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Abstract

In this work, inspired by [3] and [13], we give a continuous relaxation
of the Cheeger cut problem on a weighted graph. We show that the
relaxation is actually equivalent to the original problem, and based on
[8, 16], we give an algorithm which experimentally is very efficient on some
clustering benchmarks. We also give a heuristic variant of the algorithm
which is faster but often gives just as accurate clustering results.

1 Introduction

Over the past several years, spectral clustering methods have become very
popular; see [12] and [14] for an excellent introduction. These methods
start with a (nonnegative, symmetric) matrix W which collects the relative
similarities between a set of points V to be clustered, and then makes the
assumption that in some sense, the cluster indicators should be smooth
with respect to W . A simple such notion is that the length of the boundary
of the clusters should be small relative to their area. This motivates the
definition of the Cheeger cut value of a partition P = {V1, V2} of V into
two pieces given by

C(V1, V2) =
Cut(V1, V2)

min(|V1|, |V2|)
,

where
Cut(V1, V2) =

∑

i∈V1,j∈V2

Wij ,

and |V | is just the cardinality of V . Since finding the optimal Cheeger
cut is NP-hard, the Cheeger cut is usually approximated by the second
eigenvalue of the combinatorial Laplacian D − W , where Dii =

∑

j Wij ,
such that:

1

2maxi Dii
C2 ≤ λ2 ≤ 2C.
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See [4] for the continuous version, and for the discrete version, see [5]. Note
also that the parametric max flow-min cut (a.k.a. graph-cut) was used in

[9] to minimize the biased ratio cut Cut(V1,V2)
|V1|

, but cannot be used to solve

the unbiased ratio cut defined as Rcut(V1, V2) = Cut(V1,V2)
|V1|

+ Cut(V1,V2)
|V2|

,
which is NP-hard.
Using the Raleigh quotient formula for the eigenvalue gives

λ2 = arg min
f∈L2(V )

H2(f)

= arg min
f∈L2(V )

∑

||∇f ||2

||f − M(f)||22
,

where for p ≥ 1, ||∇f ||p at i is given by

||∇f ||p(i) =
∑

j

Wij |f(i) − f(j)|p,

and where M(f) is the mean of f . The functional H2 measures smooth-
ness. It has long been known that L2 measures of smoothness are not
as well suited for dealing with functions with jumps as L1 measures of
smoothness; in image processing, see for example [11]. Very recently in
[3] (also see [1]), it was shown that

lim
p 7→1

min
f

∑

i ||∇f ||p(i)

minc ||f − c||pp
= min

P
C(P ).

With this in mind we can relax the problem

min
P

C(P )

as follows: for any binary valued function f = χV1
, V1 ( V ,

||f − m(f)||1 =

{

|V2| |V1| > |V2|
|V1| |V1| ≤ |V2|,

where m(f) is the median of f , and V2 is the compliment in V of V1. Then

∑

i ||∇fP ||(i)

||fP − m(fP )||1
= 2

∑

vi∈V1

∑

vj∈V2
Wij

min(|V1|, |V2|)

= 2C(V1, V2).

Thus

min
f

∑

i ||∇f ||(i)

||f − m(f)||1
(1)

is a relaxation of the Cheeger cut problem, and

min
f

∑

i ||∇f ||(i)

||f − m(f)||1
≤ min

P
C(P ).

In this work we will show that the inequality (1) is actually an equality,
and for any solution f of the relaxed minimization that there is a threshold
γ so that the binary function

fγ =

{

1 f > γ
0 f ≤ γ,
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has the same energy as the minimum cut. A similar approach has been
studied in the continuous setting by Strang in [13]. We will then give an
algorithm for minimizing the ratio energy which is experimentally efficient,
and then another algorithm for minimizing a similiar but easier energy.
Finally, we will provide some experiments on the quality of the clusterings
given by the algorithms we have presented.

2 Equivalence of the TV problem and

the Ratio Cut problem

In this section we fix a set of points V and a similarity matrix W between
these points. For a function f : V 7→ R

|f |TV =
∑

i

||∇f ||.

Note that this is a norm on the set of function modulo constants. As
before, denote the median of f by m(f).

Lemma 2.1. A function f : V 7→ R is an extreme point of the TV unit
ball if and only if there is a number α such that f = αχS , where S ( V .

