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Abstract

Recently, there has been significant research exploring methods to
find global solutions for the piecewise constant Mumford-Shah image
segmentation problem (known as the Potts model in the discrete set-
ting). In this work, we propose a convex relaxation method to solve
this non-convex problem. Our approach is based on applying a mod-
ified version of a technique due to Pock et al. [28] to a specific rep-
resentation of the segmentation problem due to Lie et al. [24]. Once
we have the convex optimization problem, we give an algorithm to
compute a global solution. We demonstrate our algorithm on several
multi-phase image segmentation problems, including a medical imag-
ing application and a synthetic triple junction example. Even though
our method cannot guarantee a global solution of the original problem,
we justify the effectiveness of the approach and show the connection
between our method and previous convex relaxation techniques.

1 Introduction

Image segmentation is one of the most fundamental problems in computer
vision. The task is to assign a label to each point in a given image (i.e.,
partition the image into phases or segments) such that the labeling is optimal
with respect to a particular model. It is difficult to compute a globally
optimal solution because the models often lead to non-convex variational
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problems. Most techniques instead devise algorithms to efficiently compute
solutions which are only locally optimal.

The labels assigned during image segmentation can be defined either on
a discrete grid or in a spatially continuous domain. In the discrete setting,
interest for guaranteed global solutions of vision problems has grown ever
since the stochastic approximate methods in the seminal work of Geman and
Geman [18]. Greig et al. [19] were the first to discover that the classical
Ford-Fulkerson min-cut/max-flow correspondence [17] could provide global
algorithms when the set of labels is binary and the model satisfies certain
criteria. The work of [20] showed that a class of multi-label problems can
be globally solved, but this does not include one of the most celebrated
image segmentation models: the piecewise constant Mumford-Shah model
[25] (known as the Potts model [29] for the discrete problem). Recently, Bae
and Tai [2] provide a global graph cut method for the Vese-Chan model, which
closely approximates Mumford-Shah with a slightly different regularization
term. In this paper, however, our focus is the continuous setting; see [21] for
some discussion on the comparison between discrete and continuous methods
in optimization problems.

For the two-phase case (i.e., assigning one of just two labels, foreground
or background, to each point in the continuous domain), Chan et al. [12]
developed an equivalent convex formulation, thereby constructing an algo-
rithm that guarantees to find a globally optimal solution. The method relies
on a relaxation of the binary labeling function which remarkably still yields
a solution that is binary. However, this technique is not directly applicable
to the multi-phase case, which has remained an open problem.

Inspired by [12], there has been significant research devoted to globally
solving the multi-phase segmentation problem (or equivalent multi-labeling
problems). Zach et al. [33] proposed a relaxation approach along with a
decoupling to yield a convex optimization problem, but could not guarantee
a global optimum of the original problem. Lellmann et al. [23] used a similar
method, with a slightly different regularization and splitting method, but this
had comparable limitations. Later, Pock et al. [27] used a different relaxation
of the problem in a primal-dual setting. Their relaxation strictly dominates
these previous approaches, in the sense that the set of functions over which
their convex minimization is conducted contains that of the earlier methods.
Most recently, Bae, Yuan and Tai [3] examined the dual interpretation of the
relaxation of [33, 23] which provided another algorithm based on a smoothing
technique.
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Since the Potts model has been shown to be NP-hard in the discrete set-
ting [5], we cannot expect to be able to compute global solutions in all cases.
The goal of this paper is to provide a convex formulation and an algorithm
to compute approximate global solutions for the multi-phase piecewise con-
stant Mumford-Shah model. Our method relies primarily on two existing
approaches for image segmentation and computer vision problems. First, we
use the so-called piecewise constant level set method (PCLSM) framework of
Lie et al. [24] to formulate the problem, which provides a convenient repre-
sentation to enforce the constraints in the optimization. Using an augmented
Lagrangian method, we are able to reduce the original minimization problem
to a sequence of more tractable subproblems. Second, we use the novel con-
vexification approach of Pock et al. [28] (which was motivated by the work
of Ishikawa in the discrete Markov Random Field setting [20]) to tackle each
subproblem. This converts the non-convex variational problem to a prob-
lem in a higher dimensional space where the objective function is convex,
where a relaxation of the constraint set is made. Although the relaxation is
not exact in the general case, the algorithm produces the global solution in
most cases because intermediate solutions of our iterative algorithm satisfy
a coarea property.

The paper is organized as follows. In Section 2, we formally introduce
the segmentation problem and explain the solution of [12] for the two-phase
case. In Section 3, we begin by explaining the representation we use for
the multi-phase problem. We then establish a crucial augmented Lagrangian
method and then invoke a convexification technique similar to [28]. Section 4
describes our algorithm, its numerical implementation, and shows some ex-
perimental results. We compare our method to previous work in this direction
in Section 5, establishing a connection between our method and the convex
simplex relaxation methods in [33, 23]. Finally, in Section 6, we give some
concluding remarks.
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2 Segmentation problem and two-phase solu-

tion

Let I : Ω → R be a given image with bounded image domain Ω ⊂ R
d.

Mumford and Shah [25] proposed the minimization problem

inf
f,C

∫

Ω

(I(x) − f(x))2 dx+ ν

∫

Ω\C

|∇f(x)|2 dx+ µ|C|

to find an optimal piecewise smooth approximation of a general function
(the image I), where ν and µ are fixed parameters. The edge set C ⊂ Ω is a
closed set that defines a partition Ω = ∪iΩi such that the restrictions fi of
the function f to the segments Ωi are differentiable. In the simplest form of
the model, the function f is taken to be constant on each segment, reducing
to the piecewise constant Mumford-Shah problem

inf
ci,C

{
∑

i

∫

Ωi

(ci − I(x))2 dx+ µ |C|

}

,

where f =
∑

i ci1Ωi
. This is also known as the Potts model [29] in the discrete

setting, originating in solid state physics, and hence we will use the names
of these models interchangeably. The important property of the model is
imposing a regularity measure that favors the labels of neighboring points to
be identical but interprets the value of each label to be immaterial.

