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Abstract
We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed by Zhu and Chan

in [51], draw connections to similar methods and discuss convergence of several special cases and
modifications. In particular, we point out a convergence result for a modified version of PDHG
that has a similarly good empirical convergence rate for total variation (TV) minimization
problems. Its convergence follows from interpreting it as an inexact Uzawa method discussed
in [49]. We also prove a convergence result for PDHG applied to TV denoising with some
restrictions on the PDHG step size parameters. It is shown how to interpret this special case as
a projected averaged gradient method applied to the dual functional. We discuss the range of
parameters for which the inexact Uzawa method and the projected averaged gradient method
can be shown to converge. We also present some numerical comparisons of these algorithms
applied to TV denoising, TV deblurring and constrained l1 minimization problems.

1 Introduction

Total variation minimization problems arise in many image processing and compressive sensing
applications for regularizing inverse problems where one expects the recovered image or signal to be
piecewise constant or have sparse gradient. However, a lack of differentiability makes minimizing
TV regularized functionals computationally challenging, and so there is considerable interest in
efficient algorithms, especially for large scale problems.

The PDHG method [51] starts with a saddle point formulation of the problem and proceeds by
alternating proximal steps that alternately maximize and minimize a penalized form of the saddle
function. PDHG can generally be applied to saddle point formulations of inverse problems that can
be formulated as minimizing a convex fidelity term plus a convex regularizing term. However, its
performance for problems like TV denoising is of special interest since it compares favorably with
other popular methods like Chambolle’s method [9] and split Bregman [24].

PDHG is an example of a first order method, meaning it only requires functional and gradient
evaluations. Other examples of first order methods popular for TV minimization include gradient
descent, Chambolle’s method and split Bregman. Second order methods like the method of Chan,
Golub and Mulet (CGM) [10] work by essentially applying Newton’s method to an appropriate
formulation of the Euler Lagrange equations and therefore also require information about the
Hessian. These can be quadratically convergent and are useful for computing benchmark solutions
of high accuracy. However, the cost per iteration is much higher, so for large scale problems or
when high accuracy is not required, these are often less practical than the first order methods that
have much lower cost per iteration.
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PDHG is also an example of a primal-dual method. Each iteration updates both a primal and
a dual variable. It is thus able to avoid some of the difficulties that arise when working only on
the primal or dual side. For example, for TV minimization, gradient descent applied to the primal
functional has trouble where the gradient of the solution is zero because the functional is not differ-
entiable there. Chambolle’s method is a method on the dual that is very effective for TV denoising,
but doesn’t easily extend to applications where the dual problem is more complicated, such as TV
deblurring. Primal-dual algorithms can avoid to some extent these difficulties. Other examples
include CGM [10], split Bregman [24], and more generally other Bregman iterative algorithms [48]
and Lagrangian-based methods.

An adaptive time stepping scheme for PDHG was proposed in [51] and shown to outperform
other popular TV denoising algorithms like Chambolle’s method, CGM and split Bregman in many
numerical experiments with a wide variety of stopping conditions. Aside from some special cases of
the PDHG algorithm like gradient projection and subgradient descent, the theoretical convergence
properties were not known.

In this paper we show that we can make a small modification to the PDHG algorithm, which
has little effect on its performance, but that allows the modified algorithm to be interpreted as
an inexact Uzawa method of the type analyzed in [49]. After initially preparing this paper it
was brought to our attention that the specific modified PDHG algorithm applied here has been
previously proposed by Pock, Cremers, Bischof and Chambolle [35] for minimizing the Mumford-
Shah functional. They also prove convergence for a special class of saddle point problems. Here,
in a more general setting, we apply the convergence analysis for the inexact Uzawa method in [49]
to show the modified PDHG algorithm converges for a range of fixed parameters. While this is
nearly as effective as fixed parameter versions of PDHG, well chosen adaptive step sizes are an
improvement. With more restrictions on the step size parameters, we prove a convergence result
for PDHG applied to TV denoising by interpreting it as a projected averaged gradient method on
the dual.

We additionally show that the modified PDHG method can be extended in the same ways as
PDHG was extended in [51] to apply to additional problems like TV deblurring, l1 minimization
and constrained minimization problems. For these extensions we point out the range of parameters
for which the convergence theory from [49] is applicable. We gain some insight into why the method
works by putting it in a general framework and comparing it to related algorithms.

The organization of this paper is as follows. In Sections 2 and 3 we review the main idea of
the PDHG algorithm and details about its application to TV deblurring type problems. Then in
Section 4, we discuss primal-dual formulations for a more general problem. We define a general
version of PDHG and discuss in detail the framework in which it can be related to other similar
algorithms. These connections are diagrammed in Figure 1. In Section 5 we show how to interpret
PDHG applied to TV denoising as a projected averaged gradient method on the dual and present
a convergence result for a special case. Then in Sections 6 and 7, we discuss the application of
the modified PDHG algorithm to TV deblurring type problems as well as constrained TV and l1
minimization problems. Section 8 presents numerical experiments for TV denoising, TV deblurring
and constrained l1 minimization, comparing the performance of the modified PDHG algorithm with
other methods.
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2 Background and Notation

The PDHG algorithm in a general setting is a method for solving problems of the form

min
u∈Rm

J(Au) + H(u),

where J and H are closed proper convex functions and A ∈ Rn×m. Usually, J(Au) will correspond
to a regularizing term of the form ‖Au‖, in which case PDHG works by using duality to rewrite it
as the saddle point problem

min
u∈Rm

max
‖p‖∗≤1

〈p,Au〉+ H(u)

and then alternating dual and primal steps of the form

pk+1 = max
‖p‖∗≤1

〈p,Auk〉 − 1
2δk

‖p− pk‖2
2

uk+1 = min
u∈Rm

〈pk+1, Au〉+ H(u) +
1

2αk
‖u− uk‖2

2

for appropriate parameters αk and δk. Here, ‖ · ‖ denotes an arbitrary norm on Rm and ‖ · ‖∗
denotes its dual norm defined by

‖x‖∗ = max
‖y‖≤1

〈x, y〉,

where 〈·, ·〉 is the standard Euclidean inner product. Formulating the saddle point problem also
uses the fact that ‖ · ‖∗∗ = ‖ · ‖ [25], from which it follows that ‖Au‖ = max‖p‖∗≤1〈p,Au〉.

The applications considered here are to solve constrained and unconstrained TV and l1 mini-
mization problems. In particular, we mainly focus on unconstrained TV minimization problems of
the form

min
u∈Rm

‖u‖TV +
λ

2
‖Ku− f‖2

2, (1)

where ‖ · ‖TV denotes the discrete TV seminorm to be defined. If K is a linear blurring operator,
this corresponds to a TV regularized deblurring model. It also includes the TV denoising case when
K = I. These applications are analyzed in [51], which also mentions possible extensions such as to
TV denoising with a constraint on the variance of u and also l1 minimization.

The remainder of this section defines a discretization of the total variation seminorm and in
particular defines a norm, ‖ · ‖E , and a matrix, D, such that ‖u‖TV = ‖Du‖E . Therefore ‖u‖TV is
of the form J(Au) with J = ‖ · ‖E and A = D. The details are included for completeness.

Define the discretized version of the total variation seminorm by

‖u‖TV =
Mr∑

p=1

Mc∑

q=1

√
(D+

1 up,q)2 + (D+
2 up,q)2 (2)

for u ∈ RMr×Mc . Here, D+
k represents a forward difference in the kth index and we assume

Neumann boundary conditions. It will be useful to instead work with vectorized u ∈ RMrMc and to
rewrite ‖u‖TV . The convention for vectorizing an Mr by Mc matrix will be to associate the (p, q)
element of the matrix with the (q − 1)Mr + p element of the vector. Consider a graph G(E ,V)
defined by an Mr by Mc grid with V = {1, ..., MrMc} the set of m = MrMc nodes and E the set of
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e = 2MrMc −Mr −Mc edges. Assume the nodes are indexed so that the node corresponding to
element (p, q) is indexed by (q−1)Mr +p. The edges, which will correspond to forward differences,
can be indexed arbitrarily. Define D ∈ Re×m to be the edge-node adjacency matrix for this graph.
So for a particular edge η ∈ E with endpoint indices i, j ∈ V and i < j, we have

Dη,ν =





−1 for ν = i,

1 for ν = j,

0 for ν 6= i, j.

(3)

The matrix D is a discretization of the gradient and −DT is the corresponding discretization of
the divergence.

Also define E ∈ Re×m such that

Eη,ν =

{
1 if Dη,ν = −1,

0 otherwise.
(4)

The matrix E will be used to identify the edges used in each forward difference. Now define a norm
on Re by

‖w‖E =
m∑

ν=1

(√
ET (w2)

)

ν

. (5)

Note that in this context, the square root and w2 denote componentwise operations. Another way

to interpret ‖w‖E is as the sum of the l2 norms of vectors wν , where wν =




...
we
...


 for e such that

Ee,ν = 1. Typically, away from the boundary, wν is of the form wν =
[
weν

1

weν
2

]
, where eν

1 and eν
2 are

the edges used in the forward difference at node ν. So in terms of wν , ‖w‖E =
∑m

ν=1 ‖wν‖2. The
discrete TV seminorm defined above (2) can be written in terms of ‖ · ‖E as

‖u‖TV = ‖Du‖E .

Use of the matrix E is nonstandard, but also more general. For example, by redefining D, the
same notation can apply to other discretizations of ‖u‖TV . Also, by adding edge weights the same
notation easily extends to nonlocal TV.