Proof. Denote by {a1, ..., an} the distinct values of f arranged in in-
creasing order. Let Sr = {v : f(v) = ar}, S+

r = {v : f(v) > ar},
and S−

r = {v : f(v) < ar} pick indices t and s with t 6= s, and let
g = f + ǫsχSs + ǫtχSt ; and h = f − ǫsχSs − ǫtχSt , where ǫs and ǫt will
be chosen in a moment. Note that adding ǫsχSs to f changes its total
variation by

ǫs





∑

i∈Ss,j∈S−

s

Wij −
∑

i∈Ss,j∈S+
s

Wij



 ,

and adding ǫtχSt to the resulting function changes the total variation by
the corresponding expression with St, and and as long as ǫs and ǫt are
chosen small enough to not upset the order of the values of f , the changes
are independent. Thus by keeping

ǫs = −

∑

i∈Ss,j∈S−

s
Wij −

∑

i∈Ss,j∈S+
s

Wij
∑

i∈St,j∈S−

t
Wij −

∑

i∈St,j∈S+
t

Wij
ǫt,

and picking both small enough so that the order of the values does not
change, we get that |g|TV = |h|TV = 1. Then f = g/2 + h/2, and so f is
not an extreme point of the ball. To prove the converse, let f = αχS, and
suppose that βg + (1− β)h = f , for some g and h in the TV unit ball on
W . Let W ∗ be the weighted subgraph of W given by

W ∗
ij :=

{

Wij i ∈ S and j ∈ Sc

0 otherwise,

Note that on W ∗, still βg + (1 − β)h = f ; and |f |TV(W∗) = 1. By the
sublinearity of the TV(W ∗) norm

1 ≤ β|g|TV(W∗) + (1 − β)|h|TV(W∗),
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but the choice of g and h show that

β|g|TV(W∗) + (1 − β)|h|TV(W∗) ≤ β + (1 − β) = 1,

and so
1 = |g|TV(W∗)

and
|h|TV(W∗) = 1.

Therefore both h and g are constant on S and Sc, and were thus, up to a
constant, multiples of f .

We will need a slightly sharper version of of Lemma 2.1 below; however,
the proof is essentially the same.

Lemma 2.2. Let W be a weighted graph, and let I+ and I− be a partition
of V . Let Q be the set of vectors in Rn such that f is nonnegative in the
coordinates I+, and nonpositive in the coordinates I−; let B be the TV
norm unit ball on Q. The vector f is an extreme points of B if and only
if there exists a number α with f = αχS , where S ( V .

Proof. The “if” direction is as above. The proof of the “only if” direction
proceeds exactly as in Lemma 2.1 if f takes positive and negative values.
If f takes nonegative values, then the proof above works as long as we
choose at > as > 0; and similarly for the nonpositive case.

Theorem 2.3. Consider the problem

λ = min
f

|f |TV

||f − m(f)||1
.

There is a binary valued minimizer, and

λ = min
S

Cut(S)

min (|S|, |Sc|)
.

Furthermore, for any minimizer f , there is a number γ so that the function

fγ =

{

1 f > γ
0 f ≤ γ,

is also a minimizer.

Proof. Suppose f is a minimizer. If |f |TV = 0, the characteristic function
of the support of f is binary and also has TV norm zero. If not, because
the functional has homogeneity 0, we can rescale f to fix the numerator
of the energy as |f |TV = 1; f is thus a maximizer for the denominator,
constrained to the TV ball. Because both numerator and denominator are
unchanged by the addition of a constant to f , we may restrict attention
to f with m(f) = 0. Let I1 be the indices where f ≤ 0, and let I2 be
the indices where f > 0. Note that any function nonpositive on I1 and
nonnegative on I2 also has median 0; denote this set of functions by Q.
Denote by B the TV norm unit ball on Q. By definition, f is a solution
to maxB ||f ||1 . The set B is convex, and || · ||1 is a convex function on B,
so it takes its maximum at an extreme point; by Lemma 2.2, there is a
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binary valued maximizer g = αχS for some set S, and the energy of g is
exactly Cut(S)

min(|S|,|Sc|)
.

To see the last part of the statement, note that f can be written as
f =

∑

βigi where the gi are extreme points (and therefore characteristic
functions), βi > 0, and

∑

βi = 1. Because the L1 norm is linear on the
quadrant that f lies in, all the gi are also minimizers. It thus suffices to
pick γ to be the value of the greatest valued gi.

3 A Split-Bregman algorithm for ratio

minimization

In this section, we show how to solve two minimization problems. The
first minimzation problem is the following:

min
f∈R

|f |TV

||f − m(f)||1

which is equivalent to solve the constrained minimization problem [6]:

min
u

max
λ

|f |TV − λ||f ||1 s.t. m(f) = 0.

