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Abstract

This paper is devoted to the optimization problem of continuous multi-

partitioning, or multi-labeling, which is based on a convex relaxation of

the continuous Potts model. In contrast to previous efforts, which are

trying to tackle the optimal labeling problem in a direct manner, we first

propose a novel dual model and then build up a corresponding duality-

based approach. By analyzing the dual formulation, sufficient conditions

are derived which shows that the relaxation is often exact, i.e. there exists

optimal solutions that are also globally optimal to the original noncon-

vex Potts model. In order to deal with the nonsmooth dual problem, we

suggest a smoothing method based on the log-sum exponential function

and also indicate that such smoothing approach gives rise to the novel

smoothed primal-dual model and suggests labelings with maximum en-

tropy. Such smoothing method for the dual model produces a highly effi-

cient expectation maximization algorithm for the multi-labeling problem,

and provides a new thresholding scheme to obtain approximate solutions.

Numerical experiments shows competitive performance in terms of quality

and efficiency compared to several state of the art methods for the Potts

model.

1 Introduction

The multi-partitioning problem, or multi-labeling problem, is the problem of as-
signing the unknown variable l pointwise at the image domain by a value chosen
from the finite set {l1, . . . , ln} according to some model. Such kind of problems
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appear extensively in the areas of image processing and computer vision. It is
often formulated as the minimization of an energy function which mathemati-
cally encodes all the information needed for the imaging and vision task. The
posteriori estimation is regarded as better as the energy is lower. In this work
we focus on the Potts model, which is a special case of the labeling problem
where the energy function does not favor any particular ordering between the
labels.

One can solve such labeling problems in a manner of ’discrete’ or ’contin-
uous’, depending on the spatial definition of l. When the labeling is given on
a discrete grid, it reduces to the corresponding graphical model and its energy
function is defined in terms of the ’cost’ of corresponding nodes and edges of
the graph, by the theory of Markov Random Fields. The node cost often eval-
uates the fidelity of given data. The edge cost, often pairwise [6, 23] or with
high-order clique [20], measures the regularities of label assignment. In case of
two labels such energy functions can be efficiently and globally minimized by
graph cuts [13], provided they are submodular [23]. For certain problems with
multiple labels this is also possible [16, 2]. However, in most cases with more
than two labels the problem in the discrete context is NP hard. Therefore it
can probably not be solved globally in polynomial time. The Potts model is
an important such NP-hard discrete model, which can be seen as the natural
extension of the partitioning problem to more than two labels. Several algo-
rithms for finding suboptimal solutions to the Potts model or other such models
exists, most notable are the graph-cut based alpha expansion and alpha-beta
swap [6]. Moreover, by relaxing the constraint of discrete valued, most label-
ing problems can also be solved by linear programming approximately [24, 43].
Despite the efficiencies of such discrete approaches, their computation results
are often constrained and biased by the discrete grid, i.e. the metrication error.
By considering more neighbourhood nodes, such visual effects can be largely
reduced [5, 21]. However, this often results in a great memory burden. Ex-
tensive applications based on graph cuts can be found in image processing and
computer vision, such as image segmentation [6, 41], 3D reconstruction [22] etc.

Parallel to this development, variational methods have been proposed for
solving some of the same problems in the continuous setting. Here one tries
to divide a continuous domain Ω into two or several subregions {Ωi}n

i=1 by
minimizing certain energy functionals. The level set method [32] is an elegant
tool for simplifying these energy functionals, such that numerical calculation
is possible [10, 42]. A variant of the level set method called the piecewise
constant level set method (PCLSM) [28, 27] expresses the energy in terms of
a labeling function φ and was the first to cast the labeling problem in the
spatially continuous setting. The authors used the term ”piecewise constant
level set function” for this labeling function.

Fairly general energy functionals, such as the continuous variant of the Potts
model, can be rewritten and minimized numerically by the level set methods.
Unfortunately, the main disadvantage of both these variants is their potential
of getting stuck in a possibly inferior local minima. For PCLSM the feasible
minimization domain is non-convex and for more than two phases also the energy
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functional itself is non-convex (but still locally convex). One notable exception
in case of two phases is the approach of Nikolova et. al. [31]. By relaxing the
binary constraint of the labeling function, the minimization problem becomes
convex. They prove that thresholding the solution of the relaxed problem at
almost any threshold between 0 and 1 yields the globally optimal solution to
the original problem.

Recently, similar convex formulations have also been proposed for the mul-
tiphase continuous Potts model, by relaxing the integrality constraint of the
labeling function. There is no proof that integer valued solutions exist to these
problems. However, integer valued approximating solutions can be obtained
by simple thresholding. Such approximate solutions may be closer to the ex-
act global minimum than the local minima in the level set formulation. In
[33] such a formulation was made using a labeling function by constraining the
dual variables to a convex set and relaxing the integrality constraints of the
primal variables. A primal-dual algorithm was developed. In [45, 25] the Potts
model was instead formulated in terms of a binary vector function. A relaxation
was proposed by ignoring the binary constraint and minimizing with respect to
the vector function (primal variable) over the convex standard simplex. Some
thresholding must be used to convert to an integer valued solution in a post pro-
cessing step for both methods. Since no proof of optimality of the thresholded
solution exists, the thresholded solution is simply accepted as suboptimal.

In the very recent work of Brown, Chan and Bresson [8] a method which was
claimed to find global optimums for the continuous Potts model was proposed.
Their idea is to apply convex functional lifting [34] to the piecewise constant level
set method [27]. In short, this process introduces an extra dimension to make
a non-convex energy functional convex. However, due to the extra dimension
and the high order polynomials involved in PCLSM, we claim this approach is
much more computationally expensive than our approach.

This paper builds on the work of Zach et. al. and Lellmann et. al. [45,
25]. The convex relaxed labeling problem is discussed under a primal-dual
perspective. A novel dual model and algorithm is proposed by formulating
the convex relaxed problem in terms of the dual variables only. This is in
contrast to previous works which tackle the labeling functions directly. By
analyzing the relaxed Potts model in terms of its dual formulation, sufficient
conditions are derived which shows that optimal solutions are often expected to
be binary; or equivalently, that optimal solutions are also globally optimal to the
original non-convex Potts model. In order to deal with non-differentiability of
the resulting energy functional of the dual model, a convex smoothing method is
proposed, which also provides a new thresholding scheme to obtain approximate
solutions. Other advantages of this approach are: it is based on a well-posed
optimization problem in theory and leads to a reliable numerical scheme. The
duality smoothing method avoids exploring the redundant simplex constraint
of the primal labeling functions, e.g. [45, 25], and reduces the computational
complexities greatly!

This paper is organized as follows: In Section 2 we introduce the continuous
Potts model and its convex relaxation. We also present primal, primal-dual and
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dual formulations of the convex relaxation of Potts model, which are equivalent
to each other. Smoothed models are introduced in Section 3. Section 4 and
5 gives details on numerical implementation and numerical experiments are
presented in Section 5.

2 Continuous Potts Model and its Convex Re-

laxation Approach

This work builds on the convex relaxation method of the nonconvex Potts model
[45, 25]. We develop a novel dual formulation which allows us to give a deeper
analysis of the relaxation. We show that optimal solutions of the relaxation is
closely related to a global optimum of the original nonconvex Potts model. Fur-
thermore, a novel duality-based algorithm is developed for the relaxed problem.

