
A Practical Path-planning Algorithm for a Vehicle with a Constrained
Turning Radius: a Hamilton-Jacobi Approach

Ryo Takei1, Richard Tsai2, Haochong Shen3, and Yanina Landa1

Abstract— We consider the problem of optimal path planning
of a forward moving simple car with a minimum turning radius
(a Dubins’ car), in a known environment possibly containing
inpenetrable obstacles. We model this problem in the Hamilton-
Jacobi partial differential equation framework, and provide a
finite difference numerical method to solve it. Furthermore, we
introduce and demonstrate a scheme based on this framework
to steer a micro-car on a testbed [29].

I. INTRODUCTION

We consider the problem of generating the shortest curve
from an initial position x0 and a tangent direction θ0 to
a target position xf (and possibly also a tangent direction
θf), with a lower bound on the curvature. This problem
arises when optimally steering a simple car – a vehicle
with a fixed rear axle and a pair of turning front wheels,
as in Fig. 1. If the wheels have a maximum turning angle
constraint, |φ| ≤ φmax, it can be shown that, equivalently,
the curvature of a forward-moving path is bounded below by
ρmin = L/ tan(φmax), where L is the distance between the
front and rear axles [1, Chapter 13]. Steering such a vehicle
is a non-trivial task, especially in the presence of obstacles
and/or with the freedom of reversing direction.

Fig. 1. A simple car.

A. Previous Work for Curvature Constrained Path Planning

Traditionally, combinatorial methods based on path ge-
ometry have been the primary tools for constrained path-
planning problems. The problem of finding the shortest path
under the curvature contraint was first introduced in the
pioneering work of Dubins [2], where he characterized such
paths in two dimensions in the absence of obstacles. In the
robotics community, a Dubins’ car refers to a vehicle with

1Dept. of Mathematics, University of California Los Angeles, Los
Angeles, CA 90095 {rtakei, ylanda}@math.ucla.edu

2Dept. of Electrical Engineering, University of California Los Angeles,
Los Angeles, CA 90095 hshen@ee.ucla.edu

3Dept. of Mathematics, University of Texas at Austin, Austin, TX 78704
ytsai@math.utexas.edu

a minimum turning radius that only moves forward. Reeds
and Shepp [3] investigated its variant (still in the absence
of obstacles), called the Reeds-Shepp’s car, allowing for
reversal. Both Dubins’ and Reeds-Shepp’s cars have optimal
paths that could be classified into known permutations of a
sequence consisting of bang-bang controls; that is, traveling
straight, turning fully right or fully left, and, for the latter
car, reversing direction. Reachability problems of such cars
have been studied in [4], [5].

There are several approaches for computing curvature-
constrained optimal paths. Barraquand and Latombe [6]
considered creating a reachability tree assuming that, for
example, a Dubins’ car would locally only move straight,
fully right or fully left for a short distance. The tree is
grown from the target point backwards until one of the leaves
reaches the starting point. Unnecessary cluttering of leaves
can be avoided by partitioning the domain into cells and
restricting to one leaf per cell [1, Chapter 14].

In the presence of obstacles, global approaches for the
Dubins’ car problem have extended the analysis of character-
izing path geometries. For n polygonal obstacles, Wang and
Agarwal [7] gave a O((n2/ε2) log n) algorithm to construct
a path that is no longer than (1 + ε) times the shortest ε-
robust path. Informally, a path is ε-robust if pertubations by
ε/2 is still feasible. For similar results for a more general
class of obstacles see [8] and [9].

Jacobs and Canny [10] presented a grid search algorithm
(also computing ε-robust paths), where certain nodes are
strategically placed along the obstacle edges. Their setup is
somewhat similar to the one proposed in this paper in that
each node represents both the position and orientation of the
vehicle. Two nodes are adjacent if there is a collision free
trajectory connecting them. Then Dijkstra’s algorithm [11]
is applied to find the shortest path among ordered sequences
of adjacent nodes.

Reif and Wang [12] developed a non-uniform grid algo-
rithm in higher dimensions using the obstacle-free optimal
paths as building blocks to construct optimal paths among
obstacles. Lee et. al. [13] considered the problem of finding
an optimal curvature-bounded path that passes through a
sequence of way-points known a priori. For the Reeds-
Shepp’s car, a two phase algorithm of Laumond and Jacobs
[14] first finds a feasible path ignoring curvature constraints,
then modifies the path to satisfy them; the method is efficient,
but the resulting paths need not be optimal.

