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Abstract. Many problems in image processing can be posed as non-convex
minimization problems. For certain classes of non-convex problems involving
scalar-valued functions, it is possible to recast the problem in a convex form
using a “functional lifting” technique. In this paper, we present a variational
functional lifting technique that can be viewed as a generalization of previ-
ous works by Pock et. al and Ishikawa. We then generalize this technique to
the case of minimization over vector-valued problems, and discuss a condition
which allows us to determine when the solution to the convex problem corre-
sponds to a global minimizer. This generalization allows functional lifting to
be applied to a wider range of problems then previously considered. Finally,
we present a numerical method for solving the convexified problems, and apply
the technique to find global minimizers for optical flow image registration.

1. Introduction

Many problems in image processing are posed as regularized minimization prob-
lems. Classical examples include total-variation (TV) and non-local TV regular-
ized models for denoising [54, 47, 31], deconvolution [46, 57], and segmentation
[12, 43, 31]. When these models are convex, standard minimization methods pro-
vide reliable results. Simple and reliable variational techniques include gradient
descent [54], dual formulations [18, 16, 2], split Bregman schemes [32, 56, 26]. In
the discrete setting, state-of-the-art methods can be derived by embedding the
problem into a graph or Markov random field (MRF), and solving the resulting
problem using graph cuts [42, 20, 9].

When problems are non-convex, these techniques fail because they get “stuck”
at local minima. A classical example of one such non-convex problem is image
registration. For this problem, gradient descent techniques can be very ineffective,
especially if the images involved suffer from strong noise contamination or repetitive
details such as textures.

Recent advances in optimization theory have allowed certain classes of non-
convex problems to be solved in polynomial time. Most of these techniques rely
on the concept of “functional lifting,” which converts a non-convex problem into
a convex problem which can be easily minimized using standard techniques. The
functional lifting concept has been used to solve segmentation and stereo problems
within both the continuous and MRF framework [17, 12, 37, 51].

Unfortunately, the work that has been done on functional lifting methods per-
tains only to minimizing scalar-valued functions. Binary segmentation problems
involve only one variable which determines which region a pixel is in, and stereo
matching problems only involve image displacements in one direction. More so-
phisticated problems require the optimization of multi-variate functions. One of
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the most ubiquitous examples of this is image registration, in which the pixels
of one image are mapped onto another. Each pixel in a registration problem is
assigned both a horizontal and vertical displacement component. Because displace-
ment functions are vector-valued, existing methods for non-convex optimization
cannot tackle this problem.

In this work, we generalize the functional lifting framework to minimize mul-
tivariate functions over Markov random fields - allowing us to minimize a more
general class of non-convex problems then has been previously considered. In doing
so, we present a scheme for computing the global minimizer of image registration
problems.

The organization of this paper is as follows: We first present a brief review of
work that has been done on single variable functional lifting, focusing on the dis-
crete theory of MRF’s. We then discuss optical flow models for image registration,
and explain how they can be formulated using first order MRF’s. We then intro-
duce a novel method for solving multi-variable non-convex problems in imaging via
functional lifting, and explain how this method can be applied to image registra-
tion. Finally, we describe a numerical scheme to solve the resulting convexified
problems, and present results of numerical experiments.

1.1. Optimization on Markov Random Fields. The Markov Random Field
(MRF) has a long and important history within the physics and statistics commu-
nities, where it was first introduced as a formalization of the Ising-Potts model for
particle interactions [4, 5, 52]. It was Geman and Geman [30] who first showed how
MRF’s could be used for image processing tasks.

We will now formalize the notion of Markov random field. An MRF is defined
over a discrete lattice of points, Ω. In the context of image processing, Ω is a
rectangular array of pixels. Each point, x ∈ Ω, in the lattice takes on some value
(e.g. the pixel intensity), denoted by u(x). With each lattice point, we also identify
its set of neighbors, Nx ∈ Ω, with which the point x directly interacts.

Most MRF based image processing methods are concerned with minimizing en-
ergies of the form

(1) E(u) =
∑

x∈Ω







f(u(x), x)
︸ ︷︷ ︸

fidelity

+
∑

y∈Nx

r(u(x), u(y))

︸ ︷︷ ︸

regularizer







.

Energy models on MRF’s consist of two parts. The regularizer measures differences
between neighboring nodes. In imaging applications, this term enforces some sort of
“smoothness” of the recovered image. The fidelity term measures the relationship
between each individual node and some pre-defined quantity, such as the difference
between the clean image, u, and a noisy image.

Energies of the form (1) can be minimized by standard techniques, such as
gradient descent, simulated annealing, or other heuristic methods [6, 40, 7, 10, 9].
However, these techniques can be slow, and yield sub-optimal results.