2.1 Continuous Potts Model

The continuous variant of the Potts model [35] partitions the continuous domain
Ω into n disjoint subdomains {Ωi}

n
i=1 by minimizing

min
{Ωi}n

i=1

n
∑

i=1

∫

Ωi

fi(x) dx + λ

n
∑

i=1

|∂Ωi| (1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 6= l ,

where |∂Ωi| measures the lengths of the boundaries of the disjoint subdomains
Ωi, i = 1, . . . , n. The functions fi, i = 1, . . . , n, defined on Ω are given and
evaluate the performance of label assignment at each partition Ωi. The Potts
model was originally derived from statistical mechanics and formulated in the
spatially discrete setting. Here, we have stated the corresponding definition in
the continuous setting. Obviously, the Potts model favors the labelings with
’tight’ or smooth boundaries. We will focus on image processing problems, in
which Ω is simply the image domain in 2D or 3D. In this case, the functions fi,
i = 1, . . . , n, typically depend on the values of the input image I.

The Potts model has a close resemblance to the piecewise constant Mumford-
Shah model [30]

min
{Ωi}n

i=1
,c

n
∑

i=1

∫

Ωi

|I − ci|
p dx + λ

n
∑

i=1

|∂Ωi| (2)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 6= l ,

where p = 1 or 2 and I is the input image. In fact, when the constants c =
{c1, ..., cn} are fixed, the Mumford-Shah model is a special case of the Potts
model with fi = |I − ci|p.
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In order to compute the optimal partition, let ui(x), i = 1, . . . , n, denote the
characteristic functions of disjoint subdomains Ωi i.e.

ui(x) = IΩi
(x) :=

{

1, x ∈ Ωi

0, x /∈ Ωi
, i = 1, . . . , n .

The boundary lengths of the disjoint subdomains are given by

|∂Ωi| =

∫

Ω

|∇ui| dx , i = 1, . . . , n (3)

The Potts model (1) can then be rewritten as

min
ui(x)∈{0,1}

n
∑

i=1

∫

Ω

ui(x)fi(x) dx + λ

n
∑

i=1

∫

Ω

|∇ui| dx , s.t.

n
∑

i=1

ui(x) = 1 . (4)

Obviously, the Potts model (4) is non-convex due to the binary configuration
of each function ui(x), ∀x ∈ Ω.

2.2 Convex Relaxation and Equivalent Models

We show the nonconvex Potts model (4) can be relaxed as a convex minimization
problem which we call the primal model. We then give equivalent representa-
tions of the relaxation as a primal-dual model and a dual model.

2.2.1 Primal Model

The binary constraints of (4) were simply relaxed in [45], by minimizing ui(x)
over the interval [0, 1] instead. This gives rise to the convex relaxed Potts model
defined as

min
(u1(x),...,un(x))∈4+

EP (u) =

n
∑

i=1

∫

Ω

ui(x)fi(x) dx + λ

n
∑

i=1

∫

Ω

|∇ui| dx (5)

where the simplex constraint 4+ means for ∀x ∈ Ω:

4+ = {(u1(x), . . . , un(x)) |
n

∑

i=1

ui(x) = 1 ; ui(x) ≥ 0 , i = 1, . . . , n } .

In Lellmann et al [25], the same relaxation was used, but with a slightly different

regularization term
∫

√

|∇u1(x)|2 + ... + |∇un(x)|2 dx .

In this paper, we call the continuous optimization problem (5) primal for-
mulation or primal model and ui, i = 1, . . . , n, primal variables, in comparison
to its equivalent models discussed in later sections.

In addition to region based segmentation models like the Mumford-Shah
model, edge based models like the geodesic active contour model [17] are power-
ful for many image processing problems. It was shown in [7, 39] that combining
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regional and edge information of the image has many advantages. However,
they only studied two-phase problems. Using the formulation outlined above,
the combined model can be written with multiple phases

min
ui∈{0,1}

n
∑

i=1

∫

Ω

{

ui(x)fi(x) + λg̃(x) |∇ui|
}

dx , s.t.

n
∑

i=1

ui(x) = 1 . (6)

Likewise, its convex relaxed version is

min
(u1(x),...,un(x))∈4+

n
∑

i=1

∫

Ω

{

ui(x)fi(x) + λg̃(x) |∇ui|
}

dx . (7)

The function g̃(x) is often called an edge indicator for problems like image
segmentation. It takes small values at locations of large gradients or edges in
the image. For a given image I, one possible choice is to take

g̃(x) =
1

c|∇Iσ(x)|2 + 1
,

where Iσ is a smoothed version of the input image I. There are also other
alternatives for g̃(x). If g̃(x) is chosen as the identity function, (6) reduces to
the Potts model (4), and (7) corresponds to (5).

In this work, we discuss the convex relaxed Potts model (5) and its general-
ized model (7) as the approach to continuous multi-labelings and focus on (5),
without loss of generalities.

2.2.2 Primal-Dual Model

By using integration by parts, it is well known that the total variation term in
(5) can equivalently be formulated as a maximization problem

λ

∫

Ω

|∇u| dx = max
p∈Cλ

−

∫

Ω

∇u · p dx = max
p∈Cλ

∫

Ω

u div p dx (8)

in terms of the dual variable p over the convex set Cλ defined as

Cλ := {p : Ω 7→ R
2 | ||p||∞ ≤ λ , pn|∂Ω = 0 } , (9)

see e.g. [29].
For the more general model (7), Cλ is given by

Cλ := {p : Ω 7→ R
2 | |p(x)|2 ≤ g̃(x) , pn|∂Ω = 0 } . (10)

By inserting such expression, the primal problem (5) can be identically for-
mulated as

min
(u1(x),...,un(x))∈4+

max
pi∈Cλ

E(u, p) =
n

∑

i=1

∫

Ω

ui(x)
(

fi(x) + div pi(x)
)

dx . (11)

6



The variables pi i = 1, . . . , n are named as dual variables in this paper. There-
fore, the min-max problem (11) is called the equivalent primal-dual formulation
or primal-dual model of (5), which can be optimized over both the primal vari-
ables ui and the dual variables pi.

Note that the min and max operators in the above primal-dual model (11)
can be interchanged

min
(u1(x),...,un(x))∈4+

max
pi∈Cλ

E(u, p) = max
pi∈Cλ

min
(u1(x),...,un(x))∈4+

E(u, p) (12)

because the conditions of the minimax theorem (see e.g., [11] Chapter 6, Propo-
sition 2.4, also [12]) are all satisfied. That is, Cλ and ∆+ are convex, and the
energy function E(u, p) is linear to both variables u and p, hence convex l.s.c.
for fixed p and concave u.s.c. for fixed u. This also implies the existence of at
least one saddle point, see [11].

2.2.3 Dual Model

We will now derive another equivalent formulation of (5) by optimizing the
primal-dual model (11) via the primal variable (u1(x), . . . , un(x)) ∈ 4+ at each
position x ∈ Ω.