By definition, the dual norm ‖ · ‖E∗ to ‖ · ‖E is

‖x‖E∗ = max
‖y‖E≤1

〈x, y〉. (6)

This dual norm arises in the saddle point formulation of (1) that the PDHG algorithm for TV
deblurring is based on. If xν is defined analogously to wν , then

‖x‖E∗ = max
ν
‖xν‖2.

To see this, note that by the Cauchy Schwarz inequality,

max
‖y‖E≤1

〈x, y〉 = max∑m
ν=1 ‖yν‖2≤1

m∑

ν=1

〈xν , yν〉 ≤ max
ν
‖xν‖2 = ‖xν̃‖2 for some ν̃.
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The the maximum is trivially attained if ‖xν̃‖2 = 0 and otherwise the maximum is attained for y

such that yν =

{
xν̃

‖xν̃‖2 if ν = ν̃

0 otherwise
. In terms of the matrix E, the dual norm can be written as

‖x‖E∗ = ‖
√

ET (x2)‖∞.

3 PDHG for TV Deblurring

In this section we review from [51] the application of PDHG to the TV deblurring and denoising
problems, but using the present notation.

3.1 Saddle Point Formulations

For TV minimization problems, the saddle point formulation that the algorithm of Zhu and Chan
in [51] is based on starts with the observation that

‖u‖TV = max
p∈X

〈p,Du〉, (7)

where
X = {p ∈ Re : ‖p‖E∗ ≤ 1} . (8)

The set X, which is the unit ball in the dual norm of ‖ · ‖E , can also be interpreted as a Cartesian
product of unit balls in the l2 norm. For example, in order for Du to be in X, the discretized

gradient
[

up+1,q − up,q

up,q+1 − up,q

]
of u at each node (p, q) would have to have Euclidean norm less than or

equal to 1. The dual norm interpretation is one way to explain (7) since

max
‖p‖E∗≤1

〈p,Du〉 = ‖Du‖E ,

which equals ‖u‖TV by definition. Using duality to rewrite ‖u‖TV is also the starting point for the
primal-dual approach used by CGM [10] and a second order cone programming (SOCP) formulation
used in [23]. Here it can be used to reformulate problem (1) as the min-max problem

min
u∈Rm

max
p∈X

Φ(u, p), (9)

where
Φ(u, p) = 〈p,Du〉+

λ

2
‖Ku− f‖2

2.

Other saddle point formulations of (1) are possible. For example, another approach is to replace
Du with a new variable w under the constraint that w = Du. One can then handle the constraint
by forming the Lagrangian, incorporating a Lagrange multiplier p. This yields the following saddle
point formulation:

max
p∈Re

inf
u∈Rm,w∈Re

‖w‖E +
λ

2
‖Ku− f‖2

2 + 〈p,Du− w〉. (10)

Methods such as the alternating direction method of multipliers (ADMM) [20, 22, 5, 14] and Split
Bregman [24] are based on this saddle point formulation.
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3.2 Existence of Saddle Point

One way to ensure that there exists a saddle point (u∗, p∗) of the convex-concave function Φ is to
restrict u and p to be in bounded sets. Existence then follows from ([38] 37.6). The dual variable
p is already required to lie in the set X. Assume that

ker (D)
⋂

ker (K) = {0}.

This is equivalent to assuming that ker (K) does not contain the vector of all ones, which is very
reasonable for deblurring problems where K is an averaging operator. With this assumption, it
follows that there exists c ∈ R such that the set

{
u : ‖Du‖E +

λ

2
‖Ku− f‖2

2 ≤ c

}

is nonempty and bounded. Thus we can restrict u to a bounded set.

3.3 Optimality Conditions

If (u∗, p∗) is a saddle point of Φ, it follows that

max
p∈X

〈p,Du∗〉+
λ

2
‖Ku∗ − f‖2

2 = Φ(u∗, p∗) = min
u∈Rm

〈p∗, Du〉+
λ

2
‖Ku− f‖2

2,

from which we can deduce the optimality conditions

DT p∗ + λKT (Ku∗ − f) = 0 (11)

p∗E
√

ET (Du∗)2 = Du∗ (12)

p∗ ∈ X. (13)

The second optimality condition (12) with E defined by (4) can be understood as a discretization
of

p∗|∇u∗| = ∇u∗.

3.4 PDHG Algorithm

In [51] it is shown how to interpret the PDHG algorithm applied to (1) as a primal-dual proximal
point method for solving (9) by iterating

pk+1 = arg max
p∈X

〈p,Duk〉 − 1
2λτk

‖p− pk‖2
2 (14a)

uk+1 = arg min
u∈Rm

〈pk+1, Du〉+
λ

2
‖Ku− f‖2

2 +
λ(1− θk)

2θk
‖u− uk‖2

2. (14b)

The index k denotes the current iteration. Also, τk and θk are the dual and primal step sizes
respectively. The above max and min problems can be explicitly solved, yielding
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Algorithm: PDHG for TV Deblurring

pk+1 = ΠX

(
pk + τkλDuk

)
(15a)

uk+1 =
(
(1− θk) + θkK

T K
)−1

(
(1− θk)uk + θk(KT f − 1

λ
DT pk+1)

)
. (15b)

Here, ΠX is the orthogonal projection onto X defined by

ΠX(q) = arg min
p∈X

‖p− q‖2
2 (16)

=
q

E max
(√

ET (q2), 1
) , (17)

where the division and max are understood in a componentwise sense. For example, ΠX(Du) can
be thought of as a discretization of

{ ∇u
|∇u| if |∇u| > 1

∇u otherwise
.

In the denoising case where K = I, the pk+1 update remains the same and the uk+1 simplifies to

uk+1 = (1− θk)uk + θk(f − 1
λ

DT pk+1).

For the initialization, we take u0 ∈ Rm and p0 ∈ X.

4 General Algorithm Framework

In this section we consider a more general class of problems that PDHG can be applied to. We
define equivalent primal, dual and several primal-dual formulations. We also place PDHG in a
general framework that connects it to other related alternating direction methods applied to saddle
point problems.

4.1 Primal-Dual Formulations

PDHG can more generally be applied to what we will refer to as the primal problem

min
u∈Rm

FP (u), (P)

where
FP (u) = J(Au) + H(u), (18)

A ∈ Rn×m, J : Rn → (−∞,∞] and H : Rm → (−∞,∞] are closed convex functions. Assume there
exists a solution u∗ to (P). We will pay special attention to the case where J(Au) = ‖Au‖ for
some norm ‖ · ‖, but this assumption is not required. J(Au) reduces to ‖u‖TV when J = ‖ · ‖E and
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A = D as defined in Section 2. Also in Section 2 when J was a norm, it was shown how to use the
dual norm to define a saddle point formulation of (P) as

min
u∈Rm

max
‖p‖∗≤1

〈Au, p〉+ H(u).

This can equivalently be written in terms of the Legendre-Fenchel transform, or convex conjugate,
of J denoted by J∗ and defined by

J∗(p) = sup
w∈Rn

〈p, w〉 − J(w).

When J is a closed proper convex function, we have that J∗∗ = J [16]. Therefore,

J(Au) = sup
p∈Rn

〈p,Au〉 − J∗(p).

So an equivalent saddle point formulation of (P) is

min
u∈Rm

sup
p∈Rn

LPD(u, p), (PD)

where
LPD = 〈p,Au〉 − J∗(p) + H(u).

This holds even when J is not a norm, but in the case when J(w) = ‖w‖, we can then use the dual
norm representation of ‖w‖ to write

J∗(p) = sup
w
〈p, w〉 − max

‖y‖∗≤1
〈w, y〉

=

{
0 if ‖p‖∗ ≤ 1
∞ otherwise

,

in which case we can interpret J∗ as the indicator function for the unit ball in the dual norm.
Let (u∗, p∗) be a saddle point of LPD. In particular, this means

max
p∈Rn

〈p,Au∗〉 − J∗(p) + H(u∗) = LPD(u∗, p∗) = min
u∈Rm

〈p∗, Au〉+ H(u),

from which we can deduce the equivalent optimality conditions

−AT p∗ ∈ ∂H(u∗) (19)
Au∗ ∈ ∂J∗(p∗), (20)

where ∂ denotes the subdifferential. The subdifferential ∂F (x) of a convex function F : Rm →
(−∞,∞] at the point x is defined by the set

∂F (x) = {q ∈ Rm : F (y) ≥ F (x) + 〈q, y − x〉 ∀y ∈ Rm}.
Using the definitions of the Legendre transform and subdifferential, the optimality conditions (19)
and (20) could also be be rewritten as

u∗ ∈ ∂H∗(−AT p∗) (19a)
p∗ ∈ ∂J(Au∗) (20a)
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Another useful saddle point formulation that we will refer to as the split primal problem is
obtained by introducing the constraint w = Au in (P) and forming the Lagrangian

LP (u, w, p) = J(w) + H(u) + 〈p,Au− w〉. (21)

The corresponding saddle point problem is

max
p∈Rn

inf
u∈Rm,w∈Rn

LP (u,w, p). (SPP)

Although p was introduced in (21) as a Lagrange multiplier for the constraint Au = w, it has the
same interpretation as the dual variable p in (PD). It follows immediately from the optimality
conditions that if (u∗, w∗, p∗) is a saddle point for (SPP), then (u∗, p∗) is a saddle point for (PD).