For certain classes of problems with pairwise label interactions, exact minimizers
can be computed very efficiently using a “graph cuts” approach. These techniques
embed the energy function into a graph consisting of a large number of nodes
connected with edges. Each edge is assigned a certain weight. The minimal graph
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cut problem is to partition the set of nodes into two disjoint sets in such a way that
the sum of the weights of the “cut” edges is minimal [10, 41, 29, 5].

The first general class of problems solvable by graph cuts was identified by Picard
and Ratliff [48]. This work was followed by Kolmogorov and Zabih [41], who present
a regularity condition which is both necessary and sufficient for a problem to be
solvable by graph cuts. This basic graph cuts framework was only applicable to
binary problems (problems for which the function, u, is restricted to have 2 discrete
values). Despite this restriction, Greig et al. [33] realized that this framework could
be used to solve TV regularized problems in imaging. This framework was pow-
erful enough to solve problems on binary images, as well as 2-phase segmentation
problems [8, 11, 60].

Later work on MRF optimization focused on generalizing these results to solve
problems with more than two labels. For problems with TV regularizers and convex
fidelity terms, Darbon and Sigelle show that an n-label problem can be exactly
minimized by solving a sequence of log(n) binary minimization problems [23, 24, 22],
allowing for fast minimization of the ROF denoising model [54].

For problems with non-convex regularizers, the problem becomes more difficult.
In the next section, we present a modern approach to this problem.

1.2. Functional Lifting for Non-Convex Optimization. One of the most in-
fluential frameworks for global minimization of non-convex functions was proposed
by Ishikawa [37]. The simplest version of the Ishikawa method occurs when the
regularizer is a linear combination of the pairwise differences between labels. In
particular, it is assumed that the Markovian energy has the form

(2) E(u) =
∑

x∈Ω






f(u(x), x) +

∑

y∈Nx

wx,y|u(x) − u(y)|







for some set of positive weights {wx,y}. Because the fidelity term f(·, ·) may be
non-convex, standard minimization techniques fail to find a global minimum in
general.

In [37], a technique is introduced to convert the non-convex, multi-label “primal”
problem (2) into a regular, binary “lifted” problem that is solvable by graph cuts.
This scheme is illustrated in figure 1. This is accomplished by replacing each node
in the primal problem, which can take on Γ possible values, with a column of Γ
binary valued nodes. By connecting adjacent nodes with properly weighted edges,
we formulate the graph so that the value of a cut corresponds to a configuration
of pixels in the primal problem. Suppose, for example, we choose each horizontal
edge in figure 1 to have a weight of unity. If two adjacent pixels differ in intensity
by d units, then the corresponding cut must sever d horizontal edges. This choice
of horizontal edge weights gives us the familiar TV regularization for the simple
1-dimensional problem depicted here. Likewise, a cut in figure 1 must sever one
solid vertical edges in each column. The energy associated with this severed edge
corresponds to the fidelity energy contributed by that pixel.

In figure 1, there are dotted vertical edges between nodes. These edges have
infinite weight, and only contribute to the value of a cut if the tail lies in group s.
The purpose of these edges to to prevent a column of nodes from being cut more
than once.
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Figure 1. The Ishikawa method for embedding a non-convex
Markovian energy. At the bottom of the figure, we show the pri-
mal representation which consists of a chain of 4 pixels. Above it
is the lifted representation, in which each pixel corresponds to a
column of 3 binary nodes. We obtain the intensity of each pixel by
summing the binary values of the nodes in the corresponding col-
umn.

Although we focus on simple TV-like regularizers in this manuscript, the Ishikawa
approach was originally formulated to solve problems with arbitrary convex priors.
Since Ishikawa’s original publication, more sophisticated priors have been consid-
ered [38, 55]. A very general approach applicable to arbitrary sub-modular priors
is presented by Darbon [21].

The functional lifting approach to non-convex optimization has also been studied
in the variation/PDE framework by Pock et al. [51]. In this work, the authors re-
interpret the Ishikawa method using a continuous formulation, and solve variational
problems involving TV regularizers. Consider a continuous energy of the form

(3) Ec(u) =

∫

Ω

|∇u(x)| + f(u(x)) dx.

We wish to minimize the above energy over all functions u : Ω ⊂ Rn → [0, Γ] ⊂ R.

Rather than replacing each variable, u(x), with a discrete column of nodes as was
done above, Pock et. al replace each unknown with an indicator function defined
on an interval. Consider the lifted function φ : Ω× [0, Γ] → [0, 1] defined as follows

φ(x, γ) =

{
1 if γ ≤ u(x)
0 otherwise
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Figure 2. The continuous analog of the Ishikawa method. The
one dimensional function u is lifted onto the two dimensional func-
tion φ by assigning an indicator function for each location x. A
cross section of φ at location x is a step function with discontinuity
at u(x).