For the vector q = (q1, . . . , qn) ∈ R
n and v = (v1, . . . , vn) ∈ 4+, it is easy to

verify that

min
(v1,...,vn)∈4+

n
∑

i=1

viqi = min(q1, . . . , qn) , (13)

Therefore, minimizing (11) over the primal variables ui(x) i = 1, . . . , n, at
each position x ∈ Ω, gives rise to

max
pi∈Cλ

ED(p) :=

∫

Ω

{

min(f1 + div p1, . . . , fn + div pn)
}

dx . (14)

We call (14) the dual model of (7). ED(p) is called the dual energy functional.
By considering d(li, x) = fi(x)+div pi(x), x ∈ Ω, as the proximity measure

of labeling x as li, i = 1, . . . , n, the minimal distance indicates which label should
be assigned at x by the dual model (14). In this sense, the dual formulation
(14) can be viewed as a generalized center-based clustering formulation [40, 3],
where fi(x) are the data and div pi(x) are the centroids. In contrast to the
classical clustering problem, the spatial centroids are formally constrained by
some convex set. Moreover, updating div pi(x) associated with (8) minimizes
the perimeter of the spatial partition Ωi, i = 1, . . . , n, implicitly! This gives a
geometrical explanation of the dual model (14) in the sense of minimal length
clusterings.

2.2.4 Discussions and Comments

Now we have two equivalent optimization models, the primal-dual model (11)
and the dual model (14), to the primal optimization problem (5). Clearly, the
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energy functional EP (u) of the primal model (5) is given by maximizing E(u, p)
of the primal-dual problem (11) over the dual variable p first, i.e.

EP (u) := max
pi∈Cλ

E(u, p) = E(u, p∗) ,

where ∗ indicates optimal variables.
Likewise, the energy functional ED(p) of the dual model (14) is resulted by

minimizing E(u, p) first over u, i.e.

ED(p) := min
(u1(x),...,un(x))∈4+

E(u, p) = E(u∗, p) .

As a consequence, we always have

EP (u) ≥ E(u, p) ≥ ED(p) . (15)

Let (u∗p∗) be an optimal primal-dual pair, then by (12) we have

EP (u∗) = E(u∗, p∗) = ED(p∗) .

Moreover, the equivalences between these models implies that we can also
solve the convex relaxed Potts problem (5) by optimizing its dual model (14).
In fact, when the n values (f1(x)+div p∗1(x), ..., fn(x)+div p∗n(x)) at x ∈ Ω have
a unique minimum, an optimal primal variable u∗(x) of minu(x)∈∆+

E(u, p∗) at
x can be uniquely recovered, in view of (13), by

u∗
k(x) =

{

1 if k = argmini=1,...,n (fi(x) + div p∗i (x))
0 otherwise

, (16)

which is a binary indicator vector and exactly indicates the optimal label func-
tion u∗ at position x to be nonzero only at the kth component. Clearly, such
binary u∗(x) is globally optimal both to the convex relaxed Potts model (5) and
the nonconvex Potts model (4).

Based on the above consideration, we propose such a duality-based approach
by maximizing the dual functional ED(p), in contrast to previous works which
tackle the primal unkowns ui, i = 1, . . . , n, directly. Moreover, the dual model
(14) also provides a powerful tool to analyze the connections between the global
optimums of the non-convex Potts model (4) and its relaxed version (5).

2.3 Global Optimums of Convex Relaxed Potts Model

The existence of a global binary optimum of the convex relaxed formulation
(5), i.e. the exactness of (5), is still open. However, we can show (5) is exact
under specified conditions. To do this, we first state the consistency between
the minimum u∗ of (5) and the maximum p∗ of its dual model (14) as follows

Theorem 1. Given a maximum p∗ of the dual problem (14), and let u∗ be an
optimum to the primal problem (5) such that (u∗, p∗) is an optimal primal-dual
pair (11). If the values of (f1(x) + div p∗1(x), . . . , fn(x) + div p∗n(x)), at some
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x ∈ Ω, have a unique minimum, e.g. fk(x) + div p∗k(x), then the value of u∗(x)
at x must be

u∗
k(x) = 1 and u∗

i (x) = 0 , i 6= k . (17)

If the values of (f1(x) + div p∗1(x), . . . , fn(x) + div p∗n(x)) at some x ∈ Ω have
k > 1 minimums, e.g. fj(x) + div p∗j (x) j ∈ {t1, . . . , tk}, then the value of u∗(x)
at x must satisfy

k
∑

i=1

u∗
ti
(x) = 1 and u∗

j (x) = 0 , j /∈ {t1, . . . , tk} . (18)

Proof. Let ud = (ud
1, . . . , u

d
n) be any vector consistent with p∗, in terms of (17)

or (18) for ∀x ∈ Ω. Clearly

ED(p∗) = E(ud, p∗) = EP (ud) (19)

as p∗ is an optimum of the dual problem (14).
If a global optimum u∗ of (5) at x ∈ Ω is not consistent with p∗ in the sense

of (17) or (18), then we must have

n
∑

i=1

ud
i (x)(fi(x) + div p∗i (x)) <

n
∑

i=1

u∗
i (x)(fi(x) + div p∗i (x)) ,

and
E(ud, p∗) < E(u∗, p∗) .

Therefore, by the fact (15),

ED(p∗) = E(ud, p∗) < E(u∗, p∗) ≤ EP (u∗) .

In this regard, (19) indicates

EP (ud) < EP (u∗) .

It contradicts the fact that u∗ is a global optimum of the primal problem (5).

Then it follows directly, from Theorem 1, that

Proposition 2. Let p∗ be one optimum of the dual problem (14), if the values
(f1(x) + div p∗(x), ..., fn(x) + div p∗(x)) have a unique minimum at all x in
Ω, then any global minimum u∗ of the primal problem (7), where (u∗, p∗) is
an optimal primal-dual pair, must be binary. Therefore, u∗ is also a global
optimum to the original non-convex Potts model (4).

Proof. It is obvious to verify the first part in view of (17).
The last part follows from the fact that the feasible set of the convex relaxed

Potts model (5) contains the feasible set of the nonconvex Potts model (4).
Therefore, any global binary optimum of the convex relaxed Potts model, which
is feasible in the nonconvex Potts model (5), is also globally optimal to the
nonconvex Potts model.
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In addition, we have the following corollary

Corollary 3. Let p∗ be one optimum of the dual problem (14), if the values of
(f1(x)+div p∗1(x), ..., fn(x)+div p∗n(x)) have a unique minimum at almost every
x ∈ Ω, then any global minimum u∗, where (u∗, p∗) is an optimal primal-dual
pair of the primal problem (5) or (7) is unique and binary almost everywhere
in Ω.

In the case where there are two minimums of (f1(x)+div p∗1(x), . . . , fn(x)+
div p∗n(x)) at some positions x ∈ Ω, the existence of a binary solution can also
be given by

Proposition 4. Given a closed subdomain Ω̃ ⊂ Ω and an optimum p∗ of the
dual problem (14), if for any x ∈ Ω̃, the values of (f1(x)+div p∗1(x), . . . , fn(x)+
div p∗n(x)) have two minimums (not unique), say fk(x) + div p∗k(x) and fj(x) +

div p∗j (x), and for any x ∈ Ω\Ω̃, the values of (f1(x) + div p∗1(x), . . . , fn(x) +
div p∗n(x)) have only one unique minimum, then there exist global optimums u∗

of the primal problem (5), which are binary.

The proof of Prop. 4 is given in the appendix. The above proposition can
be easily extended to the case when there are multiple such subdomains and
for each subdomain there are two minimums. As a corollary, this shows there
always exists a global binary minimizer for two phase problems where n = 2.
This corollary is linked to the result of Chan et. al. [31] and Strang et. al.
[38], who gave a different proof of existence of binary minimizers for relaxed
two phase problems.

For the general case, where the number of minimums is greater than two
at some positions x ∈ Ω a strict proof of existence of binary solutions will be
considered in a future work.