The dual problem is
max
p∈Rn

FD(p), (D)

where the dual functional FD(p) is a concave function defined by

FD(p) = inf
u∈Rm

LPD(u, p) = inf
u∈Rm

〈p,Au〉 − J∗(p) + H(u) = −J∗(p)−H∗(−AT p). (22)

Note that this is equivalent to defining the dual by

FD(p) = inf
u∈Rm,w∈Rn

LP (u,w, p). (23)

Since we assumed there exists an optimal solution u∗ to the convex problem (P), it follows from
Fenchel Duality ([38] 31.2.1) that there exists an optimal solution p∗ to (D) and FP (u∗) = FD(p∗).
Moreover, u∗ solves (P) and p∗ solves (D) if and only if (u∗, p∗) is a saddle point of LPD(u, p) ([38]
31.3).

By introducing the constraint y = −AT p in (D) and forming the corresponding Lagrangian

LD(p, y, u) = J∗(p) + H∗(y) + 〈u,−AT p− y〉, (24)

we obtain yet another saddle point problem,

max
u∈Rm

inf
p∈Rn,y∈Rm

LD(p, y, u), (SPD)

which we will refer to as the split dual problem. Although u was introduced in (SPD) as a Lagrange
multiplier for the constraint y = −AT p, it actually has the same interpretation as the primal
variable u in (P). The optimality conditions for (SPD) are Au∗ ∈ ∂J∗(p∗), which agrees with (20),
and u∗ ∈ ∂H∗(y∗), which is exactly (19a) since y∗ = −AT p∗. So if (p∗, y∗, u∗) is a saddle point for
(SPD), then (u∗, p∗) is a saddle point for (PD). Note also that

FP (u) = − inf
p∈Rn,y∈Rm

LD(p, y, u).
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4.2 Algorithm Framework and Connections to PDHG

In this section we define a general version of PDHG applied to (PD) and discuss connections to
related algorithms that can be interpreted as alternating direction methods applied to (SPP) and
(SPD). These connections are summarized in Figure 1.

A useful tool for drawing connections between the algorithms in this section is the Moreau
decomposition [30, 12].

Theorem 4.1. [12] If J is a closed proper convex function on Rm and f ∈ Rm, then

f = arg min
u

J(u) +
1
2α
‖u− f‖2

2 + α arg min
p

J∗(p) +
α

2
‖p− f

α
‖2
2. (25)

It was shown in [51] that PDHG applied to TV denoising can be interpreted as a primal-dual
proximal point method applied to a saddle point formulation of the problem. More generally,
applied to (PD) it yields

Algorithm: PDHG on (PD)

pk+1 = arg max
p∈Rn

−J∗(p) + 〈p,Auk〉 − 1
2δk

‖p− pk‖2
2 (26a)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk+1, u〉+
1

2αk
‖u− uk‖2

2, (26b)

where p0 = 0, u0 is arbitrary, and αk, δk > 0. The parameters τk and θk from (15) in terms of δk

and αk are

θk =
λαk

1 + αkλ
τk =

δk

λ
.

4.2.1 Proximal Forward Backward Splitting Special Cases of PDHG

Two notable special cases of PDHG are αk = ∞ and δk = ∞. These special cases correspond
to the proximal forward backward splitting method (PFBS) [28, 34, 12] applied to (D) and (P)
respectively.

PFBS is an iterative splitting method that can be used to find a minimum of a sum of two
convex functionals by alternating a (sub)gradient descent step with a proximal step. Applied to
(D) it yields

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− (pk + δkAuk+1)‖2

2, (27)

where uk+1 ∈ ∂H∗(−AT pk). Since uk+1 ∈ ∂H∗(−AT pk) ⇔ −AT pk ∈ ∂H(uk+1), which is equivalent
to

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉,

(27) can be written as
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Algorithm: PFBS on (D)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉 (28a)

pk+1 = arg min
p∈Rn

J∗(p) + 〈p,−Auk+1〉+
1

2δk
‖p− pk‖2

2. (28b)

Even though the order of the updates is reversed relative to PDHG, since the initialization is
arbitrary it is still a special case of (26) where αk = ∞.

If we assume that J(·) = ‖ · ‖, we can interpret the pk+1 step as an orthogonal projection onto
a convex set,

pk+1 = Π{p:‖p‖∗≤1}
(
pk + δkAuk+1

)
.

Then PFBS applied to (D) can be interpreted as a (sub)gradient projection algorithm.
As a special case of ([12] Theorem 3.4), the following convergence result applies to (28).

Theorem 4.2. Fix p0 ∈ Rn, u0 ∈ Rm and let (uk, pk) be defined by (28). If H∗ is differentiable,
∇(H∗(−AT p)) is Lipschitz continuous with Lipschitz constant equal to 1

β , and 0 < inf δk ≤ sup δk <

2β, then {pk} converges to a solution of (D) and {uk} converges to the unique solution of (P).

Proof. Convergence of {pk} to a solution of (D) follows from ([12] 3.4). From (28a), uk+1 satisfies
−AT pk ∈ ∂H(uk+1), which, from the definitions of the subdifferential and Legendre transform,
implies that uk+1 = ∇H∗(−AT pk). So by continuity of ∇H∗, uk → u∗ = ∇H∗(−AT p∗). From
(28b) and the convergence of {pk}, Au∗ ∈ ∂J∗(p∗). Therefore (u∗, p∗) satisfies the optimality
conditions (19,20) for (PD), which means u∗ solves (P) ([38] 31.3). Uniqueness follows from the
assumption that H∗ is differentiable, which by ([38] 26.3) means that H(u) in the primal functional
is strictly convex.

It will be shown later in Section 4.2.3 how to equate modified versions of the PDHG algorithm
with convergent alternating direction methods, namely split inexact Uzawa methods from [49] ap-
plied to the split primal (SPP) and split dual (SPD) problems. The connection there is very similar
to the equivalence from [44] between PFBS applied to (D) and what Tseng in [44] called the alter-
nating minimization algorithm (AMA) applied to (SPP). AMA applied to (SPP) is an alternating
direction method that alternately minimizes first the Lagrangian LP (u,w, p) with respect to u and
then the augmented Lagrangian LP + δk

2 ‖Au−w‖2
2 with respect to w before updating the Lagrange

multiplier p.

Algorithm: AMA on (SPP)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉 (29a)

wk+1 = arg min
w∈Rn

J(w)− 〈pk, w〉+
δk

2
‖Auk+1 − w‖2

2 (29b)

pk+1 = pk + δk(Auk+1 − wk+1) (29c)
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To see the equivalence between (28) and (29), first note that (29a) is identical to (28a), so it
suffices to show that (29b) and (29c) are together equivalent to (28b). Combining (29b) and (29c)
yields

pk+1 = (pk + δkAuk+1)− δk arg min
w

J(w) +
δk

2
‖w − (pk + δkAuk+1)

δk
‖2
2.

By the Moreau decomposition (25), this is equivalent to

pk+1 = arg min
p

J∗(p) +
1

2δk
‖p− (pk + δkAuk+1)‖2

2,

which is exactly (28b).
In [44], convergence of (uk, wk, pk) satisfying (29) to a saddle point of LP (u,w, p) is directly

proved under the assumption that H is strongly convex. H is strongly convex with modulus α if
for 0 ≤ λ ≤ 1,

λH(u) + (1− λ)H(v)−H(λu + (1− λ)v) ≥ αλ(1− λ)‖u− v‖2
2 ∀u, v ∈ Rm.

In fact, this assumption directly implies the condition on H∗ in Theorem 4.2.

Theorem 4.3. Suppose H is strongly convex with modulus β‖A‖2
2 > 0, where ‖A‖ denotes the

operator norm of A. Then H∗ is differentiable and ∇(H∗(−AT p)) is Lipschitz continuous with
Lipschitz constant equal to 1

β .

Proof. H∗ is differentiable since H is strictly convex ([38] 26.3). Let p1 and p2 be arbitrary vectors
in Rn. Let u1 = ∇H∗(−AT p1) and u2 = ∇H∗(−AT p2), which means −AT p1 ∈ ∂H(u1) and
−AT p2 ∈ ∂H(u2). From strong convexity, it follows that ∂H is strongly monotone with modulus
β‖A‖2, meaning

〈u2 − u1,−AT (p2 − p1)〉 ≥ β‖A‖2‖u2 − u1‖2
2,

it follows that

‖A(u2 − u1)‖2
2 ≤ ‖A‖2‖u2 − u1‖2

2 ≤
1
β
〈u2 − u1,−AT (p2 − p1)〉

≤ 1
β
‖A(u2 − u1)‖2‖p2 − p1‖2

⇒ ‖A (∇H∗(−AT p2)−∇H∗(−AT p1)
) ‖2 ≤ 1

β
‖p2 − p1‖2.

The other special case of PDHG where δk = ∞ can be analyzed in a similar manner. The
corresponding algorithm is PFBS applied to (P),

12



Algorithm: PFBS on (P)

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉 (30a)

uk+1 = arg min
u∈Rm

H(u) + 〈u,AT pk+1〉+
1

2αk
‖u− uk‖2

2, (30b)

which is analogously equivalent to AMA applied to (SPD).

Algorithm: AMA on (SPD)

pk+1 = arg min
p∈Rm

J∗(p) + 〈−Auk, p〉 (31a)

yk+1 = arg min
y∈Rm

H∗(y)− 〈uk, y〉+
αk

2
‖y + AT pk+1‖2

2 (31b)

uk+1 = uk + αk(−AT pk+1 − yk+1) (31c)

The equivalence follows in much the same way as before. The pk+1 update is already the same
for both. By applying the Moreau decomposition again (25), it is possible to show that (31b) and
(31c) together are equivalent to (30b). Also the analogous version of Theorem 4.2 applies to (30).