We will use the following iterative process:
Algorithm 1:
While not converged do:
1. fn+1/2 = arg minf |f |TV − λn||f ||1 (*)
2. fn+1 = fn+1/2 − m(fn+1/2)
3. λn+1 = |fn+1|TV/||fn+1||1
End while.
The minimization problem (*) belongs to the class of L1-regularized prob-
lems. Several schemes have been introduced in the literature to solve this
class of problems. In this work, we will use the efficient split-Bregman
method originally introduced in [8] to solve the TVL2 problem and the
compressed sensing problem and extended in [16] for the non-local/graph
framework. However, the minimization (*) is slightly different from [8, 16]
for two reasons. Firstly, it uses a negative L1 term, i.e. −||f ||1, which
requires a new minimizing operator different from wavelet shrinkage. Sec-
ondly, the graph-based TV norm is anisotropic unlike the anisotropic
graph-based TV defined in [16]. We now develop the numerical scheme.
Energy (*) can be written as:

min
f

∑

i

∑

j∼i

wij |fj − fi| − λ|fi|.

We introduce two splitting variables to deal with the two L1 norms:

min
f,d,e

∑

i

∑

j∼i

wij |dij | − λ|ei| s.t. dij = fj − fi, ei = fi.
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Then, the Bregman iteration method [2, 10] is used to solve the previous
constrained minimization problem as follows:















(fk+1, dk+1, ek+1) = arg minf,d,e

∑

i

∑

j∼i wij |dij | − λ|ei|+
λ1

2
(dij − (fj − fi) − bk

ij)
2 + λ2

2
(ei − fi − ck

i )2

bk+1
ij = bk

ij + fk+1
j − fk+1

i − dk+1
ij

ek+1
i = ek

i + fk+1
i − ek+1

i

(2)

The first line is solved by alternate minimization since the total energy is
convex. First, the Euler-Lagrange equation of the minimization problem
w.r.t. f defined as:

min
f

∑

i

∑

j∼i

λ1

2
(dij − (fj − fi) − bk

ij)
2 +

λ2

2
(ei − fi − ck

i )2

is given by:

λ1

∑

j∼i

(dij − dji − 2(fj − fi) − bk
ij + bk

ji) + λ2(fi − ei + ck
i ) = 0

whose solution, we call fk+1, is given by a few Gauss-Seidel iterations as
follows:

fk+1,m+1
i =

1

2λ1

∑

j∼i +λ2

(

− λ1

∑

j∼i

(dij − dji − bk
ij − 2fm

j + bk
ji) + λ2(ei − ck

i )
)

(3)

starting from fk+1,m=0 = fk.
The minimization process (2) w.r.t. d is defined as:

min
d

∑

i

∑

j∼i

wij |dij | +
λ1

2
(dij − (fk+1

j − fk+1
i ) − bk

ij)
2

whose solution is known as the shrinkage operator [7]:

dk+1
ij =

fk+1
j − fk+1

i + bk
ij

|fk+1
j − fk+1

i + bk
ij |

max
(

|fk+1
j − fk+1

i + bk
ij | −

wij

λ1
, 0

)

(4)

Finally, the minimization process (2) w.r.t. e is:

min
e

∑

i

−λ|ei| +
λ2

2
(ei − ui − ck

i )2 (5)

whose solution is different from the minimizing solution given by the
shrinkage operator as in (4) because of the minus sign in front of the
L1 norm, i.e. −|.|. However, the minimizing solution of (5) has also a
nice closed-form solution defined as:

ek+1
i = fk+1

i + ck
i +

fk+1
i + ck

i

|fk+1
i + ck

i |

λ

λ2
(6)

Alternating (3), (4) and (6) until convergence provides the solution fn+1/2 =
fk→∞.
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The second minimization problem that we want to solve is the follow-
ing (this iterative scheme is faster than the previous one):
Algorithm 2:
While not converged do:
1. Minimize a few steps |f |TV, call fn+1/3 the solution after a few steps
(**)
2. fn+1/2 = fn+1/3 − mean(fn+1/3)

3. Compute fn+1 s.t.
∑

i f
n+1/2
i = ct

End while.
The minimization step (**) can be done using a similar approach as the
first model. Indeed, a few steps of minimization of (**) can be done with
this iterative scheme:
{

(fk+1, dk+1) = arg minf,d,e

∑

i

∑

j∼i wij |dij | +
λ1

2
(dij − (fj − fi) − bk

ij)
2

bk+1
ij = bk

ij + fk+1
j − fk+1

i − dk+1
ij

The minimization w.r.t. f is done by a few Gauss-Seidel iterations as
follows:

fk+1,m+1
i = −

1

2
∑

j∼i

∑

j∼i

(dij − dji − 2fm
j − bk

ij + bk
ji)

starting from fk+1,m=0 = fk.
Finally, the minimizing solution w.r.t. d is:

dk+1
ij =

fk+1
j − fk+1

i + bk
ij

|fk+1
j − fk+1

i + bk
ij |

max
(

|fk+1
j − fk+1

i + bk
ij | −

wij

λ1
, 0

)