Optimal solutions p∗ to the dual model (14) are generally not unique. Sim-
ilarly, optimal primal solutions u∗ to (5) are generally not unique, there may
exist both binary and non-binary solutions u∗ that are optimal. In order to deal
with non-differentiability of the dual energy functional (14), a smooth approxi-
mation functional is introduced in the next section. For this smooth model we
show there exists a unique optimal dual solution. For reasons we cannot fully
explain, this smooth model always favors solutions p∗ where at each x ∈ Ω,
(f1(x) + div p∗1(x), . . . , fn(x) + div p∗n(x)) has a unique minimum. Therefore bi-
nary primal solutions can be recovered by the scheme (16). Since there is an
approximation between the smooth and non-smooth models, one cannot always
guarantee the obtained solutions are exact.

3 Smoothed Models

In order to solve the optimal labeling problem (5) through its nonsmooth dual
model (14), we propose a smoothing method in this section, which leads to
the smoothed primal-dual model and smoothed dual model, associated with (11)
and (14). Especially, the smoothed dual model also gives rise to a simple and
efficient numerical algorithm which is proposed in the following section.
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3.1 Asymptotic Function and Smoothed Dual Model

We first introduce the asympototic function in order to derive the smoothing
method. The asymptotic function g∞ of a proper convex function g(u) is also a
proper convex function, positively homogeneous and defined in an approxima-
tion way [36, 40] as

g∞(z) = lim
s→0+

{gs(z) := sg(s−1z)} .

For example,

g(u) =

√

1 + ‖u‖2
, g∞(z) = ‖z‖ ;

and

g(u) = log
k

∑

j=1

euj , g∞(z) = max
1≤j≤k

zj . (20)

Figure 1: The left graph, the black and bold line, gives the function f(x) =
max(1 − x, x), at the section x ∈ [0, 1]. The right graph shows the the approx-
imation of f(x) by the Log-Sum exponential function fs(x) = s log(exp((1 −
x)/s) + exp(x/s)) where s = 0.3: the upper blue line, s = 0.05: the lower blue
line.

We use an example to show the smoothing effects of the Log-Sum exponential
function (20) for the highly nonsmooth function max1≤j≤k zj . In Fig. 1, the
nonsmooth function f(x) = max(1 − x, x) is given in the first graph. We use
the Log-Sum exponential function (20) to approximate it by

fs(x) = s log(exp((1 − x)/s) + exp(x/s)) ,

where s > 0. We see, by the two blue lines on the right graph, that the approx-
imation becomes better when s is chosen smaller.
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Likewise, we apply (20) to approximate the min function in (14) by chosing
a small parameter s > 0. In this way, the nonsmooth optimization problem (14)
can be approximated by

max
pi∈Cλ

ED
s>0(p) := −s

∫

Ω

{

log

n
∑

i=1

exp(
−fi − div pi

s
)
}

dx . (21)

We call the new optimization problem (21) the smoothed dual model in compar-
ison to the original dual one (14).

In contrast to the non-smooth dual model (14), the optimum of the smoothed
dual model (21) is always unique due to the strict concaveness of the energy
function of (21).

3.2 Equivalent Smoothed Models and Maximum Entropy

Labelings

Actually, it is well known that the smooth log-sum function has an identical
expression [36]:

Lemma 5. For any given µ ∈ 4+ and h ∈ R
n,

log

n
∑

i=1

µie
hi = max

u∈4+

{

〈u, h〉 −
n

∑

i=1

ui log
ui

µi

}

.

Let µi = 1/n, i = 1 . . . n. By the results of lemma 5, we see that the smoothed
dual model (21) is just equivalent to

max
pi∈Cλ

min
u(x)∈4+

Es(u, p) =

∫

Ω

{

n
∑

i=1

ui(fi + div pi) + s
n

∑

i=1

ui log ui

}

dx . (22)

In view of the primal-dual model (11), the energy functional in the optimiza-
tion problem (22) is just the energy functional of (11) plus an entropy-penalizing
term. Such entropy penalization provides a proper regularization or smoothing
of the original function. We, likewise, call the optimization problem (22) the
smoothed primal-dual model.

Correspondingly, optimizing the dual variables p in (22) leads to the equiv-
alent smoothed primal model :

min
u(x)∈4+

EP
s (u) =

∫

Ω

{

n
∑

i=1

uifi + λ
n

∑

i=1

|∇ui| + s
n

∑

i=1

ui log ui

}

dx . (23)

Clearly, the positive value s here works as a penalization parameter. When s
approaches 0, the optimization problem (22) approaches the original primal-dual
problem (11) and the smoothed primal model (23) approaches the nonsmooth
version (5). At this, the smoothed primal-dual model (22) shares the same
formulation of the maximum entropy clustering algorithms [37]. To this end, we
also call our smoothing approach given by (21) or (22) the method of maximum
entropy labelings.
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3.3 Approximation Bounds of Smoothed Models

In fact, the Log-Sum exponential function gives the following approximation
bound of the maximum function max1≤i≤k zi [40]

Lemma 6. For each µ ∈ 4+, the following inequalities hold,

k
∑

i=1

µizi ≤ log

k
∑

i=1

µie
zi ≤ max

1≤i≤k
zi .

Moreover, for s > 0

k
∑

i=1

µizi ≤ lim
s→0+

{

s log

k
∑

i=1

µie
zi/s

}

≤ max
1≤i≤k

zi .

Proof is referred to [40].
Then in view of Lemma 6, we have the approximation bound of the smoothed

dual model:

Proposition 7. For any s > 0, the smoothed dual model (21) gives an approx-
imation of (14), which has the bound:

0 ≤ ED(p) − ED
s>0(p) ≤ s log n |Ω|

where the functions ED(p) and ED
s>0(p) are the energy functional of (14) and

(21) respectively, |Ω| is the area of the domain Ω.

Proof. Define the function Gs(x) as

Gs(x) := −s log
{

n
∑

i=1

exp(
−fi(x) − div pi(x)

s
)
}

,

i.e. the component function of (21) to be integrated.
Let µi = 1/n and zi = −(fi(x) + div pi(x)) for each x ∈ Ω. By Lemma 6,

we have

n
∑

i=1

fi(x) + div pi(x)

n
≥ s logn + Gs(x) ≥ min

1≤i≤k
(fi(x) + div pi(x)) .

Therefore,

min
1≤i≤k

(fi(x) + div pi(x)) − Gs(x) ≤ s log n ,

and
ED(p) − ED

s>0(p) ≤ s log n |Ω| .

On the other hand, through lemma 5 and (22), we have

Gs(x) = min
u∈4+

n
∑

i=1

ui(fi + div pi) + s
n

∑

i=1

ui log ui .

13



Hence

0 ≤ −s
n

∑

i=1

ui log ui ≤ min
1≤i≤k

(fi(x) + div pi(x)) − Gs(x) ;

then
ED(p) − ED

s>0(p) ≥ 0 .

By Prop. 7, the approximation bound of the smoothed model (21) depends
on the smoothing parameter s. Hence by choosing s small enough, the smoothed
dual model (21) solves the original nonsmooth dual model (14) within an ex-
pected error bound.

4 Algorithm

The smooth energy function considered in the smoothed dual model (21) pro-
vides the feasibilty to build up an efficient and simple numerical scheme over
dual variables pi(x), i = 1 . . . n. In order to maximize the energy functional of
(21), we propose a projected gradient algorithm, see Alg. 1, which contains the
same steps as the algorithms suggested in [9, 18].