Our approach is very similar to that of [15]: first determine
a cost-to-go function (the value function (6)), then use it to
compute individual trajectories. In [15], the cost-to-go func-

tion is determined by discretizing the dynamic programming
principle (7) on tetrahedrons constructed using barycentric
coordinates. Instead, we propose to discretize a related partial
differential equation (PDE). Thus, we can exploit the well-
developed theory of such PDEs and the corresponding robust
and simple-to-implement numerical methods.

B. The Hamilton-Jacobi Formulation for Path Planning

In comparison to traditional methods, we introduce a
PDE characterization of the problem: a Hamilton-Jacobi (HJ)
equation.

The HJ equation is a first order non-linear PDE that has
the general form [16]

H(∇u(x),x) = r(x). (1)

One of the most commonly known HJ formulation for path
planning is the eikonal equation, where H(∇u(x),x) =
|∇u(x)| and r(x) = 1. Coupled with a boundary condition
u|Γ = 0, it encodes the distance to the set Γ. An important
property of the eikonal equation is that its characteristic
curves coincide with optimal paths.

The underlying concept in the derivation of the eikonal
equation and other optimal control problems is the celebrated
dynamic programming principle (DPP) [17]. We will illus-
trate this when deriving our HJ equation in section II-B. Note
that, while the DPP can be used to derive an algorithm, the
HJ equation gives a closed-form solution to the problem. For
a mathematical treatment of DPP and HJ equations, see [19],
[18].

To numerically solve the eikonal equation (and more
general HJ equations), we mention the idea introduced in
[20]: from a grid node, the scheme is derived by tracing the
characteristics in the upwind direction and reconstructing the
solution value at the nearest intersection of the characteristics
and the grid by suitable interpolation using neighboring grid
nodes. Similar ideas are used for the fast marching method
[21], [22], which is a variant of Dijkstra’s algorithm, and the
fast sweeping method [23], [24]. In contrast, in the method
of reachability trees [6], the paths are globally traced out
ignoring grid nodes. For numerical methods for more general
HJ equations, see [25], [26], [27].

C. Paper Overview

The main contribution of this article is two-folds. First, in
section II-B, we formally derive a HJ equation for the Du-
bins’ car problem. To the authors’ knowledge, this approach
is new. In sections II-C and II-E, we provide a numerical
discretization to solve the HJ equation and show numerical
results.

Secondly, in section III-A, we introduce a practical scheme
for steering an actual vehicle in a bounded domain with
obstacles. We argue that the aforementioned HJ formulation
is particularly suited for such a problem. In section III-C,
the performance of this algorithm is validated in a testbed
setting.

II. THE HAMILTON-JACOBI FORMULATION

A. Definitions and Setup

Let Ω ⊂ R2 be a bounded, connected domain, which we
call a map. The map is partitioned into its free space and
obstacles: Ω = Ωfree∪Ωobs. We will denote by x = (x, y) ∈
Ω a point (the location) on the map. Let the pose be the
ordered triple of the location and orientation (in radians) of
the vehicle: (x, θ) = (x, y, θ) ∈ Ω × [0, 2π). Define a path
or a trajectory as a curve (x(·), θ(·)) : [0,∞)→ Ω× [0, 2π)
parametrized by arc-length in Ω:

|ẋ(s)| = 1, s > 0. (2)

Note the relations

θ(s) = tan−1(ẏ(s)/ẋ(s)), (3)
ẋ(s) = (cos(θ(s)), sin(θ(s))), (4)

where ever x(·) is smooth. We say that a path is feasible
if it is contained in Ωfree × [0, 2π). The average curvature
between two parametrization variables s1, s2 > 0 of a path
(x(·), θ(·)) is defined as ACx(s1, s2) = |θ(s2)−θ(s1)|/|s1−
s2|.

Throughout this article, we assume that the vehicle travels
with unit speed (which is automatically implied by (2)) and
has a turning angle constraint that induces the constraint
ACx ≥ ρmin > 0, where ρmin is the minimum turning
radius. It is easy to see that if θ(·) is differentiable, the
constraint is equivalent to

|θ̇(s)| ≤ ρ−1
min, s > 0. (5)

Denote Aρmin,x0,θ0 the set of admissible path from the
pose (x0, θ0), that is, feasible paths that satisfy (2), (5)
and (x(0), θ(0)) = (x0, θ0). Such paths are precisely the
trajectories generated by the Dubins’ car among impenetrable
obstacles.