Note that φx(γ) = φ(x, γ) is an indicator function on an interval with a discontinuity
at γ = u(x). This relationship is depicted in figure 2.

From this definition of φ, we have that |∂γφx(γ)| = |∂γφ(x, γ)| = δ(γ − u(x)).
Using this result, we can write the fidelity portion of the energy (3) as

(4) f(u(x)) =

∫

f(x, γ)δ(γ − u(x)) dγ =

∫

f(x, γ)|∂γφ(x, γ)| dγ.

The regularization portion of (3) can be written in terms of φ using the co-area
formula as follows

(5)

∫

Ω

|∇u| =

∫

γ∈[0,Γ]

∫

Ω

|∇φ(x, γ)| dx dγ

Using (4) and (5), we see that Ec(u) = Lc(φ) where

(6) Lc(φ) =

∫

γ∈[0,Γ]

∫

Ω

|∇φ(x, γ)| + f(x, γ)|∂γφ(x, γ)| dx dγ

Note that, unlike Ec(u), the energy Lc(u) is convex. The idea presented in [51] is
to compute a minimizer of the convex energy, (6), and then attempt to reconstruct
a function u from the optimal function φ. Because we allow φ to take on any value
in the interval [0, 1], the minimizer of Lc may not be binary valued. In this case,
we threshold φ at some value α ∈ (0, 1), and use the resulting binary function to
recover u. Interestingly, the authors propose to compute the convex minimization
using a primal-dual scheme, rather than conventional graph cut minimization. The
variational method has several advantages over graph cuts because it uses less
memory, produces more accurate results, and can be easily parallelized.

The framework for functional lifting presented in [51] is rather informal. A
rigorous definition of continuous functional lifting requires one to consider many
technicalities. In particular, one must carefully define the appropriate function
spaces for minimization. Also, in order to guarantee that Lc have a non-trivial
minimizer, it is necessary tp specify boundary conditions on φ involving limits at
infinity. The interested reader should see [50], in which these issues are addressed
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formally. Rather than dwell on the complexities of the continuous problem, this
paper shall focus on the case of functional lifting for discrete energies over MRF’s.

The purpose of this work is to present a global optimization scheme for Mar-
kovian energies involving vector-valued functions. Our approach relies on a multi-
dimensional analog on the functional lifting concept, and can thus be viewed as a
generalization of the method of Ishikawa [37].

In particular, we allow the discrete Markovian function, u : Ω → Rm, to take on
vector values at each node (i.e. the range of u has m components/channels), and
we consider minimization problems of the following form:

(7) E(u) =
∑

x∈Ω






f(u(x), x) +

m∑

i=1

∑

y∈Nx

wx,y|ui(x) − ui(y)|







Although we focus on discrete problems defined over MRF’s, our approach to func-
tional lifting is largely variational. Rather than forcing the lifted function φ to take
on binary values, we parallel the continuous approach described above by allowing
φ to range over the interval [0, 1]. Furthermore, the minimization scheme we choose
is a generalization of the continuous scheme presented in [51], and does not rely on
graph-cuts. In this sense, the method presented here is a hybrid method – it relies
on both discrete and variational techniques.

Later on, we will present several theoretical results pertaining to our functional
lifting method. Our scheme converts vector-valued problems to a lifted problem
with higher dimension. We show that, in order for the solution of the lifted problem
to correspond to a solution of the original problem, the solution of the lifted problem
must satisfy a certain “box function condition” after thresholding has been applied.
We also present a proof that this condition is always satisfied when the method
is applied to scalar-valued problems (i.e. m = 1). In the experimental results
presented here, we found that the box function condition was also satisfied when
the method was applied to vector-valued problems, however rigorous results will be
a subject of future research.

1.3. Optical Flow Methods for Image Registration. Optical flow is an im-
portant concept in both computer vision and medical imaging fields. The optical
flow problem can be phrased as follows: Given two images (a “source” and a “tar-
get”) with corresponding features, compute the displacement field that maps the
features of the source image onto the features of the target image. Optical flow
models are used in computer vision to track the movement of an object through
consecutive images in a video segment. In this application, the displacement field
represents the velocity field of the moving objects. In medical imaging, optical flow
is used to remove motion artifacts from clinical images, as well as to map brain
images onto reference images for quantitative comparison [39, 25, 34].