It’s important to note that there are other ways to apply the algorithms described above.
For example, when applying PFBS to (P), we could have applied the gradient step to H(u) and
the proximal step to J(Au). This would have corresponded to swapping the roles of p and y in
AMA applied to (SPD). There is a corresponding alternate version of AMA on (SPP). But these
alternate versions aren’t considered here because they aren’t as closely connected to PDHG. In
addition, those alternate versions involve more complicated minimization steps in the sense that
variables are coupled by either the matrix A or AT .

4.2.2 Reinterpretation of PDHG as Relaxed AMA

The general form of PDHG (26) can also be interpreted as alternating direction methods applied
to (SPP) or (SPD). It differs from AMA only in that an additional proximal penalty is added to
the step which minimizes the Lagrangian. This method will be referred to as relaxed AMA.

Algorithm: Relaxed AMA on (SPP)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉+
1

2αk
‖u− uk‖2

2 (32a)

wk+1 = arg min
w∈Rn

J(w)− 〈pk, w〉+
δk

2
‖Auk+1 − w‖2

2 (32b)

pk+1 = pk + δk(Auk+1 − wk+1) (32c)
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Algorithm: Relaxed AMA on (SPD)

pk+1 = arg min
p∈Rm

J∗(p) + 〈−Auk, p〉+
1

2δk
‖p− pk‖2

2 (33a)

yk+1 = arg min
y∈Rm

H∗(y)− 〈uk, y〉+
αk

2
‖y + AT pk+1‖2

2 (33b)

uk+1 = uk + αk(−AT pk+1 − yk+1) (33c)

The equivalence of these relaxed AMA algorithms to the general form of PDHG (26) follows by
a similar argument as in Section 4.2.1.

Although equating PDHG to this relaxed AMA algorithm doesn’t yield any direct convergence
results for PDHG, it does show a close connection to the alternating direction method of multipliers
(ADMM) [20, 22], which does have a well established convergence theory [14]. If, instead of adding
proximal terms of the form 1

2αk
‖u − uk‖2

2 and 1
2δk
‖p − pk‖2

2 to the first step of AMA applied to
(SPP) and (SPD), we add the augmented Lagrangian penalties δk

2 ‖Au−wk‖2
2 and αk

2 ‖AT p− yk‖2
2,

then we get exactly ADMM applied to (SPP) and (SPD) respectively.

Algorithm: ADMM on (SPP)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉+
δk

2
‖Au− wk‖2

2 (34a)

wk+1 = arg min
w∈Rn

J(w)− 〈pk, w〉+
δk

2
‖Auk+1 − w‖2

2 (34b)

pk+1 = pk + δk(Auk+1 − wk+1) (34c)

Algorithm: ADMM on (SPD)

pk+1 = arg min
p∈Rm

J∗(p) + 〈−Auk, p〉+
αk

2
‖yk + AT p‖2

2 (35a)

yk+1 = arg min
y∈Rm

H∗(y)− 〈uk, y〉+
αk

2
‖y + AT pk+1‖2

2 (35b)

uk+1 = uk + αk(−AT pk+1 − yk+1) (35c)

ADMM applied to (SPP) can be interpreted as Douglas Rachford splitting [13] applied to (D)
and ADMM applied to (SPD) can be interpreted as Douglas Rachford splitting applied to (P)
[19, 21, 15, 14]. It is also shown in [18, 41] how to interpret these as the split Bregman algorithm
of [24]. A general convergence result for ADMM can be found in [14]. Assuming that we are most
interested in finding a solution u∗ to (P), when we apply ADMM to (SPP), we want to ensure
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that (uk, wk, pk) converges to a saddle point. One result from [18] that follows directly from the
convergence analysis of Eckstein and Bertsekas in [14] is given by the next theorem. Recall we are
assuming throughout that J and H are closed proper convex functions, and there exists a solution
to (P).

Theorem 4.4. [14, 18] Suppose H(u) + ‖Au‖2
2 is strictly convex and δk = δ > 0. Let p0 and w0

be arbitrary. Then (uk, wk, pk) satisfying (34) converges to a saddle point of LP (u,w, p).

On the other hand, when applying ADMM to (SPD), it isn’t necessary to insist that (pk, yk, uk)
converge to a saddle point if we are only interested in the convergence of {uk} to a solution of (P).
Instead we can make use of the convergence theory for the equivalent Douglas Rachford splitting
method on (P). This method is used to find u such that

0 ∈ AT ∂J(Au) + ∂H(u),

which is one way to solve (P). Formal application of the classical Douglas Rachford splitting method
yields the iterations,

ûk+1 − uk

αk
+ AT ∂J(Aûk+1) + ∂H(uk) 3 0

uk+1 − uk

αk
+ AT ∂J(Aûk+1) + ∂H(uk+1) 3 0,

where δ is thought of as a time step. Although algorithm (35) can be interpreted as Douglas
Rachford splitting applied to (P), there may be other ways to formally satisfy the Douglas Rachford
iterations. An interesting way to arrive at the version that corresponds exactly to ADMM applied
to (SPD) is to apply ADMM to yet another Lagrangian formulation of (P), namely

max
y

inf
v,u

LPDR
(v, u, y) := J(Av) + H(u) + 〈y, v − u〉.

This also yields a more implementable way of writing the Douglas Rachford splitting algorithm
[15].

Algorithm: Douglas Rachford on (P)

vk+1 = arg min
v∈Rm

J(Av) +
1

2αk
‖v − uk + αky

k‖2
2 (36a)

uk+1 = arg min
u∈Rm

H(u) +
1

2αk
‖u− vk+1 − αky

k‖2
2 (36b)

yk+1 = yk +
1
αk

(vk+1 − uk+1) (36c)

The following theorem from [15] shows that convergence of uk can be ensured with very few
assumptions.

Theorem 4.5. [15] Let αk = α > 0 and let (u0, y0) be arbitrary. Suppose (vk, uk, yk) satisfies (36).
Then {uk} converges to a solution of (P).
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4.2.3 Modifications of PDHG

In this section we show that two slightly modified versions of the PDHG algorithm, denoted
PDHGMp and PDHGMu, can be interpreted as a split inexact Uzawa method from [49] applied to
(SPP) and (SPD) respectively. In the constant step size case, PDHGMp replaces pk+1 in the uk+1

step (26b) with 2pk+1 − pk whereas PDHGMu replaces uk in the pk+1 step (26a) with 2uk − uk−1.
The variable step size case will also be discussed. The advantage of these modified algorithms is
that for appropriate parameter choices they are nearly as efficient as PDHG numerically, and some
known convergence results [49] can be applied. Convergence of PDHGMu for a special class of
saddle point problems is also proved in [35] based on an argument in [36].

The split inexact Uzawa method from [49] applied to (SPD) can be thought of as a modification
of ADMM (35) that adds 1

2‖p−pk‖D0 to (35a), where D0 is a positive definite matrix and ‖x‖2
D0

is
defined to be 〈D0x, x〉. Applying the main idea of the Bregman operator splitting algorithm from
[50], a useful choice of D0 is one that simplifies the minimization step by decoupling variables. To
apply it to (SPD) for example, we choose D0 = ( 1

δk
− αkAAT ), where 0 < δk < 1

αk‖A‖2 so that D0

is positive definite. Altogether, the objective functional for the first step of ADMM on (SPD) is
modified by adding 1

2〈p−pk, ( 1
δk
−αkAAT )(p−pk)〉. By combining terms, the new update for pk+1

can be written as

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− pk − δkAuk + αkδkA(AT pk + yk)‖2

2.

The updates for yk+1 and uk+1 remain the same. Altogether, the resulting algorithm is given by

Algorithm: Split Inexact Uzawa applied to (SPD)

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− pk − δkAuk + αkδkA(AT pk + yk)‖2

2 (37a)

yk+1 = arg min
y∈Rm

H∗(y)− 〈uk, y〉+
αk

2
‖y + AT pk+1‖2

2 (37b)

uk+1 = uk + αk(−AT pk+1 − yk+1). (37c)

The above algorithm can be shown to converge at least for fixed step sizes α and δ satisfying
0 < δ < 1

α‖A‖2 .

Theorem 4.6. [49] Let αk = α > 0, δk = δ > 0 and 0 < δ < 1
α‖A‖2 . Let (pk, yk, uk) satisfy (37).

Also let p∗ be optimal for (D) and y∗ = −AT p∗. Then

• ‖AT pk + yk‖2 → 0

• J∗(pk) → J∗(p∗)

• H∗(yk) → H∗(y∗)

and all convergent subsequences of (pk, yk, uk) converge to a saddle point of LD (24).
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Moreover, the split inexact Uzawa algorithm can be rewritten in a form that is very similar to
PDHG. Since the yk+1 (37b) and uk+1 (37c) steps are the same as those for AMA on (SPD) (31),
then by the same argument they are equivalent to the uk+1 update in PDHG (26b). From (37c),
we have that

yk =
uk−1

αk−1
− uk

αk−1
−AT pk. (38)

Substituting this into (37a), we see that (37) is equivalent to a modified form of PDHG where uk

is replaced by
(
(1 + αk

αk−1
)uk − αk

αk−1
uk−1

)
in (26a). The resulting form of the algorithm will be

denoted PDHGMu.