Finally, given a target point xf we define the correspond-
ing value function u : Ω× [0, 2π)→ R+ ∪ {0}:

u(x, φ) = inf{t : (x(·), θ(·)) ∈ Aρmin,x,φ,x(t) = xf}. (6)

In case the final orientation of the vehicle is specified, there
is an additional condition θ(t) = θf . In other words, the
function u is the optimal cost-to-go for the Dubins’ car
problem with given constraints, an initial pose, and a target
position (or a pose).

B. Formal Derivation of the Hamilton-Jacobi Equation

Using (6), we start with the dynamic programming prin-
ciple for our problem:

u(x, φ) =
inf{u(x(∆t), θ(∆t)) + ∆t : (x(·), θ(·)) ∈ Aρmin,x,φ}.

(7)
Rearranging the terms, dividing by ∆t, and taking ∆t→ 0,
we have,

−1 = inf{∇u · (ẋ, θ̇) : |ẋ| = 1, |θ̇| ≤ ρ−1
min}. (8)

Furthermore, by applying (4) we obtain the Hamilton-Jacobi-
Bellman equation [19]:

−1 = cos(θ)ux + sin(θ)uy + inf
|θ̇|≤ρ−1

min

{θ̇uθ}, (9)

where subscripts denote partial derivatives. Finally, the in-
fimum in the last term can be eliminated by assuming the
bang-bang principle

θ̇ = ±ρ−1
min. (10)

Thus, we arrive at the HJ equation

−1 = cos(θ)ux + sin(θ)uy − |uθ|/ρmin. (11)

Since the target has zero cost-to-go, we have the following
boundary conditions: u(xf , θf) = 0, or u(xf , θ) = 0 for θ ∈
[0, 2π), if no final orientation is given. The obstacles can be
interpreted as the locations of infinite cost-to-go: u(x, θ) =
∞ for x ∈ Ωobs, θ ∈ [0, 2π).

It can be shown that the bang-bang control (10) does not
characterize optimal trajectories if the obstacle boundaries
have curvature between 0 and 1 [9]. If such obstacle bound-
aries exist, the bang-bang control will induce infinite switch-
ing of controls to trace the boundaries. Such a phenomenon
is referred to as chattering control [19]. In a numerical
setting, the number of switchings is O(1/h), where h is
the grid refinement. As h → 0, the resulting numerical
path approaches the true optimal path, even when (10) is
implemented.

C. Numerical Implementation

To solve (11), we propose an upwind, monotone finite
difference discretization, and a fast sweeping update scheme.
Set up a three dimensional uniform Cartesian grid with
refinement (hx, hy, hθ). Let ui,j,k ≈ u(ihx, jhy, khθ) be
the approximation of the solution at the grid nodes. Denote
ξk = sgn(cos(θk)) and νk = sgn(sin(θk)). We approximate
the derivatives by upwind discretizations

(cos(θ)ux)i,j,k = −| cos(θk)|ui+ξk,j,k − ui,j,k
hx

, (12)

(sin(θ)ux)i,j,k = −| sin(θk)|ui,j+νk,k − ui,j,k
hx

, (13)

and a monotone discretization [28](
|uθ|
ρmin

)
i,j,k

= max
{
ui,j,k+1 − uijk

ρminhθ
,
ui,j,k−1 − ui,j,k

ρminhθ
, 0

}
.

(14)
For simplicity, we set hx = hy = h. Substituting (12), (13),
and (14) into (11), and solving for uijk, we have

u∗i,j,k = {| cos(θk)|ui+ξk,j,k + | sin(θk)|ui,j+νk,k

+ hmax{ui,j,k±1}/(ρminhθ)− h}
/ {| cos(θk)|+ | sin(θk)|+ h/(ρminhθ)},

(15)
if (|uθ|/ρmin)ijk 6= 0, and

u∗∗i,j,k = {| cos(θk)|ui+ξk,j,k + | sin(θk)|ui,j+νk,k − h}
/ {| cos(θk)|+ | sin(θk)|},

(16)

if (|uθ|/ρmin)i,j,k = 0.
The boundary conditions are implemented by setting

ui,j,k = 0 at the nearest nodes to xf (and θf for a final
orientation constraint) and ui,j,k =∞ at nodes inside Ωobs.
The boundary of the domain is also set to infinity.