We will herein assume that the optimal constants ci are known a priori
and the number of segments (say, k + 1) is fixed. Indeed, even making this
stringent assumption leaves us with the difficult non-convex problem

inf
Ω0,...,Ωk

{
k∑

i=0

1

2
|∂Ωi| +

∫

Ωi

(ci − I(x))2 dx

}

,

where it is implicit that Ω = ∪iΩi and the Ωi are pairwise disjoint. In this
work, we will not consider the even more challenging problem where either the
constants or number of phases are unknown. Likewise, the related methods
for the multi-phase problem mentioned in the Introduction and discussed
further in Section 5 also make these reasonable assumptions.

To slightly generalize our method to data terms other than the one in the
Mumford-Shah functional, the multi-phase problem we will solve is

inf
Ω0,...,Ωk

{
k∑

i=0

|∂Ωi| +

∫

Ωi

gi(x) dx

}

. (1)
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For example, when the region descriptors gi(x) are equal to (ci − I(x))2

(where we have absorbed constant factors), we have the case of Mumford-
Shah. This generalization does not add any complexity to our problem. Our
assumption concerning the ci translates to the assumption that the gi(x) are
known beforehand.

When k = 1, expression (1) above becomes the two-phase problem

inf
Ω0⊂Ω

{

|∂Ω0| +

∫

Ω0

g0(x) dx+

∫

Ω\Ω0

g1(x) dx

}

. (2)

Many popular methods to solve (2) are based on the level set method (e.g.,
the Chan-Vese method [14]), but there is no guarantee to find a global solu-
tion. In [12], Chan et al. proposed a method for finding global minimizers
through a convex formulation of the problem. They showed that (2) can be
written equivalently

min
θ∈{0,1}

{

E(θ) :=

∫

Ω

|∇θ| dx+

∫

Ω

(1 − θ(x))g0(x) + θ(x)g1(x) dx

}

, (3)

where θ : Ω → {0, 1} is a binary function that defines the segmentation:
x ∈ Ω0 if θ(x) = 0 and x ∈ Ω1 if θ(x) = 1. However, even though E(θ) is
convex, the minimization is done over a non-convex set of binary functions.

The important final step is that a relaxation may be taken to allow θ ∈
[0, 1] without changing the minimum. Indeed, letting θ∗ be any minimizer of
the binary problem (3), then any θ ∈ [0, 1] satisfies E(θ∗) ≤ E(θ). Moreover,
a solution of (3) can be obtained by finding a solution of the relaxed problem
and then thresholding. Namely, letting now θ∗ be a minimizer of the relaxed
problem, the binary function 1{θ∗>t} is a minimizer of (3) for any t ∈ (0, 1).
This relaxation completes the conversion of the original problem (2) to a
convex minimization problem. We say the relaxation is exact because a true
solution of the original problem can be exactly recovered from the relaxed
problem.

Relaxation in this context dates back to Strang’s work [31] on maximal
flows. The critical property for the functional of a problem

min
x∈{0,1}

F (x)

to possess in order to have an exact relaxation to x ∈ [0, 1] is a generalized
coarea formula of the form

F (x) =

∫ 1

0

F (1{x>t}) dt.
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The article [7] contains a nice presentation of the proof that the relaxation is
exact. As it turns out, the fact that the relaxation does not have a straight-
forward extension to vector-valued functions is the obstacle in multi-phase
approaches.

3 Extension to multi-phase

In this section, we propose a method for solving the multi-phase segmentation
problem (1) introduced in the previous section. We break up the discussion
into three parts. First, we reformulate the problem in order to obtain a min-
imization problem whose unknown is an integer-valued function; next, we
prove a result that allows us to solve a sequence of minimization problems
whose unknown is a real-valued function; and finally, we embed the prob-
lem in a higher dimensional space to obtain a minimization problem whose
objective function is convex.

3.1 Multi-phase problem representation

We return now to developing the tools to globally solve the multi-phase
problem

inf
Ω0,...,Ωk

{
k∑

i=0

|∂Ωi| +

∫

Ωi

gi(x) dx

}

. (4)

Moving forward, it becomes advantageous to represent this problem as an
equivalent optimization problem over functions rather than over partitions of
Ω. In [32], Vese and Chan proposed a generalization of the 2-phase Chan-Vese
method that uses multiple level set functions to represent the segmentation.
Later, Lie et al. [24] gave a variant of this method, which we elect to use in
our approach.

We represent the partition Ω = ∪iΩi by a piecewise constant labeling
function u : Ω → {0, . . . , k} with the property that u = i on Ωi. For conve-
nience, we introduce the notation ψi(u) := 1{u=i} for the k+ 1 characteristic

functions induced by u. Clearly the function u is given by u =
∑k

i=1 iψi.
The characteristic functions can further be utilized to express the boundary
lengths of the segments:

|∂Ωi| =

∫

Ω

|∇ψi(u)| dx.
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This is a consequence of the fact that the total variation of the characteristic
function of a set is its perimeter. Under this representation, the segmentation
problem (4) becomes the constrained optimization problem

min
u : Ω→{0,...,k}

{
k∑

i=0

∫

Ω

|∇ψi(u)| + ψi(u)gi(x) dx

}

.

Next, because we eventually wish to obtain a continuous convex formulation,
we relax and let u ∈ R. To ensure that the function u takes values in
{0, . . . , k}, we introduce

K(u) =
k∏

i=0

(u− i),

so that if a function u : Ω → R satisfies identically K(u) = 0, then there
exists a unique i ∈ {0 . . . , k} for every x ∈ Ω such that u(x) = i. We use the
interpolation formulas

ψi(u) =
∏

i6=j

(u− j)

(i− j)
,

which coincide with the characteristic functions on the constraint set. (In
some instances, which will be clear from the context, we will use K and ψi
to denote the corresponding functions from R to R.) Our problem is now

min
u : Ω→[0,k]

{

F (u) :=

k∑

i=0

∫

Ω

|∇ψi(u)| + ψi(u)gi(x) dx

}

s.t. K(u) = 0.