Algorithm 1 Projection-based Smoothing Algorithm

• Let δ > 0 be chosen as some suitable step-size and let p0
i , i = 1, . . . , n be

chosen as the starting values, set k = 0 then start;

• Compute

uk
i =

e
−fi−div pk

i
s

∑n
i=1 e

−fi−div pk
i

s

, i = 1, . . . , n ; (24)

• Update pk+1
i , i = 1, . . . , n by

pk+1
i = ProjCλ

(pk
i + δ∇uk

i ) , i = 1, . . . , n ,

where ProjCλ
is the projection operator to the convex set Cλ;

• Let k = k + 1 and restart k + 1 iteration until convergence. When conver-
gence is achieved, the primal variable u is recovered by

ul =

{

1 if l = arg mini=1,...,n (fi + div pi)
0 otherwise.

.

The two main steps at each iteration can also be explained as the Expectation
Maximization (EM) steps:

14



• Expectation Step, compute the conditional probabilities by fixing the
dual variables pk

i , i = 1 . . . n:

uk
i =

e
−fi−div pk

i
s

∑n
i=1 e

−fi−div pk
i

s

, i = 1, . . . , n ;

• Maximization Step, maximize the energy functional by fixing uk
i , i =

1 . . . n:
pk+1

i = ProjCλ
(pk

i + δ∇uk
i ) , i = 1, . . . , n .

The above maximization step is implemented by the following projected
descent steps:

• Gradient-Descent Step, compute

p̃k+1
i = pk

i + δ∇uk
i , i = 1, . . . , n

where ∇uk
i is the gradient of the energy functional of (21)

• Projection Step, compute the projection to the convex set Cλ:

pk+1
i = ProjCλ

(p̃k+1
i ) , i = 1, . . . , n .

4.1 Analysis on Smoothing Algorithm

Now we give analytical results on the proposed Alg. 1.

Proposition 8. Let ps be optimal to the smoothed dual model (21) and us be
given by ps

us
i =

e
−fi−div ps

i
s

∑n
i=1 e

−fi−div ps
i

s

, i = 1, . . . , n . (25)

(us, ps) is the unique optimum of the smoothed primal-dual model (22), also us

is the unique minimum of the smoothed primal model (23).

Proof. By inserting the expression (25) into the smoothed primal-dual model
(22) we get

Es(u
s, ps) = −s

∫

Ω

{

log
n

∑

i=1

exp(
−fi − div pi

s
)
}

dx = ED
s (ps) .

Hence, this also implies that us solves the smoothed primal model (23) due to
smoothness and equivalences of the primal and dual models.

For each x ∈ Ω, we denote

h(u1, . . . , un) =
n

∑

i=1

ui(fi + div ps
i ) + s

n
∑

i=1

ui log ui ,
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i.e. Es(u
s, ps) =

∫

Ω
h(us

1(x), . . . , us
n(x)) dx. Then we have

∂2h

∂u2
i

= s
1

ui
> 0 .

Hence h is strictly convex which implies that for any u′ 6= us ∈ ∆+, Es(u
′, ps) >

Es(u
s, ps) = ED

s (ps). Therefore, since ps is unique, it follows that (us, ps) is the
unique solution to the smoothed primal-dual model (22).

As seen in Prop. 8, the expectation step (24) in Alg. 1 just gives an ap-
proximation of us. Obviously, us may not be binary. In order to recover a
binary solution, Alg. 1 finally uses a threshold to estimate an optimum of the
nonsmooth primal problem (5), i.e.

ũs
k(x) =

{

1 if k = arg mini=1,...,n (fi(x) + div ps
i (x))

0 otherwise
. (26)

Observe (25) and the nondecreasing exp. function, (26) just leads to

ũs
k(x) =

{

1 if k = arg maxi=1,...,n us
i (x)

0 otherwise
. (27)

We contribute the rest of this section to analyze such thresholding step.
Assume ps is the optimum of the smoothed dual problem (21). Let ds(x)

be the gap between the second smallest and smallest component of {fi(x) +
div ps

i (x)}n
i=1, i.e.

ds(x) = min2nd
i (fi(x) + div ps

i (x)) − mini(fi(x) + div ps
i (x)) , (28)

where min2nd denotes the second smallest value, clearly ds(x) >= 0. We denote
Ds = minx∈Ω ds(x).

We show that when the smoothing parameter s is smaller than some bound
in case Ds > 0, the thresholded solution ũs computed by Alg. 1 gives the exact
global optimum of the nonsmooth primal model (5), and therefore also of the
original nonconvex Potts model (4) (see Prop. 2).

Proposition 9. Let ps be the optimum of the smoothed dual model (21) and
the smoothing parameter s > 0 be chosen. In case Ds > 0 and

s ≤
Ds

log
[

γ(n − 1)/(1 − γ)
] (29)

where γ ∈ [0.5, 1), the thresholded result ũs given by Alg. 1 exactly solves the
convex relaxed primal model (5), therefore the original nonconvex Potts model
(4), in a global manner.

Proof is given in the Appendix B.
In fact, Ds > 0 just indicates that there exists an unique minimum of fi(x)+

div p∗i (x) for all x ∈ Ω and the global optimizer of the nonconvex Potts model
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can be given by its convex relaxed version, see Prop. 2. Therefore, the bound
of s given in Prop. 9 presents a condition under which the optimum computed
by the smoothed model also solves the nonsmooth model (5) and the nonconvex
Potts model (4) globally and exactly!

When the relationship (29) between s and Ds is not satisfied, the algorithm
still provides a binary approximate solution. Numerical experiments confirm
that such suboptimal solutions are indeed very close to a global minimum.

5 Numerical Experiments

In this work, we apply the mimetic finite-difference method [15, 14] to build up
relevant discretization scheme. A 2-D square grid where the size of each grid
cell is assumed to be 1 is used. By this, 2-D scalar fields and vector fields are
given by their discrete representations with the mimetic finite-difference method
and four types of discrete 2-D fields are summarized on this 2-D grid to model
various fields and mimic continuous vector calculus in discrete settings. The
definitions of these four corresponding linear function spaces are listed below,
see also Fig. 2:

• HV : the space of scalar fields defined on cells: the value of the scalar field
is given at the center of each cell (see the empty circles of Fig. 2);

• HP : the space of scalar fields defined on vertices: the value of the scalar
field is given at each vertex (see the filled circles of Fig. 2);

• HE : the space of vector fields defined tangential to sides: the value of the
vector field is given at the center of each side of cells and parallel to the
hosting side (see the related sides of Fig. 2);

• HS : the space of vector fields defined normal to sides: the value of the
vector field is given at the center of each side of cells and normal to the
hosting side (see the related sides of Fig. 2).
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Figure 2: Definitions of finite-dimensional spaces of scalar fields, HV and HP ,
and vector fields, HE and HS , on a 2-D square grid.
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We implement our numerical scheme mainly by applying the HV space for
2-D scalar fields and the HS space for vector fields. We refer to [44] for detailed
implementation and cell-wise computation of functions.