Variational models for optical flow were originally proposed by Horn and Schunck
[36]. Given two images, I0 and I1, defined over some region Ω, these authors
proposed to recover the displacement field, u = (u1, u2), by minimizing a functional
of the form

(8) E
p,q
HS = α

∫

|I1(x + u(x)) − I0(x)|q dΩ +

∫

|∇u1|
p + |∇u2|

p dΩ
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where α is a parameter that controls the strength of regularization term. In the
original Horn-Schunck model, the authors choose p = q = 2, and assume the
images to be smooth. Under these assumptions, the energy (8) can be simplified
by replacing the images with a local linear approximation, and forming explicit
optimality conditions.

The original Horn-Schunck model has several limitations. First, the quadratic
regularizer does not allow for discontinuities. Second, the smoothness assumption
does not hold for images with hard edges, and only allows for small displacements.
For this reason, a myriad of authors have suggested non-quadratic regularizers
[14, 35, 19, 53, 58, 45]. Of the non-quadratic regularizers that have been proposed
for this problem, one of the most popular and successful is total-variation (TV)
regularized optical flow [14, 35, 19, 53], which corresponds to the above model (8)
with p = 1. The TV regularizer is known to enforce smoothness, while still allowing
for jump discontinuities [54, 47, 16].

When problem (8) is discretized using an anisotropic TV regularizer, the energy
can be written
(9)

EHS =
∑

x∈Ω

{

α (I1(x + u(x)) − I0(x))2 +

2∑

i=1

|ui(x + e1) − ui(x)| + |ui(x + e2) − ui(x)|

}

where e1 = (1, 0) and e2 = (0, 1) denote elementary unit vectors. Note that the
non-convex optical flow energy (9) is a Markovian energy of the form (7).

2. Theory

2.1. Notation and Preliminary Results. We now introduce some notation and
conventions that are handy when working with discrete function spaces.

First, we use the conventional interval notations (a, b) and [a, b] to denote con-
tinuous open and closed intervals, respectively. In the discrete setting, we use the
notation [a, b]d = {a, a + 1, · · · , b − 1, b} to denote a discrete interval. We also use
the notation ei to denote the elementary basis vector, which has its ith component
equal to unity and all other components equal to zero.

We will frequently convert between multi- and binary-valued functions using a
“threshold” operator. Given some scalar-valued function φ we define its threshold-
ing at level α (also called the upper level set at level α) as

φα(γ) =

{
1 if φ(γ) ≥ α

0 otherwise

Alternatively, we can represent the thresholding of φ as the indicator function
φα(γ) = 1Iφ≥α(γ) where 1IA denotes the indicator function of the set A.

Many useful regularizers can be represented with level sets/thresholding using a
coarea formula. Explanations of these formulas and their uses in imaging can be
found in [28, 23, 24, 15]. In the continuous case, the coarea formula allows us to
represent the total variation of a function u : Ω ⊂ Rn → R as an integral of the
total variations of its level sets as follows:

∫

Ω

|∇u| =

∫

α∈R

∫

Ω

|∇uα| dx dα.
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The coarea formula also has a discrete analog. Given a discrete function, u : Ω →
[0, Γ− 1]d, and two points x, y ∈ Ω, we have

(10) |u(x) − u(y)| =
∑

α∈[0,Γ−1]d

|u(x)α − u(y)α| dα.

To aid in the presentation of our theoretical results, we introduce the notion
of a “box function.” In the discrete setting, consider a rectangular domain Γ =
[0, Γ1]d × [0, Γ2]d × · · · × [0, Γm]d. We shall refer to such a domain as a “box” with
“principle vertex” at (Γ1, Γ2, · · · , Γm). We say that a function φ : Γ → R is a box
function if it can be written in the form

φ(γ) = 1I[1,γ1]d×[1,γ2]d×···×[1,γNγ ]d(γ) =

{

1 if γ ∈ [1, γ1]d × [1, γ2]d × · · · × [1, γNγ
]d

0 otherwise
.

In plain English, the region Γ is shaped like a box with one vertex at the origin
and one vertex (the principle vertex) in the first quadrant. The corresponding box
function has value zero outside of this box, and unity inside the box.

Finally, we will make use of a discrete difference operator, which we shall de-
note Dm

γ . This operator is the discrete mixed-partial derivative operator Dm
γ =

(−1)mD+
1 D+

2 · · ·D+
m where D+

i represents the first order forward difference opera-
tor in the ith coordinate direction. In 2 dimensions, this operator has the stencil

D2
γ =

(
−1 1
1 −1

)

.

In the discussion below, we will frequently apply this difference operator to box
functions. Note that, if φ represents a box function with principle vertex at γ̂, then

Dm
γ φ(γ) =

{
1 if γ = γ̂,

0 otherwise

A more general understanding of this operator is gained by considering the following
observation: When this operator is applied to a discrete binary/indicator function
φ, the result has value 1 at every “corner” of the support of φ, and is zero elsewhere.
This is illustrated in figure 3.