To solve the system of nonlinear equations (15), (16), we
apply the fast sweeping algorithm [24]. This involves the
update scheme (denoting the iteration by superscripts)

un+1
i,j,k ← min{u∗ni,j,k, u∗∗ni,j,k, u

n
i,j,k} (17)

to be iterated by the Gauss-Seidel method. Iterations are
carried out by ‘sweeping’ in eight directions: increasing and
decreasing in each i, j, and k.

The nodes used to approximate (11) locally around a
particular node (the stencil) used in (15) and (16) are shown
in Fig. 2(a). To approximate the partial derivative in x and y
directions more accurately, we can use a larger stencil. For
example, we can add the nodes {(i ± 1, j ± 1, k)} to the
stencil (shown in Fig. 2(b)). To this end, we first use these
nodes to approximate ux̄, uȳ , where (x̄, ȳ) is a the usual
cartesian coordinates rotated 45 degrees clockwise. Next, use
the identities, ux = (ux̄ + uȳ)/

√
2, uy = (−ux̄ + uȳ)/

√
2

to derive similar formulae for (15) and (16); denote the
corresponding left hand side as w∗ijk and w∗∗ijk, respec-
tively. Then, the update scheme analogous to (17) becomes
un+1
ijk ← min{u∗ni,j,k, u∗∗ni,j,k, w

∗n
i,j,k, w

∗∗n
i,j,k, u

n
i,j,k}. Similarly,

one can create arbitrary accurate and wide stencils; for our
computations, we used a 16-neighbor stencil as shown in
Fig. 2(c).

Fig. 2. Different choices of stencils. The blue dots are the nodes (i, j).

D. Computing Trajectories

Once a numerical approximation ui,j,k to the value func-
tion is obtained, optimal paths from a pose (x0, θ0) ∈
Ωfree × [0, 2π) can be computed efficiently by tracing the
characteristic curves of (11) back to the target location xf
or pose (xf , θf). The corresponding dynamical system is

ẋ(s) = −(cos(θ(s)), sin(θ(s))) (18)
θ̇(s) = −sgn(uθ(x(s), θ(s)))/ρmin. (19)

We use a forward Euler scheme to solve this numerically,
with a centered difference approximation for the partial
derivative in (19). The values of u not on the nodes are
approximated by a nearest-neighbor interpolation.

E. Numerical Results

For all computations in this section we use Ω = [−1, 1]2

discretized uniformly by a 200×200 grid. The θ values are
discretized with 200 uniform nodes. We use ρmin = 0.2358.
The time step used for the forward Euler scheme in comput-
ing the trajectories was set to the grid refinement h = 0.01.
Typically about 5 to 7 iterations (each iteration involves 8
sweeps) were sufficient for convergence, depending on the
domain shape.

Fig. 3 shows the 0.5 and 0.9 level sets of the value function
ui,j,k, with xf = (0, 0) and no final orientation constraint.
No obstacles are present in this example for simplicity of
presentation. The level sets of ui,j,k define the equal cost-to-
go poses to the target. Note that the turning radius constraint
is noticeable near the central axis in the 0.5 level set; for
locations of larger cost-to-go, this becomes less evident.

Fig. 3. Left to right: the 0.5 and 0.9 level sets of (uijk), the value function
(6), for the case xf = (0, 0) and no final orientation constraint. The vertical
axis represents the θ direction.

Next, we consider the case where obstacles are present.
We make the numerical obstacles slightly larger than the
physical obstacle to take into consideration the size of the
car (recall that numerically, the car position is represented
by a single point). We will call the difference of these two
sets, the buffer region.

In Fig. 4 we show two optimal paths, one with no
constraint on θf , and another with θf = π/4. Both have
the same initial pose.

III. A PRACTICAL ALGORITHM FOR STEERING
A SIMPLE CAR

We now use the formulation proposed in section II to
address the realistic navigation scenario for a (reversible)
simple car, where smooth acceleration, inertia, rough sur-
faces, and mechanical imprecisions must be taken into con-
sideration.