Algorithm: PDHGMu

pk+1 = arg min
p∈Rn

J∗(p) + 〈p,−A

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

)
〉+

1
2δk

‖p− pk‖2
2 (39a)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk+1, u〉+
1

2αk
‖u− uk‖2

2, (39b)

Similarly, the corresponding split inexact Uzawa method applied to (SPP) is obtained by adding
1
2〈u− uk, ( 1

αk
− δkA

T A)(u− uk)〉 to the uk+1 step of ADMM applied to (SPP) (34a).

Algorithm: Split Inexact Uzawa applied to (SPP)

uk+1 = arg min
u∈Rm

H(u) +
1

2αk
‖u− uk − αkA

T pk + δkαkA
T (Auk − wk)‖2

2 (40a)

wk+1 = arg min
w∈Rn

J(w)− 〈pk, w〉+
δk

2
‖Auk+1 − w‖2

2 (40b)

pk+1 = pk + δk(Auk+1 − wk+1) (40c)

Again by Theorem 4.6, the above algorithm converges for fixed stepsizes α and δ with 0 < α <
1

δ‖A‖2 . Note this requirement is equivalent to requiring 0 < δ < 1
α‖A‖2 .

Since from (40c), we have that

wk =
pk−1

δk−1
− pk

δk−1
+ Auk, (41)

a similar argument shows that (40) is equivalent to a modified form of PDHG where pk is replaced
by

(
(1 + δk

δk−1
)pk − δk

αk−1
pk−1

)
. The resulting form of the algorithm will be denoted PDHGMp.
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Algorithm: PDHGMp

uk+1 = arg min
u∈Rm

H(u) + 〈AT

(
(1 +

δk

δk−1
)pk − δk

αk−1
pk−1

)
, u〉+

1
2αk

‖u− uk‖2
2, (42a)

pk+1 = arg min
p∈Rn

J∗(p)− 〈p, Auk+1〉+
1

2δk
‖p− pk‖2

2 (42b)

The modifications to uk and pk in the split inexact Uzawa methods are reminiscent of the predictor-
corrector step in Chen and Teboulle’s predictor corrector proximal method (PCPM) [11]. Despite
some close similarities, however, the algorithms are not equivalent. The modified PDHG algorithms
are more implicit than PCPM.

The connections between the algorithms discussed so far are diagrammed in Figure 1. For
simplicity, constant step sizes are assumed in the diagram.

5 Interpretation of PDHG as Projected Averaged Gradient Method
for TV Denoising

Even though we know of a convergence result (4.6) for the modified PDHG algorithms PDHGMu
(39) and PDHGMp (42), it would be nice to show convergence of the original PDHG method (26)
because PDHG still has some numerical advantages. Empirically, the stability requirements for the
step size parameters are less restrictive for PDHG, so there is more freedom to tune the parameters
to improve the rate of convergence. In this section, we restrict attention to PDHG applied to TV
denoising and prove a convergence result assuming certain conditions on the parameters.

5.1 Projected Gradient Special Case

In the case of TV denoising, problem (P) becomes

min
u∈Rm

‖u‖TV +
λ

2
‖u− f‖2

2, (43)

with J = ‖ · ‖E , A = D and H(u) = λ
2‖u− f‖2

2, in which case PFBS on (D) simplifies to

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− (pk + δkD∇H∗(−DT pk))‖2

2.

Since J∗ is the indicator function for the unit ball, denoted X (8), in the dual norm ‖ · ‖E∗ , this is
exactly an orthogonal projection onto the convex set X (17). Letting τk = δk

λ and using also that

H∗(−DT p) =
1
2λ
‖λf −DT p‖2

2 −
λ

2
‖f‖2

2,

the algorithm simplifies to
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Figure 1: PDHG-Related Algorithm Framework
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Algorithm: Gradient Projection for TV Denoising

pk+1 = ΠX

(
pk − τkD(DT pk − λf)

)
. (44)

Many variations of gradient projection applied to TV denoising are discussed in [52]. As already
noted in [51], algorithm PDGH applied to TV denoising reduces to projected gradient descent when
θk = 1. Equivalence to (15) in the θk = 1 case can be seen by plugging uk = (f − 1

λDT pk) into the
update for pk+1. This can also be interpreted as projected gradient descent applied to

min
p∈X

G(p) :=
1
2
‖DT p− λf‖2

2, (45)

an equivalent form of the dual problem.

Theorem 5.1. Fix p0 ∈ Rn. Let pk be defined by (44) with 0 < inf τk ≤ sup τk < 1
4 , and define

uk+1 = f − DT pk

λ . Then {pk} converges to a solution of (45), and {uk} converges to a solution of
(43).

Proof. Since G is Lipschitz continuous with Lipschitz constant ‖DDT ‖ and uk+1 = ∇H∗(−DT pk) =
f − DT pk

λ , then by Theorem 4.2 the result follows if 0 < inf τk ≤ sup τk < 2
‖DDT ‖ . We can bound

‖DDT ‖ by the largest eigenvalue of DT D, which is minus the discrete Laplacian corresponding to
Neumann boundary conditions. The matrix DT D from its definition has only the numbers 2, 3 and
4 on its main diagonal. All the off diagonal entries are 0 or −1, and the rows sum to zero. Therefore,
by the Gersgorin Circle Theorem, all eigenvalues are in the interval [0, 8]. Thus ‖DDT ‖ ≤ 8, so
1
4 ≤ 2

‖DDT ‖ .

5.1.1 AMA Equivalence and Soft Thresholding Interpretation

By the general equivalence between PFBS and AMA, (44) is equivalent to

Algorithm: AMA for TV Denoising

uk+1 = f − DT pk

λ
(46a)

wk+1 = S̃ 1
δk

(Duk+1 +
1
δk

pk) (46b)

pk+1 = pk + δk(Duk+1 − wk), (46c)

where S̃ denotes the soft thresholding operator for ‖ · ‖E defined by

S̃α(f) = arg min
z
‖z‖E +

1
2α
‖z − f‖2

2.
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The general equivalence of these algorithms, which has already been demonstrated, also provides
a way to define the soft thresholding operator in terms of a projection.

A direct application of Moreau’s decomposition (25) shows that S̃α(f) can be defined by

S̃α(f) = f − αΠX(
f

α
), (47)

with ΠX defined by (17). Similar derivations work for other norms. For example, this can be used
to define the well known soft thresholding operator corresponding to l1-l2 minimization. Let

Sα(f) = arg min
u
‖u‖1 +

1
2α
‖u− f‖2

2.

Then
Sα(f) = f − αΠ{p:‖p‖∞≤1}(

f

α
),

where
Π{p:‖p‖∞≤1}(p) =

p

max (|p|, 1)
. (48)

In fact, it’s not necessary to assume that J is a norm to obtain similar projection interpretations.
It’s enough that J be a convex 1-homogeneous function, as Chambolle points out in [9] when
deriving a projection formula for the solution of the TV denoising problem. By letting z = DT p,
the dual problem (45) is solved by the projection

z = Π{z:z=DT p,‖p‖E∗≤1}(λf),

and the solution to the TV denoising problem is given by

u∗ = f − 1
λ

Π{z:z=DT p,‖p‖E∗≤1}(λf).

However, the projection is nontrivial to compute.

5.2 Projected Averaged Gradient

In the θ 6= 1 case, still for TV denoising, the projected gradient descent interpretation of PDHG
extends to an interpretation as a projected averaged gradient descent algorithm. Consider for
simplicity parameters τ and θ that are independent of k. Then plugging uk+1 into the update for
p yields

pk+1 = ΠX

(
pk − τdk

θ

)
(49)

where

dk
θ = θ

k∑

i=1

(1− θ)k−i∇G(pi) + (1− θ)k∇G(p0)

is a convex combination of gradients of G at the previous iterates pi. Note that dk
θ is not necessarily

a descent direction.
In the following section, the connection to a projected average gradient method on the dual is

made for the more general case when the parameters are allowed to depend on k. Convergence
results are presented for some special cases.
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This kind of averaging of previous iterates suggests a connection to Nesterov’s method [31].
Several recent papers study variants of his method and their applications. Weiss, Aubert and
Blanc-Féraud in [46] apply a variant of Nesterov’s method [32] to smoothed TV functionals. Beck
and Teboulle in [1] and Becker, Bobin and Candes in [2] also study variants of Nesterov’s method
that apply to l1 and TV minimization problems. Tseng gives a unified treatment of accelerated
proximal gradient methods like Nesterov’s in [45]. However, despite some tantalizing similarities
to PDGH, it appears that none is equivalent.

5.2.1 Convergence

For a minimizer p, the optimality condition for the dual problem (45) is

p = ΠX(p− τ∇G(p)), ∀τ ≥ 0, (50)

or equivalently
〈∇G(p), p− p〉 ≥ 0, ∀p ∈ X.

In the following, we denote G = minp∈X G(p) and let X∗ denote the set of minimizers. As mentioned
above, the PDHG algorithm (15) for TV denoising is related to a projected gradient method on
the dual variable p. When τ and θ are allowed to depend on k, the algorithm can be written as

pk+1 = ΠX

(
pk − τkd

k
)

(51)

where

dk =
k∑

i=0

si
k∇G(pi), si

k = θi−1

k−1∏

j=i

(1− θj).