2.2. Reformulation as a Convex Problem. In this section, we describe a tech-
nique for reformulating the Markovian energy

(11) Ef (u) =
∑

x∈Ω






f(u(x), x) +

m∑

i=1

∑

y∈Nx

wx,y|ui(x) − ui(y)|







as a convex problem. We also present theoretical results proving the equivalence
between the non-convex minimization problem and its convex analog.

The energy (11) can also be written in the condensed form

(12) Ef (u) =
∑

x∈Ω

{f(u(x), x)} +

m∑

i=1

ri(ui)

where

(13) ri(ui) =
∑

x∈Ω

∑

y∈Nx

w
x,y
i |ui(x) − ui(y)|

is the regularizer of the ith component of u.
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Figure 3. The effect of the operator Dm
γ on a discrete binary

function. Binary functions are depicted in the γ1 − γ2 plane, with
blue support. The image under Dm

γ has value 1 at every “corner”
of the original binary function. If the input is a box function, then
the result is supported in exactly one cell.

We begin by specifying the function space over which we intend to minimize (7).
We let u(x) range over the space of functions whose ith component lies in the set
[0, Γi − 1]d = {0, 1, 2, · · · , Γi − 1}. For this purpose, we define the space of discrete
functions Sp = {u : Ω → Γ}, where Γ = [0, Γ1−1]d× [0, Γ2−1]d×· · ·× [0, Γm−1]d.

Note that (11) is in general non-convex, and so may have a large number of
local minima. Rather than attack this non-convex problem directly, we will re-
formulate this problem as a convex problem over the set of “lifted” functions Sl =
{φ : Ω × Γ → [0, 1]}.

Consider the lifted function

(14) φ(x, γ) = 1I[0,u(x)1]×[0,u(x)2]×···×[0,u(x)m](γ)

Note that, if we fix x, then the function φx(γ) = φ(x, γ) is a discrete box func-
tion. The support of φ(x, ·) is a “box” with a vertex at u(x). We thus have that
Dγφ(x, γ) = 1 if γ = u(x), and Dγφ(x, γ) = 0 otherwise. This fact allows us to
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write the fidelity term in the energy (11) as follows:

f(x, u(x)) =
∑

γ∈Γ

f(x, γ)Dγφ(x, γ).

We now consider the regularizing term in (12). Because this regularizer has the
form (13), we can write it in terms of the level sets of u using the coarea formula
as follows:

ri(ui) =
∑

l∈[0,Γi−1]

ri(1I[0, l]ui).

If we simply note that 1I[0, l](ui(x)) = φ(x, lei), we then have

ri(ui) =
∑

l∈[0,Γi−1]

ri(φ(·, lei)).

When we put these pieces together, we have that Ef (u) = Lf (φ), where

(15) Lf (φ) =

m∑

i=1

∑

0< l<Γi−1

ri(φ(·, lei)) +
∑

x∈Ω, γ∈Γ

f(x, γ)Dm
γ φ(x, γ).

We have just shown that, provided that the relationship (14) holds, the non-
convex energy (11) is equivalent to the convex lifted energy (15). The set of lifted
functions satisfying the relationship (14) is important enough that we introduce the
following definition.

Definition 1. We say that a binary function,

φ : Ω × Γ → {0, 1}

satisfies the discrete box function condition (BFC) if φx(γ) = φ(x, γ) is a box
function for every x ∈ Ω.

Note that a function φ satisfies a relationship of the form (14) if and only if it
satisfies the box function condition. If φ does satisfy BFC, then we can recover
the corresponding function u using the following multi-dimensional generalization
of the the layer cake formula:

(16) ui(x) =

Γi−1∑

γ=0

φ(x, γei).

This observation suggests a method for finding the global minimum of (11): We

could first find φ̂, the minimizer of the convex energy (15) over some appropriate

function space. Provided that φ̂ satisfies the box function condition, this minimizer
should correspond to some u ∈ Sp, which is the global minimizer of (11). But how

can we ensure that φ̂ satisfies the box function condition? How can we even ensure

that φ̂ is binary?
Before we answer these questions, we must clarify the function space we will use

for minimization of the lifted energy (15). Ideally, we would like to minimize over
the set of functions satisfying BFC, or even the set of binary functions. However,
in order to guarantee that (15) have a unique minimizer, we must choose a convex
function space. For this reason, we must relax the binary function condition, and
allow our functions to take on values in the unit interval. We define the following
space of functions:
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Definition 1. We say that φ ∈ S+
l if the following two conditions are satisfied:

(1) φ : Ω × Γ → [0, 1]
(2) Dm

γ φ ≥ 0.