Notice there is no harm replacing the condition u ∈ R with u ∈ [0, k] because
the constraint K(u) already demands u ∈ {0, . . . , k}.

3.2 An Augmented Lagrangian Method

In this subsection, we begin to describe our method for finding a global
solution of

min
u∈BV (Ω;[0,k])

F (u) s.t. K(u) = 0. (5)

Note that, due to the function space over which we are minimizing, the
constraint K(u) = 0 is in the almost everywhere (a.e.) sense. To enforce the
constraint, we use an augmented Lagrangian method [4]. For any r > 0, let
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us define the augmented Lagrangian function Lr : L
2(Ω)×L2(Ω) → [−∞,∞]

by

Lr(u, λ) = F (u) + 〈λ,K(u)〉L2(Ω) +
r

2
‖K(u)‖2

L2(Ω) .

The idea is to find a sequence {uj} of global minimizers of

min
u∈BV (Ω;[0,k])

Lrj (u, λj) (6)

so that for certain choices of the multipliers λj ∈ L2(Ω) and the penalty pa-
rameters rj > 0 any limit point (in an appropriate topology) of the sequence
will be a global minimizer of (5). For example, in what follows, we assume
the set of multipliers {λj} ⊂ L2(Ω) is bounded and the penalty parameters
satisfy r1 < r2 < · · · and rj → ∞. In practice, other choices for λj and rj
can provide better convergence results; see Section 4.

We will now show that the sequence {uj} of global minimizers of (6)
converges in L1 (and pointwise almost everywhere) to a function u ∈ BV (Ω)
that is a global solution of (5). Our argument is based on the proof of [4,
Prop. 2.1], which establishes the result in the finite dimensional setting.

By assumption, each function uj is a global minimizer of Lrj(u, λj), which
means that

Lrj (uj, λj) ≤ Lrj (u, λj) for all u ∈ BV (Ω; [0, k]). (7)

Let F ∗ denote the optimal value of (5). Then, for any fixed j ≥ 1,

F ∗ = inf {F (u) : u ∈ BV (Ω; [0, k]), K(u) = 0}

= inf
{
Lrj (u, λj) : u ∈ BV (Ω; [0, k]), K(u) = 0

}
.

Taking the infimum of (7) over u ∈ BV (Ω; [0, k]) such that K(u) = 0 yields

F (uj) + 〈λj, K(uj)〉L2(Ω) +
rj
2
‖K(uj)‖

2
L2(Ω) ≤ F ∗. (8)

First we show convergence of the sequence {uj}. To proceed, let us show
that for j = 1, 2, . . . the sequence of integrals

k∑

i=0

∫

Ω

|∇ψi(uj)| dx
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is uniformly bounded. Choosing u ≡ 0 in the inequality (7) yields

k∑

i=0

∫

Ω

|∇ψi(uj)| dx+
rj
2
‖K(uj)‖

2
L2(Ω) ≤

∫

Ω

|g0(x)| dx+
∣
∣〈λj, K(uj)〉L2(Ω)

∣
∣ +

k∑

i=0

∫

Ω

|ψi(uj)gi(x)| dx.

Each term on the right-hand side is bounded by a constant independent of
j, which implies that there exists M <∞ such that

k∑

i=0

∫

Ω

|∇ψi(uj)| dx ≤M for all j. (9)

Furthermore, since u =
∑k

i=0 iψi(u) for any function u, by the triangle in-
equality for the BV seminorm |u|BV :=

∫

Ω
|∇u| dx we have

|uj|BV =

∣
∣
∣
∣
∣

k∑

i=0

iψi(uj)

∣
∣
∣
∣
∣
BV

≤
k∑

i=0

|iψi(uj)|BV ≤ k
k∑

i=0

|ψi(uj)|BV ≤ kM <∞

for all j ≥ 1. Thus, by a well-known BV compactness theorem (see, e.g., [16,
p. 176]), there exists a subsequence {unj

} converging in L1 to u ∈ BV (Ω)
(which, without loss of generality, also converges a.e.).

Next, we show that u is a global minimizer of (5). Due to (9), by passing
to a subsequence if necessary,

lim
j→∞

k∑

i=0

∫

Ω

|∇ψi(uj)| dx exists,

and moreover, by lower semicontinuity of the BV seminorm,

k∑

i=0

∫

Ω

|∇ψi(u)| dx ≤ lim
j→∞

k∑

i=0

∫

Ω

|∇ψi(uj)| dx. (10)

Since {λj} is bounded, we may choose λ ∈ L2(Ω) with λj → λ a.e. Continuity
of K together with Lebesgue’s dominated convergence theorem implies that

〈λj, K(uj)〉L2(Ω) → 〈λ,K(u)〉L2(Ω).
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Likewise, we have

k∑

i=0

∫

Ω

ψi(uj)gi(x) dx→

k∑

i=0

∫

Ω

ψi(u)gi(x) dx,

which, together with (10), establishes that

F (u) ≤ lim
j→∞

F (uj).

Consequently, taking the limit superior of (8), we have

F (u) + 〈λ,K(u)〉L2(Ω) + lim sup
j→∞

rj
2
‖K(uj)‖

2
L2(Ω) ≤ F ∗. (11)

But since ‖K(uj)‖
2
L2(Ω) ≥ 0, rj → ∞, and F ∗ <∞, we must have K(uj) → 0

and K(u) = 0, otherwise the left-hand side of (11) is infinite. It follows that
F (u) ≤ F ∗, as was to be shown.