The main difficulty is an autonomous vehicle may stray
off from a given optimal path. In the case of a Dubin’s
car, a small offset from the optimal path may result in a
catastrophic change of strategy [1, Chapter 13]. For example,
in a tight domain, a small perturbation can steer the vehicle
from an initial pose with an admissible path to a pose from
which it can no longer reach the target, i.e. finite to infinite
cost-to-go.

Fig. 4. Optimal paths, among obstacles. The target (same for both cases)
is shown by a ‘+’, the obstacles by black blobs and the buffer region in
gray. Left: no final orientation constraint, path length is 4.9648. Right: with
final orientation constraint θf = π/4, path length is 5.5980.

In contrast, the option of reversibility can alleviate such
a difficulty. Below, we introduce a scheme for navigating
a reversible simple car that uses the HJ formulation, and
demonstrate its performance in a robot testbed environment.

A. A Semi Real-time Correcting Scheme

We first propose a scheme that adjusts the optimal path
of the vehicle as it deviates from its originally optimal path
due to realistic factors.

Initially, set m = 0,
Step 1. compute the optimal path Pm ⊂ Ωfree from the

pose (xm, θm) to the target point xf (or pose
(xf , θf)),

Step 2. steer the vehicle for a ‘short distance’ along Pm,
Step 3. record the vehicle pose as (xm+1, θm+1),
Step 4. let m← m+ 1 and repeat from step 1.
We shall call this the semi real-time correcting (SRC)
scheme. Note that in step 1, one only needs to compute Pm
that is necessary for step 2. We assume a mechanism to track
the current pose of the vehicle (step 3).

Next, to add the option of reversiblity, we add another
candidate path in step 1 of the SRC scheme:
Step 1. (modified) Compute the optimal path P1

m ⊂ Ωfree
from pose (xm, θm), and another optimal path P2

m ⊂
Ωfree from the the pose (xm, θm + π). Let Pm be
the shorter of Pim, i = 1, 2.

Although one may be tempted to believe that this solves
an approximation to the Reeds-Shepp’s car problem [3], it
does not. Rather, we are solving a Dubins’ car problem from
each recorded vehicle pose (xm, θm), allowing the vehicle
to start forward or backwards.

B. HJ-ased SRC Scheme

The HJ approach to optimal path planning for the Dubins’
car problem computes optimal trajectories efficiently if the
value function is provided. Indeed, the value function con-
tains information of all optimal paths to the target location
xf (or pose (xf , θf)). Consequently, the bulk of the compu-
tational cost is in computing the value function.

To exploit the full advantage of the HJ formulation, we
consider the following situation: suppose that the map Ω, the

target location xf ∈ Ωfree, and possibly the final orientation
θf ∈ [0, 2π) are provided. Then, the corresponding value
function ui,j,k can be computed offline prior to steering the
vehicle. We outline the HJ based SRC scheme: given a map
Ω = Ωfree ∪ Ωobs, a minimum turning radius ρmin, and a
desired target location xf (or pose (xf , θf)),

1) precompute the value function uijk (section II-C),
2) perform the SRC scheme (section III-A); use the method

in section II-D to compute the paths Pm.
Strictly speaking, since the turning radius of a simple

car differs for forward and backward motion, one must
precompute two value function. However, we have found
that the algorithm performs well in practice by using only
the value function of the larger turning radius.

C. Experimental Results

We validated the HJ based SRC scheme on an autonomous
simple car, using the testbed introduced in [29]. In [30]
our scheme is applied to steer an autonomous vehicle while
it searches for a signal source in a bounded domain with
obstacles.

We used the same map as in section II-E including the
buffer region, but scaled to a 140× 140 cm square. The car
size was 7 × 3.8 × 4.6 cm (L×W×H) and had a minimum
turning radius of ρmin = 16.51 cm. The value function was
computed on a 200× 200× 200 grid. The car location was
sampled and recorded approximately every 15 cm travelled;
this was based on the smallest distance the car can maneuver
with reasonable accuracy.

Fig. 5 illustrates the SRC scheme (without the reversibility
option) for a final target location x = (45.5, 98). Notice how
the vehicle is able to stay in the vicinity of the the optimal
path even when it strays off. Fig. 6 shows the optimal path
under the same parameters with the reversibility option. Fig.
7 shows a sequence of intermediate steps illustrating how the
SRC scheme with reversibility plans its next motion. For this
example, the reversibility option generates a path shorter by
about 20%. Finally, Fig. 8 shows the case when an additional
final orientation constraint θf = π/4 is added.