We now prove two key results that clarify when the minimizers of (11) and (15)
are equivalent.

Theorem 1. For any f : Ω × Γ → R, let

φ̂ = arg min
φ∈S

+

l

Lf (φ).

Suppose further that for every α ∈ (0, 1), the binary thresholding φ̂α satisfies BFC.

Then, for all α ∈ (0, 1), the thresholding φ̂α corresponds to a global minimizer of
the original non-convex energy (11).

Proof. Suppose that φ̂ satisfies the hypothesis of the theorem. Choose some α ∈

(0, 1). We now wish to show that the function φ̂α minimizes (15) over the set of
all functions satisfying BFC. To this end, we decompose the energy (15) into an

integral over the level sets of φ̂ using the discrete co-area formula (10). This formula
tells us that

(17) ri(φ(x, lei)) =

∫ 1

0

ri(φ
α(x, lei)) dα.

We now consider the fidelity portion of the energy (15). Invoking the linearity of
the operator Dm

γ , we get

(18) Dm
γ φ(x, γ) = Dm

γ

∫ 1

0

φα(x, γ) dα =

∫ 1

0

Dm
γ φα(x, γ) dα

Using (17) and (18), we get

Lf(φ̂) =

∫ 1

0

Lf (φ̂α) dα.

Suppose for contradiction that there exists some BFC function, φ∗, with Lf (φ∗) <

Lf(φ̂α). Then

Lf (φ∗) =

∫ 1

0

Lf(φ∗) dβ <

∫ 1

0

Lf(φ̂β) dβ = Lf (φ̂),

which is impossible because of the optimality of φ̂. It follows that φ̂α minimizes
(15) over the set of BFC functions, and thus corresponds to a global minimizer of
the original non-convex energy (11).

�

The above theorem states that we can obtain a global minimizer of (11) from
the minimizer of (15) provided that a BFC condition is satisfied. In the case m = 1
(e.g. the case that u is scalar–valued), the minimizer of (15) must always satisfy
BFC. This trivial observation is formalized below. Note that an almost identical
version of this lemma is presented in [49]. The primary difference between these
two lemmas is that our proof is greatly simplified because we restrict the solution
to the space S+

l .
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Lemma 1. Consider the case m = 1, and the minimizer

φ̂ = arg min
φ∈S

+

l

Lf (φ).

Then the thresholding φ̂α satisfies BFC for every alpha ∈ [0, 1].

Proof. Since m = 1 the definition of S+
l guarantees that D1

γφ̂ = −∂γφ̂ ≥ 0. This

condition guarantees the φ̂ is monotonically decreasing in the γ direction. It follows

that, for any x ∈ Ω, φ̂α
x is an indicator function of an interval, and thus satisfies

the one dimensional box function condition. �

For m > 1, we do not at this time have a theoretical guarantee that the minimizer
of (15) will satisfy BFC. This will be a subject of further research. However, in
all of the numerical experiments presented below for m = 2, it was found that the
minimizers did indeed satisfy the necessary box function condition. Furthermore,
in case that the BFC is not satisfied at each node, the node can still be assigned a
value using the generalized layer cake formula (16).

2.3. Relationship to Continuous Models. In this section, we explore the rela-
tionship between the convexification model presented above, and techniques that
have been proposed for continuous problems. We first consider the scheme of Pock
et. al [51] described in the introduction. The method presented in [51] was origi-
nally only applied to scalar valued minimizations, and so we restrict our discussion
to the case m = 1. The pock model relies on a lifted minimization of the form

(19) φ∗ = arg min
0≤φ≤1

∫

γ∈[0,Γ]

∫

Ω

|∇xφ(x, γ)| + f(x, γ)|∂γφ(x, γ)| dx dγ

The model proposed above involves a minimization of the form

(20) φ∗ = arg min
φ∈S

+

l

∫

γ∈[0,Γ]

∫

Ω

|∇xφ(x, γ)| − f(x, γ)∂γφ(x, γ) dx dγ

A more theoretically sounds formulation of the method in the continuous case
has been presented in [49]. This formulation has several notable differences from
the continuous model presented above. In particular, the (continuous) set of labels
has been expanded to include the whole real number line, rather than just a finite
interval. In addition, the authors consider several other types of regularizers which
are not considered here, such as Huber and quadratic regularizers.