It remains to find a global minimizer of

∫

Ω

k∑

i=0

|∇ψi(u)| + ψi(u)gi(x) dx+ 〈λj, K(u)〉L2(Ω) +
rj
2
‖K(u)‖2

L2(Ω) (12)

over all u ∈ BV (Ω; [0, k]) for fixed j. This is still quite challenging since
the objective function is non-convex. The remedy is a technique for convert-
ing certain non-convex problems to convex ones, which we describe in the
following subsection.

3.3 Convex relaxation by functional lifting

In [28], a method was proposed to solve minimization problems of the form

min
u : Ω→Γ:=[γmin,γmax]

∫

Ω

|∇u| + ρ(x, u(x)) dx,

where ρ : Ω × Γ → R
+ may be non-convex. The method transforms this

non-convex problem into an equivalent convex problem through a change of
independent variables and a relaxation on the constraints. Simply put, the
idea is to reformulate the problem in terms of the super-level set function
φ : Ω × Γ → {0, 1} defined by φ(x, γ) = 1{u(x)>γ}(x) in such a way that the
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objective function of the reformulated problem is convex. The function u
may then be recovered from φ from the layer-cake formula

u(x) = γmin +

∫

Γ

φ(x, γ)dγ. (13)

The authors of [28] call this technique functional lifting because we have
increased the dimension of the arguments of the functions over which the
minimization is taken. Indeed, rather than minimize over functions u(x),
we instead minimize over functions φ(x, γ). The idea was motivated by the
discrete approach of Ishikawa [20] in which an appropriate auxiliary graph
with an extended node set was created, and standard (binary) graph-cut
computations (see, e.g., [22]) were used to solve the problem. We now derive a
generalization of functional lifting in order to solve the minimization problem
(12). In our application, we will take γmin = 0 and γmax = k since these are
the endpoints of the feasible set of (5).

One key observation is that |∂γφ(x, γ)| = δ(u(x) − γ). Since φ is the
super-level set function of u,

φ(x, γ) =

{

1 if γ < u(x),

0 otherwise.

Hence, for each x ∈ Ω, the derivative of φ with respect to γ is zero except
when u(x) = γ, where a jump occurs and the magnitude of this derivative is
a delta function centered at u(x) − γ. Thus, for each i = 0, . . . , k, we have

∫

Ω

|∇ψi(u(x))| dx =

∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψi(γ)∂γφ dγ

)∣
∣
∣
∣
dx

For notational convenience, let

wj(x, γ) =
k∑

i=0

(ψi(γ)gi(x)) + λjK(γ) +
rj
2
K(γ)2.

Using the previous observation, we see that (12) is equal to

Ej(φ) :=

k∑

i=0

∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψi(γ)∂γφ dγ

)∣
∣
∣
∣
dx+

∫

Ω

∫ k

0

wj(x, γ) |∂γφ| dγ dx.

(14)
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Thus, as long as we enforce φ to have the super-level set property, i.e.,

φ ∈ B := {φ : Ω × [0, k] → {0, 1} : φ(x, 0) = 1, φ(x, k) = 0, and

φ(x, ·) is non-increasing for each x ∈ Ω},

the problem (12) is equivalently

min
φ∈B

Ej(φ). (15)

We then use (13) to obtain u from φ. Observe that the objective function
Ej is convex in φ because the non-convex functions ψi and K do not depend
on φ; the non-convexity has somehow been integrated out.

Finally, we perform a relaxation on φ to allow φ ∈ [0, 1]. We let

R := {φ : Ω × [0, k] → [0, 1] : φ(x, 0) = 1, φ(x, k) = 0, and

φ(x, ·) is non-increasing for each x ∈ Ω},

and consider the convex minimization problem

min
φ∈R

Ej(φ). (16)

The idea is to compute a minimizer φ∗ of (16) and threshold to obtain a
function 1{φ>t} ∈ B, following the ideas of [12] mentioned in Section 2. In
order to guarantee that 1{φ>t} is a solution to (15), we need the generalized
coarea formula

Ej(φ) =

∫ 1

0

Ej(1{φ>t}) dt. (17)

As it happens, there exist φ ∈ R such that (17) fails. However, in practice,
we find that minimizers of (16) satisfy (17). We will examine this formula
further in Section 5, where we give experimental evidence that the formula
holds for minimizers, but also give a counterexample to show that does not
hold in general.

We summarize the results of the section with the following theorem.

Theorem 1. Suppose ({λj}, {rj})
∞
j=1 is such that {λj} is bounded, r1 < r2 <

· · · , and rj → ∞. For each j, globally solve the convex minimization problem

min
φ∈R

Ej(φ)
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to obtain a function φ∗
j . Suppose that φ∗

j satisfies the generalized coarea for-
mula

Ej(φ
∗
j) =

∫ 1

0

Ej(1{φ∗j>t}) dt.

Then for any t ∈ (0, 1), let

uj(x) =

∫ k

0

1{φ∗j>t}(x, γ)dγ.

Then the sequence of functions uj converges to a global solution u∗ of

min
u∈BV (Ω;[0,k])

{
k∑

i=0

∫

Ω

|∇ψi(u)| + ψi(u)gi(x) dx

}

s.t. K(u) = 0.

Equivalently, this provides a global solution to the multi-phase segmentation
problem

inf
Ω0,...,Ωk

{
k∑

i=0

|∂Ωi| +

∫

Ωi

gi(x) dx

}

if we put Ωi = {x ∈ Ω: u∗(x) = i}.

Even when each φ∗
j does not satisfy the generalized coarea formula, we

can still apply our method to solve the multi-phase segmentation problem,
although we cannot guarantee we have found a global solution. In the next
section, we implement the algorithm and the examine the extent to which
we can find global solutions for particular test images.

4 Algorithm and Numerical Results

We now describe an algorithm to solve the convex minimization problem

min
φ∈R

Ej(φ),

and use what we have developed in the previous section to provide solutions
to (1). Our objective is simply to describe a global algorithm resulting from
our theory rather than developing the most efficient algorithm possible, which
we leave for future work. Recall that

Ej(φ) =

k∑

i=0

∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψi(γ)∂γφ dγ

)∣
∣
∣
∣
dx+

∫

Ω

∫ k

0

wj(x, γ) |∂γφ| dγ dx

13



with

wj(x, γ) =

k∑

i=0

(ψi(γ)gi(x)) + λjK(γ) +
rj
2
K(γ)2.