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

Fig. 5. The path taken by the car steered by the SRC scheme. The blue
curve marks P0, the optimal path from the initial pose. The target is shown
by a red ‘+’. Length of piecewise linear car path is 348 cm.

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

Fig. 6. The path taken by the car steered by the SRC scheme with the
reversibility option. The target is shown by a red ‘+’. Length of piecewise-
linear car path is 280 cm.

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

Fig. 7. Intermediate steps of the SRC scheme with the reversibility
option. The blue curve marks Pm, the optimal path emanating from the last
recorded car location, and the red ‘+’ shows the target xf . Note how the
scheme initially generates the Dubins’ car path, then reverses its direction
when the car is able to steer through the small opening above the circular
obstacle.

IV. CONCLUSIONS

In this article, we first formulated a Hamilton-Jacobi (HJ)
equation to solve the problem of computing an optimal path,
given an initial pose and a target pose, under a curvature
constraint. This models a reversible simple car with a turning
radius bounded from below. We provided a numerical method
to solve this problem.

In the second part we applied our HJ formulation to
a general scheme to steer an reversible simple car. This
scheme itself can be worked in tandem with other optimal
path planning algorithms. The performance of this scheme
was experimentally validated. We refer the reader to a
future publication for a rigorous analysis of the proposed

x (cm)

y
(c

m
)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

Fig. 8. The same scheme as Fig. 6, but with a final orientation constraint
θf = π/4. The blue curve marks P0, the optimal path from the initial
pose. The target is shown by a red ‘+’. Length of piecewise linear car path
is 395 cm.

HJ formulation and its numerical discretization.

V. ACKNOWLEDGEMENTS

We would like to thank professor Andrea Bertozzi for her
suggestions and for providing us with the robotic testbed to
conduct our experiments in the UCLA Applied Mathematics
Laboratory funded by an ARO MURI grant 50363-MA-
MUR. We would also like to thank professors Stanley Osher
and Alexander Vladimirsky for their valuable advice.

Landa’s, Takei’s, and Tsai’s research is supported by a
MURI subcontract from U. of South Carolina and an NSF
Algorithm for Threat Detection Grant DMS-0914465. Shen’s
research is supported by an ARO MURI grant 50363-MA-
MUR.

REFERENCES

[1] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006

[2] L. E. Dubins. On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents. American Journal of Mathematics, vol. 79, no. 3, Jul.
1957, pp. 497-516.

[3] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both
forwards and backwards. Pacific J. Math., 145 (1990), pp. 367393.

[4] S. Fortune and G. Wilfong, Planning constrained motion. Annals of
Math. and Air, 3:21-82, 1991.

[5] H.-K. Ahn, O. Cheong, J. Matousek and A. Vigneron. Reachability by
paths of bounded curvature in convex polygons. Annual Symposium
on Computational Geometry, Proceedings of the sixteenth annual
symposium on Computational geometry, Clear Water Bay, Kowloon,
Hong Kong, 2000, pp. 251 - 259

[6] J. Barraquand and J. C. Latombe, Nonholonomic multibody mobile
robots: Control lability and motion planning in the presence of
obstacles, Algorithmica, 10 (1993), pp. 121155.

[7] H. Wang and P. K. Agarwal. Approximation algorithms for curvature-
constrained shortest paths. in Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, Atlanta, GA, 1996,
pp. 409418.

[8] P. K. Agarwal, P. Raghavan, and H. Tamaki. Motion planning for
a steering-constrained robot through moderate obstacles. In Proc.
Annual Symposium Theory Computing, 27, pp. 343352, 1997.

[9] J.-D. Boissonnat and S. Lazard. A polynomial-time algorithm for com-
puting a shortest path of bounded curvature amidst moderate obstacles.
In Proceedings ACM Symposium on Computational Geometry, pp.
242-251, 1996

[10] P. Jacobs and J. Canny. Planning smooth paths for mobile robots,
in Nonholonomic Motion Planning. Kluwer Academic Publishers,
Norwell, MA, 1992

[11] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I,
2nd Ed. Athena Scientific, Belmont, MA, 2001.