The new model differs from the Pock model in 2 significant ways. First, the
new model does not require the absolute value of the difference operator in the
fidelity term. Second, the new model minimizes over the set S+

l , which enforces
that D1

γφ∗ = −∂γφ∗ ≥ 0. As discussed in lemma (1), this inequality constraint
guarantees that the optimal function φ∗ decays monotonically in the γ direction.
This condition is necessary for us to be able to recover the primal function u using
the layer cake formula.

We next wish to note the similarity of our method to other methods that have
been proposed in the continuous setting. For total-variation regularized problems,
theoretical results have been derived using the so-called method of calibrations.
Early work in this direction was done in [1], in which the authors generalize the
method of calibrations to problems with jump discontinuities. This framework
was further generalized by Mora [44], who presented a discontinuous calibration
technique for vector valued problems. In this work, the author proposes to lift
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vector-valued functions defined over a continuous domain Ω onto functions defined
over Ω×Rm and taking values in the unit interval. The technique presented in this
manuscript can be seen as a direct adaptation of this result to the discrete setting.
Because we restrict ourselves to the case of discrete functionals, our formulation
is considerably simpler than that presented in [44]. In particular, the continuous
formulation requires one to decompose the derivative operator into continuous,
jump discontinuity, and Cantor parts in order to handle the discontinuous functions
on which it must act. The continuous formulation also requires a more sophisticated
definition of the thresholding operator as a decomposition over Borel sets. In the
discrete setting we have the luxury of working with difference operators rather than
generalized derivatives, and so we do not have to handle these technicalities.

3. Numerical Results

We now present a numerical method for minimizing the convex energy (15), and
results when this scheme is applied to the optical flow registration problem. The
method we use is a variational-type method drawn from continuous optimization
theory, and is a multi-dimensional generalization of the method presented in [51].

3.1. Why Not Graph Cuts? The method presented above allows us to indirectly
solve a non-convex problem (2) by solving the corresponding convex problem (15).
However, before the minimizer of (15) may be used to recover u, we must apply a
thresholding operator to convert it to a binary function. Our reasons for choosing
a variational approach to this problem (rather than constraining the solution to be
binary valued) is that graph-cuts cannot be applied to the convex problem (15) for
m > 1.

To show this, we appeal to the result of Boykov, Kolmogorov, and Zabih [41].
In this work, it is shown that sub-modularity is a necessary condition for an energy
function to be graph representable. However, the convex energy (15) is not in
general sub-modular. We will demonstrate this with a simple example for m = 2.

In this case, the energy (15) contains terms of the form D2
γg(γ) = g(γ) + g(γ +

(1, 1)) − g(γ + (1, 0)) − g(γ + (0, 1)). We now choose g1, and g2 such that

(21)
g1(0, 0) = 1 g1(0, 1) = 0
g1(1, 0) = 1 g1(1, 1) = 0

and
g2(0, 0) = 1 g2(0, 1) = 1
g2(1, 0) = 0 g2(1, 1) = 0

Letting ∨ and ∧ denote component-wise maximum and minimum, we then have

D2
γg1 ∨ g2 + D2

γg1 ∧ g2 = 2 > 0 = D2
γg1 + D2

γg2

showing that the energy (15) is not sub-modular.

3.2. Minimization of the Convex Problem. In this section, we present a primal-
dual technique for minimizing the convex functional (15). Techniques of this type
were first used to solve TV regularized problems in [59]. The technique presented
here is a generalization of the technique presented in [51] for scalar-valued problems.

Although the primal-dual approach can minimize an arbitrary energy of the form
(15), we shall focus on TV regularized problems for clarity of presentation. Such
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problems have the form

Lf(φ) =

2∑

i=1

∑

0< l<Γi−1

∑

x∈Ω

{

|φ(x + e1, lei) − φ(x, lei)|(22)

+|φ(x + e2, lei) − φ(x, lei)|
}

+
∑

x∈Ω, γ∈Γ

f(x, γ)D2
γφ(x, γ)(23)

which can be written more compactly as

(24) Lf(φ) =

2∑

i=1

∑

0< l<Γi−1

∑

x∈Ω

|∇xφ(x, lei)| +
∑

x∈Ω, γ∈Γ

f(x, γ)D2
γφ(x, γ).

We derive the primal-dual minimization scheme by introducing the dual variable
p = {px, pγ} = {p1, p2, pγ}. The derivation of this primal dual scheme can be
easily understood by noting that the absolute value function can be written as
|z| = max−1≤p≤1 pz. Using this idea, we can write

|∇xφ(x, lei)| = max
−1≤p1,p2≤1

px(x, l ei) · ∇xφ(x, lei).

Note also that, for D2
γφ(x, γ) ≥ 0, we can write

f(x, γ)D2
γφ(x, γ) = max

pγ (x,γ)<f(x,γ)
pγ(x, γ)D2

γφ(x, γ).