Using the dual formulation of TV, this can be written

max
p∈X

∫

Ω

∫ k

0

k∑

i=0

− div pi(x, γ)ψi(γ) |∂γφ| + wj(x, γ) |∂γφ| dγ dx,

where

X = {p = (p0, . . . , pk) : Ω × [0, k] → R
d×(k+1) : ‖pi‖L∞ ≤ 1 ∀i = 0, . . . , k}.

Thus, we now have the min-max problem

min
φ∈R

max
p∈X







∫

Ω

∫ k

0

k∑

i=0

− div pi(x, γ)ψi(γ) |∂γφ| + wj(x, γ) |∂γφ| dγ dx

︸ ︷︷ ︸

Φj(φ,p)







.

Note that we have an optimization problem over the set R×X, where R and
X are compact, convex subsets of linear topological spaces, such that Φj(φ, ·)
is concave on X for all φ ∈ R and Φj(·,p) is convex on R for all p ∈ X. By
Sion’s minimax theorem [30], the minimization and maximization operations
may be interchanged.

For the inner maximization step, observe that the terms dependent on
the dual variables pi decouple. In other words, to conduct the maximization,
we may separately solve for each i:

max
|pi(x,γ)|≤1

{∫

Ω

∫ k

0

− div pi(x, γ)ψi(γ) |∂γφ| dγ dx

}

,

This may be solved using the iterative scheme [10]:

pn+1
i (x, γ) = PX (pni (x, γ) + τpψi(γ)∇ (|∂γφ

n|)) , (18)

where τp denotes the step size of updates for the pi variables. The operator
PX is the projection onto the set X, i.e.,

(PX(q))(x, γ) =

(
q0(x, γ)

max(|q0(x, γ)| , 1)
, . . . ,

qk(x, γ)

max(|qk(x, γ)| , 1)

)
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for all q : Ω × [0, k] → R
d×(k+1).

For the outer minimization problem, we use an explicit gradient descent
method derived from the corresponding Euler-Lagrange equation. Again,
let us emphasize that this is just one method to perform this minimization
subproblem and certainly not the most efficient. It was instead chosen for
ease of implementation. Put

Wj(x, γ,p) =

k∑

i=0

− div pi(x, γ)ψi(γ) + wj(x, γ).

The problem is then, for fixed p,

min
φ∈R

{∫

Ω

∫ k

0

W (x, γ,p) |∂γφ| dγ dx

}

.

Introducing an artificial time t, the gradient descent PDE is

∂φ

∂t
= −∇γ ·

(

W (x, γ,p)
∂γφ

|∂γφ|

)

.

We write the divergence operator ∇γ · = divγ instead of ∂γ since these will be
different in the finite difference numerical scheme. To avoid the degenerate
case when ∂γφ = 0, we regularize this equation by some small ε > 0 to yield

∂φ

∂t
= −∇γ ·

(

W (x, γ,p)
∂γφ

√
ε2 + (∂γφ)2

)

.

This gives the iterative scheme

φn+1 = PR

{

φn + τφ∇γ ·

(

W (x, γ,p)
∂γφ

n

√

ε2 + (∂γφn)2

)}

, (19)

where PR is the Euclidean projection onto the convex set R. In practice,
it turns out that the condition that φ(x, )̇ is non-increasing for each x is
automatically satisfied, although we have no proof of this property. This is
related to an ordering property established in [11, Prop. 4.3]. In this case,
the projection on R reduces to a projection onto the set where φ(x, 0) = 1
and φ(x, k) = 0 for all x, which is a simple truncation operation.
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To simplify the discussion of the numerical implementation of the algo-
rithm, we consider only the d = 2 case and let Ω = (0, 1)2. We use the
standard discretization in the spatial domain

Ωh = {1, . . . , N} × {1, . . . , N}

with spatial step size h = 1/N , and use the discretization

Γ∆γ = {(g − 1)∆γ : 1 ≤ g ≤ Nγ}

with Nγ = 1 + k/∆γ. A spatially continuous function f : Ω × Γ → R is now
approximated by a discrete function fh,∆γ, from which we will often omit the
superscripts. For f : {1, . . . , N}2 × {1, . . . , Nγ} → R, we use the notation
fi,j,g := f(i, j, g). We have the following finite difference formulas for the
derivative operators:







(divγ f)i,j,g = (fi,j,g − fi,j,g−1)/∆γ

(∂γf)i,j,g = (fi,j,g+1 − fi,j,g)/∆γ

(∇f)1
i,j,g = (fi+1,j,g − fi,j,g)/h

(∇f)2
i,j,g = (fi,j+1,g − fi,j,g)/h

with appropriate boundary conditions (see [9]). In our experiments, we are
given a discrete image defined on Ωh and let h = 1. We set ∆γ = 0.25.

We mentioned in the previous section that the augmented Lagrangian
variables λj and rj should satisfy the restrictions of Theorem 1 in order to
guarantee that the algorithm obtains a globally optimal solution. In practice,
these variables may be chosen differently to increase the efficiency of the
algorithm. For example, in the augmented Lagrangian technique of [24], the
penalty parameters rj are taken to be equal to some constant r for all j, and
the Lagrange multipliers are updated as λj+1 = λj + rK(uj); this is often
referred to as the method of multipliers [4]. We elect to use this update in
our implementation. We let r = 1 and initialize λ0 = 1.

We first illustrate our algorithm on two real-world examples. Figure 1(a)
shows an MRI brain image common to medical imaging applications. Fig-
ure 1(b) shows the result with four phases. We show each phase in a Fig-
ures 1(c)–(f).