[12] J. Reif and H. Wang. Nonuniform Discretization for Kinodynamic
Motion Planning and its Applications. SIAM J. Comput., Vol. 30, No.
1, pp. 161190

[13] J.-H. Lee, O. Cheong, W.-C. Kwon, S.-Y. Shin and K.-Y. Chwa.
Approximation of Curvature-Constrained Shortest Paths through a
Sequence of Points. Lecture Notes In Computer Science; Vol. 1879,
Proceedings of the 8th Annual European Symposium on Algorithms,
2000, pp. 314- 325

[14] J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray. A motion
planner for nonholonomic mobile robots. IEEE Trans. Robotics and
Automation, 10 (1994), pp. 577593.

[15] P. Konkimalla and S. M. Lavalle. Efficient Computation of Optimal
Navigation Functions for Nonholonomic Planning. In Proc. First IEEE
Intl Workshop on Robot Motion and Control, 1999.

[16] L. C. Evans. Partial Differential Equations. Graduate Studies in
Mathematics, Vol 19, AMS, Providence, Rhode Island, 1998.

[17] R. E. Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, 1957.

[18] M. Bardi. Some Application of Viscosity Solutions to Optimal Control
and Differential Games. In Lecture Notes in Mathematics, Viscosity
Solutions and Applications. Editors: I. Capuzzo-Dolcetta, P.-L. Lions.
Springer, 1997.

[19] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, 1997.

[20] M. Falcone and R. Ferretti. Semi-Lagrangian schemes for Hamilton-
Jacobi equations, discrete representation formulae and Godunov meth-
ods. J. of Comp. Physics, Vol. 175 (2), 2002, pp. 559-575

[21] R. Kimmel and J. A. Sethian. Optimal algorithm for shape from
shading and path planning. Journal of Mathematical Imaging and
Vision, vol. 14, no. 3, pp. 237244, 2001.

[22] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
IEEE Transactions on Automatic Control, vol. AC-40, no. 9, pp.
15281538, 1995.

[23] C.-Y. Kao, S. Osher and Y.-H. Tsai. Fast sweeping methods for static
Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, vol.
42, no. 6, pp. 26122632, 2005.

[24] Y.R. Tsai, L.T. Cheng, S. Osher and H.K. Zhao. Fast Sweeping
Algorithms for a Class of Hamilton-Jacobi Equation. SIAM Journal
on Numerical Analysis, Vol 41, No 2, 2003, pp.673-694.

[25] K. Alton and I. Mitchell. Optimal Path Planning under Different
Norms in Continuous State Spaces. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pp. 866-872 (May
2006).

[26] J.A. Sethian and A. Vladimirsky. Ordered upwind methods for static
Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. USA 98/20: 11069-
11074 (2001).

[27] C.-Y. Kao, S. Osher and J. Qian. Lax-Friedrichs Sweeping Scheme for
Static Hamilton-Jacobi Equations. UCLA Math CAM Report 03-38,
Journal of Computational Physics,196(1), Pages 367-391,2004

[28] A. Oberman. Convergent Difference Schemes for Nonlinear Elliptic
and Parabolic Equations: Hamilton-Jacobi Equations and Free Bound-
ary Problem. SIAM Journal on Numerical Analysis, Vol 44 (2006)
No. 2 pp. 879-895.

[29] K. K. Leung, C. H. Hsieh, Y. R. Huang, A. Joshi, V. Voroninski, and A.
L. Bertozzi. A second generation micro-vehicle testbed for cooperative
control and sensing strategies. In American Control Conference, 2007.
ACC07, pages 19001907, 2007.

[30] Y. Landa, H. Shen, R. Takei and R. Tsai. Autonomous Source
Discovery and Navigation in Complicated Environments. preprint.

[31] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki and S. Thurn. Principles of Robot Motion. MIT Press, 2005.

[32] J. P. Laumond and J. J. Risler. Nonholonomic systems : controllability
and complexity. Theoretical Computer Sciences, 157, pp. 101–114,
1996.

[33] S. M. LaValle. A Game Theoretic Framework for Robot Motion
Planning. PhD thesis. University of Illinois, Urbana, IL, 1995.

[34] S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes
for HamiltonJacobi equations. SIAM J. Numer. Anal., 28 (1991), pp.
907922.