Note that

k∑

i=0

si
k = 1, si

k = (1− θk−1)si
k−1 ∀k ≥ 0, i ≤ k, and (52)

dk = (1− θk−1)dk−1 + θk−1∇G(pk). (53)

As above, the direction dk is a linear (convex) combination of gradients of all previous iterates. We
will show dk is an ε-gradient at pk. This means dk is an element of the ε-differential (ε-subdifferential
for nonsmooth functionals), ∂εG(p), of G at pk defined by

G(q) ≥ G(pk) + 〈dk, q − pk〉 − ε,∀q ∈ X

When ε = 0 this is the definition of dk being a sub-gradient (in this case, the gradient) of G at pk.
For p and q, the Bregman distance based on G between p and q is defined as

D(p, q) = G(p)−G(q)− 〈∇G(q), p− q〉 ∀p, q ∈ X (54)

From (45), the Bregman distance (54) reduces to

D(p, q) =
1
2
‖DT (p− q)‖2

2 ≤
L

2
‖p− q‖2,

where L is the Lipschitz constant of ∇G.
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Lemma 5.2. For any q ∈ X, we have

G(q)−G(pk)− 〈dk, q − pk〉 =
k∑

i=0

si
k(D(q, pi)−D(pk, pi)).

Proof. For any q ∈ X,

G(q)−G(pk)− 〈dk, q − pk〉 = G(q)−G(pk)− 〈
k∑

i=0

si
k∇G(pi), q − pk〉

=
k∑

i=0

si
kG(q)−

k∑

i=0

si
kG(pi)−

k∑

i=0

si
k〈∇G(pi), q − pi〉

+
k∑

i=0

si
k(G(pi)−G(pk)− 〈∇G(pi), pi − pk〉

=
k∑

i=0

si
k(D(q, pi)−D(pk, pi))

Lemma 5.3. The direction dk is a εk-gradient of pk where εk =
∑k

i=0 si
kD(pk, pi).

Proof. By Lemma 5.2,

G(q)−G(pk)− 〈dk, q − pk〉 ≥ −
k∑

i=0

si
kD(pk, pi) ∀q ∈ X.

By the definition of ε-gradient, we obtain that dk is a εk-gradient of G at pk, where

εk =
k∑

i=0

si
kD(pk, pi).

Lemma 5.4. If θk → 1, then εk → 0.

Proof. Let hk = G(pk) − G(pk−1) − 〈dk−1, pk − pk−1〉, then using the Lipschitz continuity of ∇G
and the boundedness of dk, we obtain

|hk| = |D(pk, pk−1) + 〈(∇G(pk−1)− dk−1, pk − pk−1|〉| ≤ L

2
‖pk − pk−1‖2

2 + C1‖pk − pk−1‖2,

where L is the Lipschitz constant of∇G, and C1 is some positive constant. Since εk =
∑k

i=0 si
kD(pk, pi),

and
∑

i=0 si
k = 1, then εk is bounded for any k.

Meanwhile, by replacing q with pk and pk by pk−1 in Lemma 5.2, we obtain hk =
∑k−1

i=0 si
k−1(D(pk, pi)−

D(pk−1, pi)). From
si
k = (1− θk−1)si

k−1, ∀ 1 ≤ i ≤ k − 1,
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we get

εk = (1− θk−1)
k−1∑

i=0

si
k−1D(pk, pi)

= (1− θk−1)εk−1 + (1− θk−1)
k−1∑

i=0

si
k−1(D(pk, pi)−D(pk−1, pi))

= (1− θk−1)(εk−1 + hk).

By the boundness of hk and εk, we get immediately that if θk−1 → 1, then εk → 0.

Since εk → 0, the convergence of pk follows directly from classical [42, 27] ε-gradient methods.
Possible choices of the step size τk are given in the following theorem:

Theorem 5.5. [42, 27][Convergence to the optimal set using divergent series τk] Let θk → 1 and
let τk be chosen according to one of the following cases:

1. τk = λk
G(pk)−G
|dk|2 , 0 < r1 ≤ λk ≤ 2− r2 < 2.

2. τk > 0, limk→∞ τk|dk| = 0 and
∑∞

k=1 τk|dk| = ∞.

3. τk > 0, limk→∞ τk = 0 and
∑∞

k=1 τk = ∞.

Then the sequence pk generated by the method (51) satisfies G(pk) → G and dist{pk, X∗} → 0.

Since we require θk → 1, the algorithm is equivalent to projected gradient descent in the limit.
The conditions on τk also generally require τk → 0. It is well known that a divergent step size is
slow and we can expect a better convergence rate without letting τk go to 0. In the following, we
prove a different convergence result that doesn’t require τk → 0 but still requires θk → 1.

Lemma 5.6. For pk defined by (51), we have 〈dk, pk+1 − pk〉 ≤ − 1
τk
‖pk+1 − pk‖2

2.

Proof. Since pk+1 is the projection of pk − τkd
k onto X, it follows that

〈pk − τkd
k − pk+1, p− pk+1〉 ≤ 0, ∀p ∈ X.

Replacing p with pk, we thus get

〈dk, pk+1 − pk〉 ≤ − 1
τk
‖pk+1 − pk‖2

2.

Lemma 5.7. Let pk be generated by the method (51), then

G(pk+1)−G(pk)− β2
k

αk
‖pk − pk−1‖2

2 ≤ −(αk + βk)2

αk
‖pk − (

αk

αk + βk
pk+1 +

βk

αk + βk
pk−1)‖2

2

where

αk =
1

τkθk−1
− L

2
, βk =

1− θk−1

2θk−1τk−1
(55)
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Proof. By using the Taylor expansion and the Lipschiz continuity of ∇G (or directly from the fact
that G is quadratic function), we have

G(pk+1)−G(pk) ≤ 〈∇G(pk), pk+1 − pk〉+
L

2
‖pk+1 − pk‖2

2,

Since ∇G(pk) = 1
θk−1

(dk − (1− θk−1)dk−1), we have

G(pk+1)−G(pk) ≤ 1
θk−1

〈dk, pk+1 − pk〉 − 1− θk−1

θk−1
〈dk−1, pk+1 − pk〉+

L

2
‖pk+1 − pk‖2

2,

= (
L

2
− 1

τkθk−1
)‖pk+1 − pk‖2

2 −
1− θk−1

θk−1
〈dk−1, pk+1 − pk〉.

On the other hand, since pk is the projection of pk−1 − τk−1d
k−1, we get

〈pk−1 − τk−1d
k−1 − pk, p− pk〉 ≤ 0, ∀p ∈ X.

Replacing p with pk+1, we thus get

〈dk−1, pk+1 − pk〉 ≥ 1
τk−1

〈pk−1 − pk, pk+1 − pk〉.

This yields

G(pk+1)−G(pk) ≤ −αk‖pk+1 − pk‖2 − 2βk〈pk−1 − pk, pk+1 − pk〉

= −(αk + βk)2

αk
‖pk − (

αk

αk + βk
pk+1 +

βk

αk + βk
pk−1)‖2 +

β2
k

αk
‖pk − pk−1‖2.

where αk and βk are defined as (55).

Theorem 5.8. If αk and βk defined as (55) such that αk > 0, βk ≥ 0 and

∞∑

k=0

(αk + βk)2

αk
= ∞,

∞∑

k=0

β2
k

αk
< ∞, lim

k→∞
βk

αk
= 0. (56)

then every limit point pair (p∞, d∞) of a subsequence of (pk, dk) is such that p∞ is a minimizer of
(45) and d∞ = ∇G(p∞).

Proof. The proof is adapted from [4](Proposition 2.3.1,2.3.2) and Lemma 5.7. Since pk and dk are
bounded, the subsequence (pk, dk) has a convergent subsequence. Let (p∞, d∞) be a limit point of
the pair (pk, dk), and let (pkm , dkm) be a subsequence that converges to (p∞, d∞). For km > n0,
lemma 5.7 implies that

G(pkm)−G(pn0) ≤ −
km∑

k=n0

(αk + βk)2

αk
‖pk− (

αk

αk + βk
pk+1 +

βk

αk + βk
pk−1)‖2

2 +
km∑

k=n0

β2
k

αk
‖pk−1−pk‖2

2.
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By the boundness of the constraint set X, the conditions (56) for αk and βk and the fact that G(p)
is bounded from below, we conclude that

‖pk − (
αk

αk + βk
pk+1 +

βk

αk + βk
pk−1)‖2 → 0.

Given ε > 0, we can choose m large enough such that ‖pkm − p∞‖2 ≤ ε
3 , ‖pk − ( αk

αk+βk
pk+1 +

βk
αk+βk

pk−1)‖2 ≤ ε
3 for all k ≥ km, and βkm

αkm+βkm
‖(pkm−1 − p∞)‖2 ≤ ε

3 . This third requirement is

possible because limk→∞ βk
αk

= 0. Then

‖(pkm − p∞)− αkm

αkm + βkm

(pkm+1 − p∞)− βkm

αkm + βkm

(pkm−1 − p∞)‖2 ≤ ε

3

implies

‖ αkm

αkm + βkm

(pkm+1 − p∞) +
βkm

αkm + βkm

(pkm−1 − p∞)‖2 ≤ 2
3
ε.

Since βkm
αkm+βkm

‖(pkm−1 − p∞)‖2 ≤ ε
3 , we have

‖pkm+1 − p∞‖2 ≤ αkm + βkm

αkm

ε.