4 Experiments

In all experiments we use a 10-NN graph with the self-tuning weights as in
[15], and the neighbor parameter set to 10. The optimization parameters
for algorithm 1 for all expriments are fixed as follows: λ1 = 1, λ2 = 1.5,
the number of n iterations is 15, the number of k iterations is 30 and
the number of m is 5. The optimization parameters for algorithm 2 for
all expriments are fixed as follows: λ1 = 0.3, the number of n iterations
is 50, the number of k iterations is 1 and the number of m is 15. Both
methods are intialized by multiplying the indicator of a random point by
the averaging-normalized weight matrix D−1W (where Dii =

∑

j Wij)
1000 times.

4.1 MNIST

We test on the combined training and test samples from the MNIST
dataset, available at http://yann.lecun.com/exdb/mnist/. This data
set consists of 70000 28 × 28 images of handwritten digits, 0 through 9.
The data was preprocessed by projecting onto 50 principal components.
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mode/true 0 1 2 3 4 5 6 7 8 9
0 6857 2 30 3 4 26 23 3 9 12
1 4 3642 8 3 3 1 9 13 26 1
1 1 4013 3 4 5 0 5 10 20 5
2 5 109 6855 48 4 1 1 36 8 5
3 3 26 15 6931 4 6170 14 5 257 170
4 1 18 4 1 6612 4 6 20 10 56
6 18 4 5 4 15 72 6815 0 19 3
7 3 12 34 24 10 3 0 7122 10 62
8 5 14 30 102 6 14 3 11 6448 33
9 6 37 6 21 161 22 0 73 18 6611

Figure 1: Confusion matrix for the clustering of MNIST using the relaxed
Cheeger model (Algorithm 1). Each row is a cluster; the number in the leftmost
column of each row is the dominant label of that cluster. The 3’s and 5’s are
merged, but otherwise the clustering is very accurate. The total computation
time (not including constructing the weights) was 2710 seconds (∼ 45 minutes).

The goal in this data set is to discover the 10 digit classes. The meth-
ods described above give a binary clustering, so in order to obtain 10
clusters, we iteratively subdivide in the standard way. That is, we tenta-
tively divide each of the l current clusters in two, and keep the division
minimizing the sum of the Cheeger cut values between each cluster and
the union of all the others; now we have l + 1 clusters, and we repeat till
we have 10.

The confusion matrices for the results of the clustering using the re-
laxed Cheeger algorithm and the constrained TV algorithm are presented
in Figures 1 and 4.1

4.2 Two moons

We construct the two moons data set as in [3]. We take the half of a
circle of radius one in R2 with positive second coordinate sampled with a
thousand points, and the half with negative second coordinate also sam-
pled at a thousand points, but shifted 1 in the positive first coordinate
direction, and .5 in the positive second coordinate direction. The data set
is embedded in R100, and Gaussian noise with σ = .02 is added.

We calculate the clustering with the relaxed Cheeger cut model and
the constrained TV model over 100 instantations of the data set. The
average errors and run times are in Figure 4.2
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mode/true 0 1 2 3 4 5 6 7 8 9
0 6846 4 28 2 3 17 15 7 4 16
1 0 3983 1 0 3 0 2 10 11 4
1 3 3628 5 2 6 1 7 17 16 1
2 6 82 6834 46 7 1 2 30 9 5
3 6 58 20 6948 2 6194 48 5 348 165
4 0 18 5 2 6598 4 3 23 12 67
6 23 5 6 1 49 45 6786 0 12 9
7 1 13 54 30 9 3 0 7107 11 52
8 13 57 30 83 5 24 13 6 6379 20
9 5 29 7 27 142 24 0 88 23 6619

Figure 2: Confusion matrix for the clustering of MNIST using the constrained
TV model (Algorithm 2). Each row is a cluster; the number in the leftmost
column of each row is the dominant label of that cluster. The 3’s and 5’s
are merged, but otherwise the clustering is very accurate; the accuracy is only
slightly less than the clustering using Algorithm 1. The total computation time
(not including constructing the weights) was 428 seconds (∼ 7 minutes).
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(a) Second eigenvector of the Lapla-
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282(= 784) dimensions.
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(a) Second eigenvector of the Laplacian. (b) Optimal Cheeger cut obtained by
thresholding the second eigenvector of the
Laplacian, value is 0.60.

(c) Output of algorithm 1. (d) Optimal Cheeger cut, value is 0.41.

(e) Histogram of the second eigenvec-
tor of the Laplacian.

(f) Histogram of the output of algo-
rithm 1.

Figure 6: Results for the two moons dataset, 2000 points in 100 dimensions.
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