summing up the costs in the five steps above, and using the facts that m < l < n and
ε < 1 < α, we see that the cost of the entire algorithm is

Ctheoretical = O(mn log(
√

αn/ε) + lm2) (39)

floating-point operations. Theorem 5.4 in Section 5 above guarantees that the algorithm
produces high accuracy with high probability when l and α satisfy (11). In practice, choosing
l = 4m and α = 4 makes failure of the algorithm too improbable to detect (see also Remark 2
in [9]), and the cost in (39) then becomes

Ctypical = O(mn log(
√

n/ε) + m3) (40)

floating-point operations.

7 Numerical Results

In this section, we describe the results of several numerical tests of the algorithm of the
present paper.

For various positive integers m and n with m < n, we use the algorithm to com-
pute a vector xn×1 approximating the vector pn×1 of minimal Euclidean norm satisfying
Am×n pn×1 = bm×1, where bm×1 is a vector, and Am×n is the matrix defined via the formula

Am×n = Um×m Σm×m (Vn×m)∗; (41)

9



in the experiments described below, Um×m is obtained by applying the Gram-Schmidt process
to the columns of an m×m matrix whose entries are i.i.d. centered complex Gaussian random
variables, Vn×m is obtained by applying the Gram-Schmidt process to the columns of an n×m
matrix whose entries are i.i.d. centered complex Gaussian random variables, and Σm×m is a
diagonal matrix, with the diagonal entries

Σj,j = 10−6(j−1)/(m−1) (42)

for j = 1, 2, . . . , m− 1, m. Clearly, the condition number κA of Am×n is

κA = Σ1,1/Σm,m = 106. (43)

The vector bm×1 is defined via the formula

bm×1 = Am×n pn×1, (44)

where pn×1 is the vector defined via the formula

pn×1 =
1√
m

m∑
j=1

εj v
(j)
n×1, (45)

with ε1, ε2, . . . , εm−1, εm being pseudorandom positive and negative ones, and v
(1)
n×1, v

(2)
n×1,

. . . , v
(m−1)
n×1 , v

(m)
n×1 being the columns of Vn×m.

Remark 7.1. By construction, pn×1 is the vector of minimal Euclidean norm such that
Am×n pn×1 = bm×1; the Euclidean norm of pn×1 is minimal since pn×1 belongs to the column
span of (Am×n)∗. The aim of the algorithm is to construct an approximation xn×1 to pn×1.

For the direct computations, we used the classical algorithm for pivoted QR-decompo-
sitions based on plane (Householder) reflections (see, for example, Chapter 5 in [8]). We
implemented the algorithms in Fortran 77 in double-precision arithmetic, and used the La-
hey/Fujitsu Express v6.2 compiler, with the optimization flag --o2 enabled. We used one
core of a 1.86 GHz Intel Centrino Core Duo microprocessor with 2 MB of L2 cache and
1 GB of RAM. For the algorithm of [9] used in Step 4 of the algorithm of Section 4, we
requested that ym×1 minimize (16) to relative precision (10−14 · κA)2 ·m/n or better, where
κA is the condition number of Am×n given in (43). We used a double-precision version of
P. N. Swarztrauber’s FFTPACK library for fast Fourier transforms.

Table 1 displays timing results with n = 16384 for various values of m; Table 2 displays
the corresponding errors. Table 3 displays timing results with m = 256 for various values of
n; Table 4 displays the corresponding errors.

The headings of the tables have the following meanings:

• m is the number of rows in the matrix Am×n, as well as the length of the vector bm×1,
in Am×n pn×1 = bm×1.

• n is the number of columns in the matrix Am×n, as well as the length of the vector
pn×1, in Am×n pn×1 = bm×1.

10



Table 1 Table 2

m n l t0 tr t0/tr
128 16384 512 .27E1 .24E1 1.2
256 16384 1024 .11E2 .56E1 2.0
512 16384 2048 .60E2 .20E2 3.0

m n l ε0 εr

128 16384 512 .14E–14 .16E–14
256 16384 1024 .11E–14 .17E–14
512 16384 2048 .80E–15 .29E–14

Table 3 Table 4

m n l t0 tr t0/tr
256 4096 1024 .26E1 .20E1 1.3
256 8192 1024 .51E1 .32E1 1.6
256 16384 1024 .11E2 .56E1 2.0
256 32768 1024 .29E2 .16E2 2.5

m n l ε0 εr

256 4096 1024 .27E–15 .31E–14
256 8192 1024 .45E–15 .27E–14
256 16384 1024 .11E–14 .17E–14
256 32768 1024 .22E–14 .16E–14

• l is the number of rows in the matrix Tl×n used in Steps 1 and 3 of the algorithm of
Section 4, as well as the analogous parameter used in the algorithm of [9] needed in
Step 4.