Note that km +1 is not necessarily an index for the subsequence {pkm}. Since limk
αk+βk

αk
= 1, then

we have ‖pkm+1 − p∞‖2 → 0 when m → ∞. According (51), the limit point p∞, d∞ is therefore
such that

p∞ = ΠX(p∞ − τd∞) (57)

for τ > 0.
It remains to show that the corresponding subsequence dkm = (1−θkm−1)dkm−1+θkm−1∇G(pkm)

converges to ∇G(p∞). By the same technique, and the fact that θk → 1, we can get ‖∇G(pkm)−
d∞‖ ≤ ε. Thus ∇G(pkm) → d∞. On the other hand, ∇G(pkm) → ∇G(p∞). Thus d∞ = ∇G(p∞).
Combining with (57) and the optimal condition (50), we conclude that p∞ is a minimizer.

In summary, the overall conditions on θk and τk are:

• θk → 1, τk > 0,

• 0 < τkθk < 2
L ,

• ∑∞
k=0

(αk+βk)2

αk
= ∞,

• limk→∞ βk
αk

= 0,

• ∑∞
k=0

β2
k

αk
< ∞,

where

αk =
1

τkθk−1
− L

2
, βk =

1− θk−1

2θk−1τk−1
. (58)

Finally, we have θk → 1, and for τk, the classical condition for the projected gradient descent
algorithm, 0 < τk < 2

L and divergent stepsize limk τk → 0,
∑

k τk → ∞, are special cases of the
above conditions. Note that even though the convergence with 0 < θk ≤ c < 1 and even θk → 0 is
numerically demonstrated in [51], a theoretical proof is still an open problem.
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6 Modified PDHG for TV Deblurring

The TV deblurring problem (1), which includes denoising as the K = I special case, was one of
the main applications of PDHG discussed in [51]. In the notation of problem (P), it corresponds
to J = ‖ · ‖E , A = D and H(u) = λ

2‖Ku − f‖2
2. In this section we consider the applications

of PDHGMu and PDHGMp to this problem and point out when the convergence theory for the
split inexact Uzawa method can be applied. In Section (8), some numerical experiments will be
presented to compare the empirical performance of the modified PDHG algorithms to the original
one.

In the variable step size case, the algorithms are given by

Algorithm: PDHGMp for TV Deblurring

uk+1 = (
1
αk

+ λKT K)−1

(
λKT f −DT

(
(1 +

δk

δk−1
)pk − δk

δk−1
pk−1

)
+

uk

αk

)
(59a)

pk+1 = ΠX

(
pk + δkDuk+1

)
, (59b)

where u0, p0 and p−1 are arbitrary, and

Algorithm: PDHGMu for TV Deblurring

pk+1 = ΠX

(
pk + δkD

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

))
(60a)

uk+1 = (
1
αk

+ λKT K)−1(λKT f −DT pk+1 +
uk

αk
), (60b)

where p0, u0 and u−1 are arbitrary. Theorem 4.6 applies when αk = α > 0, δk = δ > 0 and
δ < 1

α‖D‖2 . Choosing δ is straightforward. Since ‖D‖2 ≤ 8 (5.1), a safe choice for δ is to let
0 < δ ≤ 1

rα where r > 8. It would be interesting to extend the convergence analysis to the
case where the parameters depend on k. Letting αk be proportional to 1

k and fixing the product
αkδk < 1

‖D‖2 would result in parameters similar to those empirically optimized for PDHG in [51].
Note that from (38) and (39b), yk+1 = ∇H(uk+1), which we can substitute instead of (38)

into (37a) to get an equivalent version of PDHGMu, whose updates only depend on the previous
iteration instead of the previous two.

7 Extension to Constrained Minimization

The extension of PDHG to constrained minimization problems is discussed in [51] and applied for
example to TV denoising with a constraint of the form ‖u − f‖2 ≤ σ2 with σ2 an estimate of the
variance of the Gaussian noise. In the context of our general primal problem (P), if u is constrained
to be in a convex set S, then this still fits in the framework of (P) since the indicator function for
S can be incorporated into the definition of H(u).
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7.1 General Convex Constraint

Consider the case when H(u) is exactly the indicator function for a convex set S ⊂ Rm, which
would mean

H(u) =

{
0 if u ∈ S

∞ otherwise
.

Applying PDHG results in a primal step that can be interpreted as an orthogonal projection onto
S. We could also apply the modified PDHG algorithms (42, 39). For example, PDHGMu would
yield

Algorithm: PDHGMu for constrained minimization (u ∈ S)

pk+1 = arg min
p∈Rn

J∗(p) + 〈p,−A

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

)
〉+

1
2δk

‖p− pk‖2
2 (61a)

uk+1 = ΠS

(
uk − αkA

T pk+1
)

. (61b)

For this algorithm to be practical, the projection ΠS must be straightforward to compute. Suppose
the constraint on u is of the form ‖Ku− f‖2 ≤ ε for some matrix K and ε > 0. Then

ΠS(z) = (I −K†K)z + K†
{

Kz if ‖Kz − f‖2 ≤ ε

f + r
(

Kz−KK†f
‖Kz−KK†f‖2

)
otherwise

,

where
r =

√
ε2 − ‖(I −KK†)f‖2

2

and K† denotes the pseudoinverse of K. Also note that (I − K†K) represents the orthogonal
projection onto ker (K). A special case where this projection is easily computed is when K = RΦ
where R is a row selector and Φ is orthogonal. Then KKT = I and K† = KT . In this case, the
projection onto S simplifies to

ΠS(z) = (I −KT K)z + KT

{
Kz if ‖Kz − f‖2 ≤ ε

f + ε
(

Kz−f
‖Kz−f‖2

)
otherwise

.

7.2 Constrained l1-Minimization

Compressive sensing problems [8] that seek to find a sparse solution satisfying some data constraints
sometimes use the type of constraint described in the previous section. A simple example of such
a problem is

min
z∈Rm

‖Ψz‖1 such that ‖RΓz − f‖2 ≤ ε, (62)

where Ψ is an orthogonal matrix representing the basis in which we expect z to be sparse, R is a
row selector and Γ is orthogonal. RΓ can be thought of as a measurement matrix that represents
a selection of some coefficients in an orthonormal basis. Since Ψ is orthogonal, problem (62) is
equivalent to

min
u∈Rm

‖u‖1 such that ‖Ku− f‖2 ≤ ε, (63)

where K = RΓΨT .
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7.2.1 Applying PDHGMu

Letting J = ‖ · ‖1, A = I, S = {u : ‖Ku − f‖2 ≤ ε} and H(u) equal the indicator function for S,
application of PDHGMu yields

Algorithm: PDHGMu for Constrained l1-Minimization

pk+1 = Π{p:‖p‖∞≤1}

(
pk + δk

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

))
(64a)

uk+1 = ΠS

(
uk − αkp

k+1
)

, (64b)

where
Π{p:‖p‖∞≤1}(p) =

p

max(|p|, 1)

and

ΠS(u) = (I −KT K)u + KT


f +

Ku− f

max
(‖Ku−f‖2

ε , 1
)


 .

As before, Theorem 4.6 applies when αk = α > 0, δk = δ > 0 and δ ≤ 1
α . Also, since A = I,

the case when δ = 1
α is exactly ADMM applied to (SPD), which is equivalent to Douglas Rachford

splitting on (P).

7.2.2 Reversing Roles of J and H

A related approach for problem (63) is to define

H(z) =

{
0 ‖z − f‖2 ≤ ε

∞ otherwise
(65)

and then apply PDHGMu to the problem of minimizing H(Ku) + J(u) with the roles of J and H
reversed. This will no longer satisfy the constraint at each iteration, but it does greatly simplify
the projection step. The resulting algorithm is

Algorithm: PDHGRMu (reversed role version) for Constrained l1-Minimization

pk+1 = arg min
p

H∗(p) + 〈p,−K

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

)
〉+

1
2δk

‖p− pk‖2
2 (66a)

uk+1 = arg min
u

J(u) + 〈KT pk+1, u〉+
1

2αk
‖u− uk‖2

2 (66b)

This can be explicitly written in terms of projections as

pk+1 = pk+δkK

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

)
−δkΠ{z:‖z−f‖2≤ε}

(
pk

δk
+ K

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

))
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and

uk+1 = uk − αkK
T pk+1 − αkΠ{p:‖p‖∞≤1}

(
uk

αk
−KT pk+1

)
,

where
Π{z:‖z−f‖2≤ε}(z) = f +

z − f

max
(‖z−f‖2

ε , 1
) .

This variant of PDHGMu is still an application of the split inexact Uzawa method (37). Also,
since ‖K‖ ≤ 1, the conditions for convergence are the same as for (64). Moreover, since KKT = I,
if δ = 1

α , then this method can again be interpreted as ADMM applied to the split dual problem.
Note that Π{z:‖z−f‖2≤ε} is much simpler to compute than ΠS . The benefit of simplifying the

projection step is more important for problems where K† is not as practical to deal with numerically.
An example of such a problem would be a constrained TV deblurring problem of the form

min
u
‖Du‖E + H(Ku)

with H from (65) and K a matrix representing the blurring operator. Letting

J1(u) = 0, J2(z) = J2(w, v) = ‖w‖E + H(v)

and

z =
[
w
v

]
= Bu =

[
D
K

]
u,

we can directly apply the split inexact Uzawa method or PDHGMp to minimize J1(u) + J2(z)
subject to Bu = z.

8 Numerical Experiments

We perform three numerical experiments to show the modified and unmodified PDHG algorithms
have similar performance and applications. The first is a comparison between PDHG (26), PDHGMu
(39) and ADMM (34) applied to TV denoising. The second compares the application of PDHG
and PDHGMu to an unconstrained TV deblurring problem. The performance of PDHGMp (42)
for these examples is essentially identical to that of PDHGMu and therefore not included. The
third experiment applies PDHGMu to a compressive sensing problem formulated as a constrained
l1 minimization problem.