We also apply the algorithm to a color image in Figure 2 using four phases.

For color images, where the image is a vector
−→
I , the region descriptors gi(x)

can be defined as
∥
∥
∥
−→
I (x) −−→c i

∥
∥
∥

2

, where −→c i is the vector mean in phase i.
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(a) Input (b) Result

(c) Phase 1 (d) Phase 2 (e) Phase 3 (f) Phase 4

Figure 1: Segmentation of an MRI brain image into four phases.
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(a) Input (b) Result

Figure 2: Segmentation of a natural color image into four phases.

Lastly, we apply our algorithm to the well known synthetic triple junction
example in Figure 3. We see that our segmentation algorithm successfully
finds the optimal solution.

We should point out that the method of Pock et al. [27, 11] is also able to
find the correct solution, where all three interfaces meet with an angle of 120◦.
The methods of [33, 23] do not initially provide the correct segmentation for
the triple junction, but can compute the desired result when a procedure
similar to thresholding is conducted; see Section 5.2.

Recall that our method assumes that the region descriptors (which, in
the case of piecewise constant Mumford-Shah, are characterized by the mean
intensities of each segment) are known a priori. In our experiments, we
apply a k-means clustering algorithm to determine these values. Variations
of our algorithm could include updating these values during the segmentation
process. An alternative would be to run the entire algorithm several times,
updating these values after convergence, to yield slightly better results.

5 Discussion

In the previous sections, we described a method for globally solving the
multi-phase segmentation problem under the Mumford-Shah/Potts model.
We now discuss a convex relaxation method from the literature and exhibit
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(a) Input (b) Result

Figure 3: Segmentation of a synthetic image. The optimal solution is given
by a 120◦ triple junction.

a relationship with our approach.

5.1 Convex relaxation over the simplex

Recall that we decompose the labeling function u : Ω → {0, . . . , k} with

ψi =

{

1 if u = i,

0 otherwise.

This means that u =
∑

i iψi. Rather than proceed as in Section 3, consider
instead the formulation

min
Ψ=(ψ0,...,ψk)∈S

{

F (Ψ) :=
k∑

i=0

∫

Ω

|∇ψi| + ψigi(x) dx

}

, (20)

where

S =

{

(f0, . . . , fk) : Ω → {0, 1}k+1 :

k∑

i=0

fi(x) = 1 for all x ∈ Ω

}

.

The natural multi-dimensional analogue of the one-dimensional convex re-
laxation approach (like that of [12] or [28]) would be to minimize over the
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convex probability simplex

C =

{

(f0, . . . , fk) : Ω → [0, 1]k+1 :

k∑

i=0

fi(x) = 1 for all x ∈ Ω

}

so that we have the convex minimization problem

min
(ψ0,...,ψk)∈C

{
k∑

i=0

∫

Ω

|∇ψi(x)| + ψi(x)gi(x) dx

}

. (21)

This is essentially the method proposed in [33]. To solve (21), additional
variables (v0, . . . , vk) : Ω → R

k were introduced to decouple the regularization
and data terms [1, 6], yielding

min
(ψ0,...,ψk),(v0,...,vk)∈C

{
∫

Ω

∑

i

|∇ψi| +
∑

i

1

2µ
(ψi − vi)

2 +
∑

i

ψigi dx

}

,

where µ > 0 is a parameter that controls the quadratic approximation of
ψi and vi for each i. Similarly, Lellmann et al. [23] considered the relaxed
problem

min
(ψ0,...,ψk)∈C







∫

Ω

√
∑

i

|∇ψi|
2 + ψigi(x) dx






. (22)

Up to constant factors, this is equivalent to (21) when (ψ0, . . . , ψk) ∈ S. To
solve the convex optimization problem (22), a Douglas-Rachford splitting
algorithm [15] was used.

The issue with both of these methods is that the minimizers of (21)
and (22) cannot be guaranteed to lie in the set S. More precisely, if Ψ∗ =
(ψ∗

0, . . . , ψ
∗
k) is a minimizer of, for example, (21), then it could be the case

F (Ψ∗) is strictly less than the minimum of F over S. It is unfortunately not
possible (in contrast to [12] or [28]) to claim that a minimizer of (20) is given
by constructing (1{ψ∗

0
>t}, . . . , 1{ψ∗

k
>t}) for any t ∈ (0, 1), since this thresholded

vector need not even be in S. Instead, one could consider assigning, for
each x ∈ Ω, the unit vector ~ei∗ with i∗ = argmaxj ψj(x). However, the
authors of [33] and [23] have no proof that such an assignment would remain
a minimizer. It is not clear whether there is a concept like the generalized
coarea formula in this setting which could ensure the obtained binary vector
would globally solve (21). In short, it is not clear whether this relaxation
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is exact and therefore it cannot guarantee a global solution of the original
problem.

We should mention the related work of Bae et al. [3] which considered the
primal-dual formulation of (21). Using the dual formulation of total variation
[13, 8, 9], the minimization problem (21) can be written as the saddle point
problem

min
Ψ∈C

max
|pi|≤1

{
k∑

i=0

∫

Ω

ψi(x) (div pi(x) + gi(x)) dx

}

. (23)

By Sion’s minimax theorem [30], the minimum and maximum operations can
be interchanged to obtain

max
|pi|≤1

min
Ψ∈C

{
k∑

i=0

∫

Ω

ψi(x) (div pi(x) + gi(x)) dx

}

.

It is easy to verify that this reduces to

max
|pi|≤1

∫

Ω

min (div p0 + g0, . . . , div pk + gk) dx.

Let p∗ be a maximizer of (5.1) and Ψ∗ be a maximizer of (21) such that
(Ψ∗,p∗) is an optimal pair of (23). If, for each x ∈ Ω, the values div p0 +
g0, . . . , div pk + gk have a unique minimum, then Ψ∗ ∈ C is necessary binary.
Thus, under these assumptions, solving the convex relaxation (21) solves the
original multi-phase segmentation problem (1).