We demonstrate the performance of the smoothed dual model by several ex-
periments and compare with established methods. Alpha expansion and alpha-
beta swap [6] are widely considered state of the art for approximately mini-
mizing the discrete version of (1) with anisotropic total variation (TV) term.
The method proposed in this paper instead minimizes the more ideal energy
functional with isotropic TV term, i.e. the euclidian length of the boundaries.
Because of this difference, energy comparison is not straight forward. However,
there exists a result which allows to approximate the euclidian curve length
on a discrete grid. This result is called the Cauchy-Crofton formula and was
specialized for computer vision problems in [4]. In short, it gives a formula for
edge weights between neighboring grid points such that the discrete boundary
length converges to the euclidian boundary length as the mesh size goes to zero
and the number of neighbors goes to infinity. This result can therefore be used
to determine weights on regularization edges in the discrete model, such that it
correctly corresponds to the continuous model. It is also used to compute the
final energy of the outputs produced by the different methods. Secondly, we
evaluate quality and efficiency with the approaches of [45, 25]. Energy plots for
all experiments can be found in Figure 10. The final energies of the different
methods are plotted as a function of the regularization parameter λ. Since the
final energy is eventually evaluated on a discrete grid there will be some bias
in favor of the graph cut based approaches. Some comparisons are also made
to the very recent convex relaxation approache [34] for minimizing the isotropic
variant of the energy functional, however an extensive experimental comparison
with this approach is out of the scope of this paper.

In experiments where the correct solution is known, we have also compared
the percentage of misclassified pixels, Table 1. The regularization parameter λ
has here been manually selected for each method to minimize the percentage of
misclassified pixels. . The implementation of the proposed method is made in
matlab and the implementations of alpha expansion and alpha-beta swap are
made in C++ [6]. The input images in Figure 3 and 8 was first used by Pock
et. al. [33], and the input images in Figure 6 and 7 was first used by Lellmann
et. al. [25].

5.1 Qualitative evaluation

In Figure 3, 10 classes have been used, with color data fidelity

fi =

3
∑

j=1

|I − cj
i |, i = 1, ..., 10, (30)

where {ci}10
i=1 are predefined color vectors. For this rather difficult problem with

a large number of labels, the smoothed dual model clearly outperforms the graph
cut based approaches in terms of energy, see Figure 10 (a). In Figure 3 (c) we
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(a) (b)

(c) (d)

(e)

Figure 3: (a) Input, (b) alpha expansion 4 neighbors, (c) alpha expansion 8
neighbors, (d) Pock et. al. (e) dual model.
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(a) (b) (c) (d) (e)

Figure 4: Experiment 1: (a) Input, (b) ground truth, (c) alpha expansion, (d)
alpha-beta swap, (e) dual model. Size 100 × 100.

(a) (b) (c) (d)

Figure 5: Experiment 2: (a) Input, (b) ground truth, (c) alpha expansion, (d)
dual model. Size: 100 × 100.

compare with the recent method of Pock et. al. Their method seems to recover
almost integer valued solutions up to some blurring of the boundaries. Our
method, on the other hand, yields results that are integer valued everywhere.

Some artificial examples are presented next in experiment 1-4, Figure 4 - 7.
The leftmost gray scale image I is to be classified into 4 classes by using the L1

norm in the data fidelity term

fi = |I − ci|, i = 1, ..., 4, (31)

where {ci}4
i=1 are predefined real values. We observe that in experiment 1,2 and

4 the new method with s = 0.01 outperforms alpha expansion and alpha-beta
swap, both in terms of visual quality and number of misclassified pixels (Table
1). In experiment 3, alpha expansion performs best. This is due to the fact that
the correct solution only consists of horizontal boundaries which are favored
by the anisotropic model. However, the proposed method outperforms alpha-
beta swap and the primal model for this example. In experiment 4, where the
boundaries are diagonal, the dual model clearly performs best. For energy plots,
see Figure 10. In terms of energy, our approach performs about equally well as
alpha expansion for these two examples. Observe also that our approach can
obtain solutions of lower energy than approaches [45, 25]. This is particularly
visible in Figure 10(c).

The advantage of the smoothing is illustrated in the next example, Figure
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(a) (b) (c) (d) (e) (f)

Figure 6: Experiment 3: (a) Input, (b) ground truth, (c) alpha expansion, (d)
alpha-beta swap, (e) Lellmann et. al., (f) dual model. Size: 32 × 32.

(a) (b) (c) (d) (e) (f)

Figure 7: Experiment 4: (a) Input, (b) ground truth, (c) alpha expansion, (d)
alpha-beta swap, (e) Lellmann et. al., (f) dual model. Size: 32 × 32.

8, where we want to recover a triple junction by filling in the gray area. The
data term is given by fi = 0 for i = 1, 2, 3 inside the gray disk, and by the
color distance (30) outside the gray disk. This is a typically difficult example
as the data term is equal for all labels. The global minimum of Potts model
will fill in the gray area such that the total length of the boundaries between
the labels are minimized, i.e. the boundaries meet with 120 degree angles in
the center. For this example we expect that for the non-smooth model (f1(x)+
div p∗1(x), ..., fn(x) + div p∗n)) does not have a unique minimum for some points
inside the gray area, which makes it difficult to determine the label at such
points. However, for the smooth model a unique minimum can be obtained at
each point. The value of Ds converges to around 10−9 for this example when s =
0.005. Therefore condition (29) is not satisfied, so we cannot guarantee an exact
solution. In spite of this, the thresholding scheme still provides approximate
binary solution which in fact coindices with the exact global minimum. The
final result is shown in Figure (8), where we also compare with other methods.
The approach of Lellmann et. al. does not recover a binary solution. Alpha
expansion yields a binary, but incorrect result, Figure (8) (d). It can easily be
seen geometrically that this is a local optimum, i.e. no alpha expansion move
can yield a result of lower energy. We also compare with the convex relaxation
of Pock et. al. [33], who first tested their method on this image. As can be
seen, they are not able to recover the integer valued global minimum, although
they are close for this particular example. Numerical calculations for triple
junctions have also been tested in [26] showing that the piecewise constant level
set method is able to produce 120 degrees for the junctions.
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(a) (b) (c) (d) (e)

Figure 8: (a) Input, (b) Lellmann et. al., (c) Pock et. al., (d) Alpha expansion
(e) dual model

Figure 9 (b) shows the result of 4 class segmentation of a brain MRI image.
One would like to classify the input image in Figure 9 (a) into the classes:
background, cerebrospinal fluid, gray matter and white matter. For this example
we have used the Mumford-Shah model with L2 data term

fi = |I − ci|
2, i = 1, ..., 4.

In order to estimate the optimal constant values {ci}n
i=1, we alternate opti-

mization with respect to {ci}n
i=1 and the labeling function as described in more

details in [1]. This algorithm finds a local minimum with respect the constant
values. For energy plots, see Figure 10.

The positive parameter s controls how well the dual model is approximated.
The lower s is the better the dual model is approximated. We found that setting
s = 0.01 or s = 0.005 is sufficient and often optimal: setting s lower does not
seem to lower the energy of the binary result. This indicates there is a certain
benefit of the smoothing in connection with the thresholding scheme. This
benefit can also be observed in the energy plots of Figure 10: we can obtain
binary solutions of lower energy than the approaches of [45, 25].