• t0 is the time in seconds required by the direct, classical algorithm.

• tr is the time in seconds required by the algorithm of the present paper.

• t0/tr is the factor by which the algorithm of the present paper is faster than the classical
algorithm.

• ε0 is defined via the formula

ε0 =
‖x(0)

n×1 − pn×1‖
κA ‖pn×1‖

, (46)

where κA is the condition number of Am×n given in (43), and x
(0)
n×1 is the vector produced

by the direct, classical algorithm approximating the vector pn×1 of minimal Euclidean
norm such that Am×n pn×1 = bm×1.

• εr is defined via the formula

εr =
‖xn×1 − pn×1‖

κA ‖pn×1‖
, (47)

where κA is the condition number of Am×n given in (43), and xn×1 is the vector produced
by the algorithm of Section 4 approximating the vector pn×1 of minimal Euclidean norm
such that Am×n pn×1 = bm×1.

Remark 7.2. Standard perturbation theory shows that ε0 and εr are the appropriately
normalized measures of the relative precision produced by the algorithms; see, for example,
Section 5.5.3 in [5].

11



The values for εr reported in the tables are the worst (maximal) values encountered
during 10 independent randomized trials of the algorithm, as applied to the same matrix
Am×n and vector bm×1. The values for tr reported in the tables are the average values
over 10 independent randomized trials. None of the quantities reported in the tables varied
significantly over repeated randomized trials.

The following observations can be made from the examples reported here, and from our
more extensive experiments:

1. When m = 512, n = 16384, and the condition number of Am×n is 106, the randomized
algorithm runs 3 times faster than the classical algorithm based on plane (Householder)
reflections, even at full double precision.

2. Our choice l = 4m appears to make failure of the algorithm too improbable to detect.

3. The algorithm of the present article reliably produces high precision at reasonably low
cost.

8 Conclusion

This article provides a fast algorithm for computing the minimal-norm solution to an under-
determined system of linear equations. If the matrices Am×n and (Am×n)∗ associated with
the system of linear equations can be applied sufficiently rapidly to arbitrary vectors, then
the algorithm of the present paper can be accelerated further.

The theoretical bounds in Lemma 3.1, Lemma 5.2, and Theorem 5.4 should be considered
preliminary. Our numerical experiments indicate that the algorithm of the present article
performs better than our estimates guarantee. Furthermore, there is nothing magical about
the subsampled randomized Fourier transform defined in (6). In our experience, several other
similar transforms seem to work at least as well, and we are investigating these alternatives
(see, for example, [2]).

Acknowledgments

We would like to thank Vladimir Rokhlin and Arthur Szlam for helpful discussions.

12



References

[1] N. Ailon and B. Chazelle, The fast Johnson-Lindenstrauss transform and approx-
imate nearest neighbors, SIAM J. Comput., 39 (2009), pp. 302–322.

[2] N. Ailon and E. Liberty, Fast dimension reduction using Rademacher series on
dual BCH codes, Discrete Comput. Geom., (2008). To appear.

[3] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems
of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34–81.

[4] E. Candès and T. Tao, Near-optimal signal recovery from random projections: Uni-
versal encoding strategies, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[5] G. Dahlquist and Å. Björck, Numerical Methods, Dover Publications, Mineola,
New York, 1974.

[6] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–
1306.

[7] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster
least squares approximation, Tech. Rep. 0710.1435, arXiv, October 2007. Available
at http://arxiv.org/.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland, third ed., 1996.

[9] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear
least-squares regression, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 13212–13217.

[10] T. Sarlós, Improved approximation algorithms for large matrices via random projec-
tions, in Proceedings of FOCS 2006, the 47th Annual IEEE Symposium on Foundations
of Computer Science, October 2006, pp. 143–152.

[11] , Improved approximation algorithms for large matrices via random projections, re-
vised, extended long form. Manuscript in preparation for publication, currently available
at http://www.ilab.sztaki.hu/∼stamas/publications/rp-long.pdf, 2006.

[12] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized al-
gorithm for the approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008),
pp. 335–366.

13