5.2 Connection with our method

Our method solves a sequence of minimization problems of the form

min
φ : Ω×[0,k]→[0,1]

{Ej(φ) : φ(x, 0) = 1, φ(x, k) = 0, φ(x, ·) non-increasing ∀x} .

Observe that at each x ∈ Ω, the constraints on the function φ imply that
the quantity |∂γφ(x, ·)| is a probability measure on the interval [0, k]. Using
ideas like those discussed in Section 3.2, one can show that the sequence
{|∂γφj|} converges in L1(Ω×[0, k]), and that the limiting family of probability
measures

{
νx :=

∣
∣∂γφ(x, ·)

∣
∣
}

x∈Ω
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Figure 4: An example of a graphical representation showing the correspon-
dence between a function φ(x, ·) and the (k+ 1)-tuple (ψ0(x), . . . , ψk(x)) for
fixed x ∈ Ω.

has support only on the integer set {0, . . . , k}. When the generalized coarea
formula holds, we may threshold to obtain a measure that, in addition, has
support at exactly one integer for each x; this integer is the label u(x).

Let us consider instead the measure νx before thresholding. Of course, this
ignores the crucial fact that thresholding is necessary to obtain an equivalent
minimization problem via functional lifting. Because νx is a probability mea-
sure with integer support, there is a clear one-to-one correspondence between
the (k + 1)-tuples (νx(0), . . . , νx(k)) in our setting and (u0(x), . . . , uk(x)) in
that of Section 5.1. In each case, the ith component conveys the probability
of the point x having the label i. See Figure 4.

The family of measures νx is a special case of more general concept known
as parametrized (or Young) measures [26]. Consider a sequence of functions
fj : Ω → R that converge to f weakly∗ in L∞, i.e.,

∫

Ω

gfj dx→

∫

Ω

gf dx

for all g ∈ L1(Ω), and let ϕ : R → R be continuous. Then the sequence ϕ(fj)
also converges weakly∗ in L∞, but in general not to ϕ(f). Instead, the limit
is

ϕ(x) :=

∫

R

ϕ(γ) dνx(γ).
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Thus, we can think of the parametrized measure as the limiting probabil-
ity distribution of the values of the fj . The situation at hand is far less
troublesome because we have strong convergence to a function satisfying our
constraint K(u) = 0, which guarantees integer support.

Thus, while the methods in [33, 23] use an explicit convex simplex con-
straint, i.e.,

∑

i ui = 1, our method has an implicit simplex constraint of
the magnitude of the limiting probability measure νx. The sequence of min-
imizers φ∗

j of the problems minφ∈REj(φ) converge to a function φ∗ with the
property that |∂γφ

∗(x, i)| = νx(i) and
∑

i νx(i) = 1. The advantage is that,
using our representation, we can use thresholding to obtain solutions that
provide a well-defined labeling for each x ∈ Ω. The generalized coarea for-
mula can be examined to determine whether this labeling is optimal. In
contrast, thresholding a vector (u0, . . . , uk) such that

∑

i ui = 1 does not
necessarily yield a vector in the simplex. In the setting of [33, 23], there is no
apparent analogue of the coarea formula that allows us to show the solution
obtained is optimal.

5.3 The generalized coarea formula

In the final part of this section, we examine in more detail the important
formula

Ej(φ) =

∫ 1

0

Ej(1{φ>t}) dt, (24)

which we have referred to throughout as the generalized coarea formula.
Recall the expression for Ej defined in (14), which we repeat here for conve-
nience:

Ej(φ) =
k∑

i=0

∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψi(γ)∂γφ dγ

)∣
∣
∣
∣
dx+

∫

Ω

∫ k

0

wj(x, γ) |∂γφ| dγ dx.

By the standard coarea formula, it follows quickly that
∫

Ω

∫ k

0

wj(x, γ) |∂γφ| dγ dx =

∫ 1

0

∫

Ω

∫ k

0

wj(x, γ)
∣
∣∂γ1{φ>t}

∣
∣ dγ dx dt.

It suffices to consider the reduced formula
∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψ(γ)∂γφ dγ

)∣
∣
∣
∣
dx =

∫ 1

0

∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψ(γ)∂γ1{φ>t} dγ

)∣
∣
∣
∣
dx dt.

(25)
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Consider the situation where, for each x ∈ Ω, the function φ is a decreasing
staircase function like the top part of Figure 4. In other words, we have
that ∂γφ(x, γ) = −

∑k

j=0 uj(x)δ(γ − j) with
∑k

j=0 uj(x) = 1 for all x ∈ Ω.
Furthermore, let ψ(x) = ψi(x) for some i ∈ {0, 1, . . . , k}, so that ψi(j) = δij
for integer j. It follows that

∫ k

0

ψi(γ)∂γφ dγ =

∫ k

0

ψi(γ)

(

−

k∑

j=0

uj(x)δ(γ − j)

)

dγ = −ui(x).

Thus, the left-hand side of (25) becomes

∫

Ω

∣
∣
∣
∣
∇

(∫ k

0

ψi(γ)∂γφ dγ

)∣
∣
∣
∣
dx =

∫

Ω

|∇ui(x)| dx =

∫ 1

0

∫

Ω

∣
∣∇1{ui>t}

∣
∣ dx dt,

(26)
where the last equality follows from the usual coarea formula.

On the other hand, our assumption on φ implies that 1{φ>t} is a step
function whose jump occurs at the integer j such that t ∈ Aj with

Aj =

[
∑

m>j

um,
∑

m≥j

um

)

.

In other words, we partition the interval [0, 1) into disjoint intervals A0, . . . , Ak
determined by u0, . . . , uk, and jump of the step function 1{φ>t} occurs at the
integer j corresponding to the index of the interval in which t lies. This
implies that

∫ k

0

∂γ1{φ>t}ψi(γ) dγ =

∫ k

0

−δ(j − γ)ψi(γ) =

{

−1 t ∈ Ai,

0 else.