5.2 Evaluation of efficiency and convergence

We now wish to compare the cpu time and convergence with the approaches
[45, 25]. In order to deal with the simplex constraint in the primal optimization
problem (5), an alternating optimization approach was used in [45] where one
solve for k = 1, ...

uk+1 = argmin
u

E1(u) =

n
∑

i=1

∫

Ω

1

2θ
(ui − vk

i )2 + |∇ui| dx (32)

vk+1 = argmin
v∈∆+

E2(v) =
n

∑

i=1

∫

Ω

1

2θ
(uk+1

i − vi)
2 +

1

λ
fivi dx, (33)

Here θ is some large parameter. The second problem can be optimized pointwise
and has a closed form solution. However, the first subproblem is a TV optimiza-
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(a) (b)

(c) (d)

Figure 9: (a) Input, (b) alpha expansion 4 neighbors, (c) alpha expansion 8
neighbors, (d) dual model. Size: 709× 591.

Table 1: Percentage of misclassified pixels for experiment 1-4

α-expansion α − β-swap Lellmann et. al. dual
Experiment1 8.89 6.12 - 5.51
Experiment2 1.17 1.17 - 1.06
Experiment3 7.42 15.72 12.30 11.72
Experiment4 6.64 7.23 6.25 5.86
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Figure 10: Energy plot as a function of regularization parameter λ. Red:
smoothed dual model, green: alpha expansion 8 neighbors, blue: alpha ex-
pansion 4 neighbors, black: alpha-beta swap 8 neighbors, magneta: Zach et. al.
[45]. (a) Flower, (b) brain (c)-(d) Experiment 3 and 4. In all experiments the
smoothed dual model (red) performs better than or as good as competitive ap-
proaches. Fig (a) is a typically difficult example with a large number of labels,
where the smoothed dual model clearly performs best. There are some bias in
favor of the discrete models, since the final energy is eventually evaluated on a
discrete grid.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11: Convergence comparison on input image from Figure 6 (a) with
highest regularization coefficient λ from Figure 10(c). Top row: Zach et. al. [45]
with θ = 0.01. (a) 500 outer iterations, (b) 1500 outer iterations (c) 3000 outer
iterations, (d) 7000 outer iterations. Middle row: Douglas Rachford splitting
from Lellmann et. al. [25] with outer time step size of 0.02. (e) 500 outer
iterations, (f) 1000 outer iterations, (g) 2000 outer iterations, (h) 3500 outer
iterations. Bottom row: smoothed dual model: (i) 500 iterations, (j) 1000
iterations, (k) 1500 iterations, (l) 2200 iterations. Within each outer iteration
of [45, 25] a TV minimization problem must be solved iteratively.
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tion problem, and must be solved by some iterative technique such as Cham-
bolle’s algorithm [9]. In [25] a very similar scheme based on Douglas-Rachford
splitting was used, which has proven convergence provided the subproblems are
solved exactly. This scheme also involves a substep where a TV minimization
problem needs to be solved iteratively. Therefore, both these schemes require
one outer loop and one inner loop. In contrast, the simplex constraint is inherent
in our dual formulation, therefore only one loop is enough. Furthermore, each
iteration of this loop has a computational cost approximately equal to one inner
loop iteration of [9, 25]. In order to make a reasonable comparison of efficiency,
the subproblems in [45, 25] are assumed to be solved with limited accuracy.
Even in those cases, we found our approach to be significantly more efficient.
When θ is low, the problem is solved with high accuracy, but more iterations
are required. Therefore, one could say θ plays the same role as the smoothing
parameter s in our approach. When s is low, the relaxed problem is solved with
higher accuracy, but more iterations are required as the time step size δ depends
on s to have stability. Trial and error indicate that this dependency is given by
δ ≤ 1

2s when images are scaled between 0 and 1. In practice we experienced
that the number of outer iterations in [45, 25] exceeds the total number of iter-
ations in our approach, especially when the regularization parameter λ is high.
The Douglas-Rachford splitting approach of [45] tends to require an amount of
outer iterations approximately equal to the total number of iterations in our
approach when the subproblems are solved exactly. An illustrative example is
given in Figure 11. Here we have tried to optimize all parameters, to minimize
the number of outer iterations. Furthermore, each subproblem in [45, 25] is
solved with high accuracy. Zach et. al. [45] needs 7000 outer iterations for
this difficult example. Lellmann et. al. needs 3500 outer iterations, while our
approach converges in a total of 2200 iterations. The final results are a little
different, indicating that there is a difference between the thresholding schemes.
As seen in the energy plot of Figure 10(c), the solution produced by our method
has a lower energy.

Comparing the highly optimized C++ implementation [6] of alpha expansion
and our matlab implementation of the dual model, alpha expansion was faster
for all experiments as expected. However, there has recently been much effort
on comparing continuous and discrete (graph cut) techniques for two phase
partitioning problems [19]. Continuous techniques are getting close because of
potential of parallel and GPU implementation. Unfortunately, we don’t have
the resources to implement our method in such a highly optimized manner.
We can mention that Zach et. al. implemented their algorithm on gpu and
thereby claimed to beat the graph cut based approaches in terms of efficiency
by a factor of 30. The cpu times for our matlab implementation are as follows:
For the 709 × 591 brain image convergence was reached in 1 minutes and 32
seconds for our implementation. For the 32 × 32 images in Figure 6 and 7
convergence averaged around 2.5 seconds. For the 100× 100 images in Figure 4
and 5 convergence took 10.21 and 4.68 seconds respectively. Due to the extreme
amount of noise on these small images the regularization parameter must be set
very high, which increases cpu time compared to images of the same size with
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lower noise level. In [25, 45] there are much more parameters to tune, like θ,
step sizes in algorithm for subproblem, accuracy of solving subproblems etc.
We have done our best to optimize these parameters to make convergence as
fast as possible. Even then we observed that our matlab implementations of
these approaches generally require as least 20-30 times as much time to reach
acceptable solutions near convergence.

6 Conclusions and Future Topics

This paper proposed a novel duality-based approach for the continuous multi-
labeling problem, i.e. the convex relaxed Potts model. Through the dual formu-
lation, we could explain why optimal solutions are often expected to be binary.
Moreover, we suggested a smoothing method based on the log-sum exponential
function, so as to deal with the nonsmooth dual problem, and also indicated that
such smoothing approach formally gives rise to the novel smoothed primal-dual
model and suggested labelings with maximum entropy. By this, the close con-
nections between optimal labelings and geometrical clustering of spatial points
were revealed. The numerical experiments showed that such smoothed method
for the dual model produces an expectation maximization like algorithm for the
multi-labeling problem and yields better numerical results. We will apply our
current work for more imaging and vision tasks in future.

A Proof of Prop. 4

Before we prove Prop. 4, we first give the following result

Proposition 10. Given a bounded scalar field u defined on Ω, we assume,
without loss of generality, 0 ≤ u(x) ≤ 1 for all x ∈ Ω. If a vector field p∗

maximizes the integral
∫

Ω
u div p dx over the convex set

Cλ := {p | |p(x)| ≤ λ , pn = 0 } , (34)

then for almost every level set uγ of u

uγ =

{

1 , when u(x) ≥ γ
0 , when u(x) < γ

with γ ∈ [0, 1], p∗ also maximizes the same integral
∫

Ω
uγ div p dx over the

convex set Cλ and equals to λLγ where Lγ is the perimeter of the level set uγ .

Proof. Denote the interval Γ = [0, 1]. The coarea formula is a powerful tool
which says that

∫

Ω

|∇u| dx =

∫

Γ

∫

Ω

|∇uγ | dx dγ. (35)
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By applying this formula we can deduce

∫

Ω

u div p∗ dx =

∫

Ω

|∇u| dx =

∫

Γ

∫

Ω

|∇uγ | dx dγ =

∫

Γ

(

max
p∈Cλ

∫

Ω

uγ div p dx

)

dγ.