8.1 PDHGM, PDHG and ADMM for TV denoising

Here, we closely follow the numerical example presented in Table 4 of [51], which compares PDHG
to Chambolle’s method [9] and CGM [10] for TV denoising. We use the same 256×256 cameraman
image with intensities in [0, 255]. The image is corrupted with zero mean gaussian noise having
standard deviation 20. We also use the same parameter λ = .053. Both adaptive and fixed stepsize
strategies are compared. In all examples, we initialize u0 = f and p0 = 0. Figure 2 shows the clean
and noisy images along with a benchmark solution for the denoised image.
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Figure 2: Original, noisy and denoised cameraman images

Recall the PDHG algorithm for the TV denoising problem (43) is given by (15) with K = I.
The adaptive strategy used for PDHG is the same one proposed in [51] where

τk = .2 + .008k θk =
.5− 5

15+k

τk
. (67)

These can be related to the step sizes δk and αk in (26) by

δk = λτk αk =
θk

λ(1− θk)
.

These time steps don’t satisfy the requirements of Theorem 5.8, which requires θk → 1. However,
we find that the adaptive PDHG strategy (67), for which θk → 0, is better numerically for TV
denoising.

The PDHGMu algorithm for TV denoising is given by (60) with K = I. For PDHGMu, δk is
always taken to be

δk =
1

8.01αk
.

Due to the stability requirement for PDHGMu, using the same adaptive time steps of (67) can be
unstable. Instead the adaptive strategy we use for PDHGMu is

αk =
1

λ(1 + .5k)
. (68)

Unfortunately, no adaptive strategy for PDHGMu can satisfy the requirements of Theorem 4.6,
which assumes fixed time steps. However, the rate of convergence of the adaptive PDHGMu
strategy for TV denoising is empirically better than the fixed parameter strategies.

We also perform some experiments with fixed α and δ. A comparison is made to gradient
projection (44). An additional comparison is made to ADMM as applied to (10) with K = I.
This algorithm alternates soft thresholding, solving a Poisson equation and updating the Lagrange
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multiplier. The explicit iterations are given by

wk+1 = S̃ 1
α
(Duk +

pk

α
)

uk+1 = (λ− α∆)−1(λf + αDT wk+1 −DT pk) (69)

pk+1 = pk + α(wk+1 −Duk+1),

where S̃ is defined as in (47). This is equivalent to the split Bregman algorithm [24], which was
compared to PDHG elsewhere in [51]. However, by working with the ADMM form of the algorithm,
it’s easier to use the duality gap as a stopping condition since u and p have the same interpretations
in both algorithms. As in [51] we use the relative duality gap R for the stopping condition defined
by

R(u, p) =
FP (u)− FD(p)

FD(p)

=

(‖u‖TV + λ
2‖u− f‖2

2

)− (
λ
2‖f‖2

2 − 1
2λ‖DT p− λf‖2

2

)
λ
2‖f‖2

2 − 1
2λ‖DT p− λf‖2

2

,

which is the duality gap divided by the dual functional. The duality gap is defined to be the
difference between the primal and dual functionals. This quantity is always nonnegative, and is
zero if and only if (u, p) is a saddle point of (9) with K = I. Table 1 shows the number of iterations
required for the relative duality gap to fall below tolerances of 10−2, 10−4 and 10−6. Note that the
complexity of the PDHG and PDHGMu iterations scale like O(m) whereas the ADMM iterations
scale like O(m log m). Results for PDHGMp were identical to those for PDHGMu and are therefore
not included in the table.

From Table 1, we see that PDHG and PDHGMu both benefit from adaptive stepsize schemes.
The adaptive versions of these algorithms are compared in Figure 3, which plots the l2 distance to
the benchmark solution versus number of iterations. PDHG with the adaptive stepsizes outperforms
all the other numerical experiments, but for identical fixed parameters, PDHGMu performed slightly
better than PDHG. However, for fixed α the stability requirement, δ < 1

α‖D‖2 for PDHGMu places
an upper bound on δ which is empirically about four times less than for PDHG. Table 1 shows that
for fixed α, PDHG with larger δ outperforms PDHGMu. The stability restriction for PDHGMu is
also why the same adaptive time stepping scheme used for PDHG could not be used for PDHGMu.

Table 1 also demonstrates that larger α is more effective when the relative duality gap is large,
and smaller α is better when this duality gap is small. Since PDHG for large α is similar to
projected gradient descent, roughly speaking this means the adaptive PDHG algorithm starts out
closer to being gradient projection on the dual problem, but gradually becomes more like a form
of subgradient descent on the primal problem.

8.2 TV Deblurring Example

PDHGMu and PDHG also perform similarly for unconstrained TV deblurring (1). For this example
we use the same cameraman image from the previous section and let K be a convolution operator
corresponding to a normalized Gaussian blur with a standard deviation of 3 in a 17 by 17 window.
Letting h denote the clean image, the given data f is taken to be f = Kh + η, where η is mean
zero Gaussian noise with standard deviation 1. We set the fidelity parameter λ = 100. For the
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Algorithm tol = 10−2 tol = 10−4 tol = 10−6

PDHG (adaptive) 14 70 310
PDHGMu (adaptive) 19 92 365

PDHG α = 5, δ = .025 31 404 8209
PDHG α = 1, δ = .125 51 173 1732
PDHG α = .2, δ = .624 167 383 899
PDHGMu α = 5, δ = .025 21 394 8041
PDHGMu α = 1, δ = .125 38 123 1768
PDHGMu α = .2, δ = .624 162 355 627

PDHG α = 5, δ = .1 22 108 2121
PDHG α = 1, δ = .5 39 123 430
PDHG α = .2, δ = 2.5 164 363 742
PDHGMu α = 5, δ = .1 unstable
PDHGMu α = 1, δ = .5 unstable
PDHGMu α = .2, δ = 2.5 unstable

Proj. Grad. δ = .0132 48 750 15860

ADMM δ = .025 17 388 7951
ADMM δ = .125 22 100 1804
ADMM δ = .624 97 270 569

Table 1: Iterations Required for TV Denoising
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Figure 3: l2 error versus iterations for denoising

numerical experiments we used the fixed parameter versions of PDHG and PDHGMu with α = .2
and δ = .495. The images h, f and the benchmark recovered image from 50000 iterations of
PDHGMu are shown in Figure 4. Figure 5 compares the l2 error to the benchmark solution as a

Student Version of MATLAB Student Version of MATLAB Student Version of MATLAB

Figure 4: Original, blurry/noisy and recovered cameraman images

function of number of iterations for PDHG and PDHGMu. Empirically, with the same parameters,
the performance of these two algorithms is nearly identical, and the curves are indistinguishable in
Figure 5.

8.3 PDHGMu for Constrained l1 Minimization

Here we compare PDHGMu (64) and the reversed role version, PDHGRMu (66), applied to the
compressive sensing problem given by (63) with ε = .01. Let K = RΓΨT , where R is a row selector,
Γ is an orthogonal 2D discrete cosine transform and Ψ is orthogonal 2D Haar wavelet transform.
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Figure 5: l2 error versus iterations for deblurring

It follows that KKT = I and K† = KT . R selects about ten percent of the DCT measurements,
mostly low frequency ones. The constrained l1 minimization model aims to recover a sparse signal
in the wavelet domain that is consistent with these partial DCT measurements [7].

For the numerical experiments, we let α = 1 and δ = 1. That means that both versions of
PDHGMu applied this problem can be interpreted as different applications of ADMM to (SPD), or
equivalently Douglas Rachford splitting applied to (P). Let h denote the clean image, which is a
32 by 32 synthetic image shown in figure 6. The data f is taken to be RΓh. For the initialization,
let p0 = 0 and let u0 = Ψz0, where z0 = ΓT RT RΓh is the backprojection obtained by taking
the inverse DCT of f with the missing measurements replaced by 0. Let u∗ denote the solution
obtained by 25000 iterations of PDHGRMu. Figure 6 shows h, z0 and z∗, where z∗ = ΨT u∗.

Both versions of PDHGMu applied to this problem have simple iterations that scale like O(m),
but they behave somewhat differently. PDHGMu (64) by definition satisfies the constraint at each

Student Version of MATLAB Student Version of MATLAB Student Version of MATLAB

Figure 6: Original, damaged and recovered images
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Figure 7: Comparison of PDHGRMu and PDHGMu

iteration. However, these projections onto the constraint set destroy the sparsity of the approximate
solution so it can be a little slower to recover a sparse solution. PDHGRMu (66) on the other hand
more quickly finds a sparse approximate solution but can take a long time to satisfy the constraint
to a high precision.

To compare the two approaches, we compare plots of how the constraint and l1 norm vary with
iterations. Figure 7(a) plots |‖Kuk − f‖2− ε| against the iterations k for PDHGRMu. Note this is
always zero for PDHGMu, which stays on the constraint set. Figure 7(b) compares the differences
|‖uk‖1−‖u∗‖1| for both algorithms on a semilog plot, where ‖u∗‖1 is the l1 norm of the benchmark
solution. The empirical rate of convergence to ‖u∗‖1 was similar for both algorithms despite the
many oscillations. PDHGRMu was a little faster to recover a sparse solution, but PDHGMu has
the advantage of staying on the constraint set. For different applications with more complicated
K, the simpler projection step for PDHGRMu would be an advantage of that approach.
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