Consequently, the right-hand side of (25) is simply

∫ 1

0

∫

Ω

|∇1Ai
| dx dt. (27)

Consider the following example, which will show that (26) and (27) are in
general not equal, thereby proving that the generalized coarea formula (24)
cannot hold for all φ. Suppose that Ω = [0, 3) and put Ωi = [i, i + 1) for
i = 0, 1, 2. Let the u = (u0, u1, u2) be piecewise constant on each Ωi with
values given by the values in Table 1.
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u0 u1 u2

Ω0 1/2 1/3 1/6
Ω1 1/6 1/2 1/3
Ω2 1/3 1/6 1/2

Table 1: Counterexample for generalized coarea formula

Let us examine (26) and (27) for i = 1. In this case, the plot of 1{u1>t} is
shown in Figure 5(a), and we see that the quantity (26) is given by the sum of
the magnitudes of the jumps of u1, which equals 1/6+1/3 = 1/2. In contrast,
the plot of 1A1

is shown in Figure 5(b). To compute (27), we sum the magni-
tudes of the symmetric differences across the boundaries, |A1(Ω0)∆A1(Ω1)|
and |A1(Ω1)∆A1(Ω2)|. Recall the symmetric difference between two sets A
and B is given by

A∆B = (A ∪B) \ (A ∩B).

Observe that

A1(Ω0) = [1/6, 1/2), A1(Ω1) = [1/3, 5/6), A1(Ω2) = [1/2, 2/3).

The sum of the symmetric differences across boundaries is thus 1/2 + 1/3 =
5/6. We have therefore constructed a counterexample to the generalized
coarea formula.

Nevertheless, there is reason to believe that for minimizers of Ej sat-
isfy the generalized coarea formula. In practice, these minimizers look like
functions of the form

φ(x, γ) = 1 −Hǫ(γ − α(x)), (28)

where

Hǫ(z) =
1

2

(

1 +
2

π
arctan

(z

ǫ

))

is the well known regularized approximation to the Heaviside function which
converges to H(z) as ǫ→ 0+. The function α(x) is simply any function of x,
e.g., a labeling function or the image itself, that takes values in the interval
[0, k].

In Table 2, we show the numerical values of the two sides of the reduced
expression (25) for various choices of the regularization parameter ǫ and the
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(a) (b)

Figure 5: A counterexample to the generalized coarea formula.

function ψ. In these experiments, we put α(x) equal to the image I(x)
for the brain image considered in Section 4. We see that these expressions
are approximately equal to each other, giving reason to believe that the
generalized coarea formula is often satisfied in practice.

When the generalized coarea formula is approximately satisfied, we can
make precise statements about the approximation of the obtained solution
to the global minimizer of the original problem.

Proposition 2. Let ǫ > 0. Suppose that for j = 1, 2, . . ., we have the bound

∣
∣
∣
∣
Ej(φ

∗
j) −

∫ 1

0

Ej(1{u∗
j
>t}) dt

∣
∣
∣
∣
< ǫ, (29)

where φ∗ is the global minimizer of Ej over φ ∈ R. Then for any t ∈ [0, 1)
the functions

uj :=

∫ k

0

1{φ∗j>t} dγ

converge to a function ũ such that K(ũ) = 0 and

|F (ũ) − F ∗| < ǫ,

where F ∗ is the optimal value of F .
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Table 2: Numerical values of the left and right-hand sides of (25) for several
choices of ψ with φ of the form (28).

ψ(γ) ǫ LHS RHS

cos(γ)
0.1 10.84 10.84
1 5.08 5.12
2 8.02 8.07

(γ−2)(γ−3)
2

0.1 23.93 23.93
1 11.48 11.60
2 17.95 18.07

γ3

0.1 3.44 3.44
1 1.58 1.61
2 2.44 2.48

√

|γ|

0.1 0.09 0.09
1 0.11 0.12
2 0.14 0.15

Proof. The proof uses many of the ideas from Section 3.2 and we follow same
the notation. The bound (29) implies that Ej(1{φ∗j>t}) < Ej(φ

∗) + ǫ. Since
1{φ∗j>t} ∈ B, we may define

u′j =

∫ k

0

1{φ∗j>t} dγ

and have Ej(1{φ∗j>t}) = Lrj (u
′
j, λj). Moreover, Lrj (u

′
j, λj) < Lrj (uj, λj) + ǫ,

where uj is a global minimizer of Lrj (·, λj). A similar argument to Section 3.2
shows that any limit point of the functions u′j, say ũ, satisfies the constraint
K(ũ) = 0. Since we know that K(u∗) = 0 and F ∗ = F (u∗), the desired
bound follows.
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6 Conclusion

In this paper, we have proposed a method for solving the piecewise constant
Mumford-Shah image segmentation problem

inf
Ω0,...,Ωk

{
k∑

i=0

1

2
|∂Ωi| +

∫

Ωi

(ci − I(x))2 dx

}

,

in which k ∈ Z
+ and c0, . . . , ck ∈ R are fixed. First, we proved that we

can globally solve the problem via a sequence of non-convex minimization
problems of a specific form. Our method embeds each subproblem into a
higher dimensional space to obtain a convex objective functional, and then
relaxes the constraint set to obtain a convex minimization problem that can
be solved globally. We cannot prove each subproblem can be solved globally
because a generalized coarea formula does not hold, which means the relax-
ation in not exact. However, we provide empirical evidence that shows the
formula holds in practice, and demonstrate the effectiveness of our method
on several image segmentation examples.

In the discrete setting, this problem is known as the Potts model and
has been shown to be NP-hard. As a result, we cannot expect to compute
global solutions to the problem in all cases. Instead, our method adds to the
existing literature of convex relaxation methods that provide approximate
global solutions. In addition, we provide a connection between our method
and the convex relaxation method of [33, 23] that allows us to estimate the
extent to which global solutions are found via the coarea formula.
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