(36)

By the fact that u(x) =
∫ u(x)

0
dγ =

∫

Γ
uγ(x)dγ for any x ∈ Ω, we have

∫

Ω

u div p∗ dx =

∫

Ω

(
∫

Γ

uγ(x)dγ

)

div p∗(x) dx =

∫

Γ

∫

Ω

uγ div p∗ dx dγ. (37)

Therefore, combining (36) and (37)

∫

Γ

∫

Ω

uγ div p∗ dxdγ =

∫

Γ

(

max
p∈Cλ

∫

Ω

uγ div p dx

)

dγ. (38)

This equality (38) together with the fact that for any γ ∈ [0, 1]

∫

Ω

uγ div p∗ dx ≤ max
p∈Cλ

∫

Ω

uγ div p dx (39)

implies that
∫

Ω

uγ div p∗ dx = max
p∈Cλ

∫

Ω

uγ div p dx

for almost every γ ∈ [0, 1]. Clearly ,the perimeter of the level set uγ is given by

Lγ =

∫

Ω

|∇uγ | dx = max
p∈Cλ

∫

Ω

uγ div p dx .

Now we give the proof of Prop. 4.

Proof. Let ud(x) = (ud
1(x), . . . , ud

n(x)) be an optimum of the primal problem
consistent with fi + div p∗i i = 1, . . . , n, as suggested in Theorem 1, i.e.

∀x ∈ Ω̃ , ud
k(x) + ud

j (x) = 1 , ud
i (x) = 0 , i 6= k, j

and
ED(p∗) = E(ud, p∗) = EP (ud) . (40)

Obviously, p∗i maximizes the integral

∫

Ω

ud
i (x) div p∗i (x) dx , i = 1, . . . , n

over the convex set Cλ (34).
Now we define ũ(x) = (ũ1(x), . . . , ũn(x)) as follows: let

ũi(x) = ud
i (x) , x ∈ Ω , i 6= j, k
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which are obviously binary as ud
i (x) ∈ {0, 1}, i 6= j, k, by virtue of Theorem 1.

For ũj(x) and ũk(x), we choose any value γ ∈ (0, 1) and let

ũk(x) =

{

1 , when ud
k(x) ≥ γ

0 , when ud
k(x) < γ

, x ∈ Ω̃

and
ũk(x) = ud

k(x) , x ∈ Ω\Ω̃ .

It is easy to see that ũk(x) is binary in this setting. By such a configuration of
ũk, let

ũj(x) = 1 − ũk(x) , x ∈ Ω̃

and
ũj(x) = ud

j (x) , x ∈ Ω\Ω̃ ,

which is also binary in Ω.
It is easy to see that the above binary setting of ũi(x), i = 1, . . . , n doesn’t

change the total energy of (14), i.e.

E(ũ, p∗) =

n
∑

i=1

∫

Ω

ũi(x)(fi(x) + div p∗i (x)) dx = ED(p∗). (41)

Moreover, by Prop. 10, we can easily verify that p∗k maximizes the integral
∫

Ω ũk div pk dx over the convex set Cλ. By the fact

ud
j (x) = 1 − ud

k(x) , ũj(x) = 1 − ũk(x) , x ∈ Ω̃

and ud
j (x), ũj(x) ∈ {0, 1} when x ∈ Ω\Ω̃, then ũj(x) is the 1 − γ level set of

ud
j (x). Therefore p∗j also maximizes the integral

∫

Ω
ũj div pk dx over the convex

set Cλ.
By the above facts, the total energy (41) related to ũi is actually EP (ũ),

hence we have
EP (ũ) = E(ũ, p∗) = ED(p∗) .

It follows that ũ is a minimum of the primal problem (5) which is also binary.

B Proof of Prop. 9

Proof of Prop. 9 is shown as follows

Proof. Let us
i , i = 1, . . . , n, be given by (25), i.e. us solves the smoothed primal

model (23), see Prop. 8.
At the position x ∈ Ω, let fk(x)+div ps

k(x) and fl(x)+div ps
l (x) be the first

and second minimizer of fi(x) + div ps
i (x), i = 1, . . . , n, i.e. we have

fk(x) + div ps
k(x) < fl(x) + div ps

l (x) ≤ fi(x) + div ps
i (x) , i 6= k, l ,
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as
ds(x) =

(

fl(x) + div ps
l (x)

)

−
(

fk(x) + div ps
k(x)

)

> 0

in view of Ds = minx∈Ω ds(x) > 0.
Given

s ≤
ds(x)

log
[

γ(n − 1)/(1 − γ)
] , (42)

where γ ∈ [0.5, 1), then

exp(
ds(x)

s
) ≥

γ(n − 1)

1 − γ
.

It follows that
1

1 + (n − 1) exp(− ds(x)
s )

≥ γ . (43)

By (25),

us
k(x) ≥

exp(
−fk(x)−div ps

k(x)
s )

exp( −fk(x)−div ps
k
(x)

s ) + (n − 1) exp(
−fl(x)−div ps

l
(x)

s )
.

Therefore, by (43) we have
us

k(x) ≥ γ ,

which means that for properly chosen s by (42) us
k(x) ≥ γ at each x ∈ Ω.

Therefore, when

s ≤
Ds

log
[

γ(n − 1)/(1 − γ)
] ,

for each position x ∈ Ω
us

k(x) ≥ γ ,

where k indicates the component such that fk(x) + div ps
k(x) is the minimizer

of fi(x) + div ps
i (x) i = 1, . . . , n.

Moreover, by (25), we have

n
∑

i=1

us
i (x) = 1 , and us

i (x) ≥ 0 , i = 1, . . . , n

for each x ∈ Ω. Therefore, for us
k(x) ≥ γ and γ ∈ [0.5, 1)

∑

i6=k

us
i (x) ≤ 1 − γ ≤ 0.5 .

Let (us
i )

γ be the γ upper level-set function of us
i such that

(us
i )

γ(x) :=

{

1 if us
i (x) ≥ γ

0 otherwise
, x ∈ Ω .
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Hence, at each x ∈ Ω we have

(us
k)γ = 1 , (us

i )
γ(x) = 0 , i 6= k ,

Obviously the thresholded result ũs by (27) can also be achieved by the γ upper
level set function (us

i )
γ , i.e.

ũs
i = (us

i )
γ , i = 1, . . . , n . (44)

In view of the smoothed primal-dual model (22) and the smoothed primal
model (23), we see that the dual functions ps

i , i = 1, . . . , n, just maximize the
integrals

∫

Ω

us
i (x) div ps

i (x) dx , i = 1, . . . , n

over the convex set Cλ. Then by Prop. 10, ps
i , i = 1, .., n, maximize

∫

Ω

(us
i )

γ(x) div ps
i (x) dx , i = 1, . . . , n ,

over Cλ. It follows, by (44), ps
i , i = 1, .., n, also maximize

∫

Ω

ũs
i (x) div ps

i (x) dx , i = 1, . . . , n

over Cλ.
In this regard,

EP (ũs) = E(ũs, ps) = ED(ps) .

It directly indicates that the threshholded result ũs is a global solution to the
nonsmooth primal model (5). As ũs

i , i = 1, . . . , n, are also binary, ũs is also a
solution to the nonconvex Potts model (4).
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