Using this new dual variables, the energy (24) can be written
(25)

Lf (φ) = max
p∈C

2∑

i=1

∑

0< l<Γi−1

∑

x∈Ω

px(x, l ei) · ∇xφ(x, lei) +
∑

x∈Ω, γ∈Γ

pγ(x, γ)D2
γφ(x, γ)

where the dual variable may range over the set

C = {p : |p1(x, γ)| ≤ 1, |p2(x, γ)| ≤ 1, pγ(x, γ) ≤ f(x, γ)}.

Note the absence of a lower bound for pγ . This is a key feature in our formulation
since we now have Lf(φ) = ∞ if the constraint D2

γφ(x, γ) ≥ 0 is violated. Thus,
by introducing pγ , have formulated the lifted energy so that any feasible function
must satisfy this inequality constraint.

Minimizing the energy (24) then corresponds to solving the following min-max
problem:

(26) min
φ∈Sl

max
p∈C

2∑

i=1

∑

0< l<Γi−1

∑

x∈Ω

px(x, l ei)·∇xφ(x, lei)+
∑

x∈Ω, γ∈Γ

pγ(x, γ)D2
γφ(x, γ).

Using summation by parts, this problem can be written in the equivalent form
(27)

min
φ∈Sl

max
p∈C

2∑

i=1

∑

0< l<Γi−1

∑

x∈Ω

−∇x · px(x, l ei)φ(x, lei) +
∑

x∈Ω, γ∈Γ

D̄2
γpγ(x, γ)φ(x, γ).

In the above formula, the discrete divergence operator is defined using backward
differences as follows

∇ · px(x, l ei) = px(x, l ei) − px(x − e1, l ei) + px(x, l ei) − px(x − e2, l ei)

and the adjoint of the mixed partial difference operator is

D̄2
γ = D−

1 D−
2
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where D−
i denotes the first order backward difference operator in the ith direction.

To compute the solution to the saddle-point problem (26), we use the 2-step
gradient projection algorithm proposed by Esser et. al [27]. On the first step,
we minimize with respect to φ using a gradient descent step with timestep τφ. In
the second step, we maximize with respect to p using a gradient ascent step with
timestep τp. After each step we reproject the variables back into their corresponding
feasible sets. We formalize these two steps below.

(1) Primal Step

Gradient Descent:

φ̂k+1 = φk + τφ{∇x · px − D̄2
γpγ}

Reproject:

φk+1 = min(1, max(0, φ̂k+1))

(2) Dual Step

Gradient Ascent:

p̂k+1
x = pk

x + τp∇x(2φk+1 − φk)

p̂k+1
γ = pk

γ + τpD
2
γ(2φk+1 − φk)

Reproject:
pk+1
1 = min(1, max(−1, p̂k+1

1 ))

pk+1
2 = min(1, max(−1, p̂k+1

2 ))

pk+1
γ (x, γ) = min(f(x, γ), p̂k+1

γ )

Note that, during the dual ascent step, we replace φk+1 with (2φk+1 −φk) when
computing the derivative. The authors of [27] refer to this variant of the primal
dual algorithm as PDHDu, and prove convergence of the method for sufficiently
small time steps. As numerics is not the primary focus of this paper, we do not
consider here a formal convergence analysis of the above algorithm. Convergence
proofs for algorithms of this type have been presented in [27, 49, 13]. For m = 2,
we have found the method to be convergent for τφτp < 1

4 . The numerical examples

below were computed using τφ = τp = 1
2 .

An alternative derivation of this method using a proximal-point technique can
be found in [51]. Note our algorithm differs from that presented in [51] in that the
dual variable pk+1

γ is reprojected into the interval [−∞, f(x, γ)] rather than [−1, 1].
We have found the primal dual approach very efficient and reliable for the convex
problem (24).

3.3. Examples. We now consider several examples which illustrate the effective-
ness of our global optimization approach. We will consider synthetic examples,
as well as stereo and object tracking examples from the Middlebury optical flow
evaluation dataset [3].

The purpose of the synthetic examples is two-fold. First, these synthetic prob-
lems are pathologically difficult, and demonstrate the ability of our method to find
the global minimum, even in the presence of many local minima. Second, these
problems demonstrate the importance of the positivity constraint, D2

γ ≥ 0. The
introduction of this constraint in a key difference between the method present here
and previous work, and we wish to demonstrate it’s importance.

We first consider the synthetic stereo matching problem, depicted in figure (4).
Note that this is a scalar-valued minimization problem because only horizontal
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Figure 4. A synthetic stereo matching problem. (top) The origi-
nal/target image, I0. (bottom) The shifted/source image, I1. The
convex model perfectly matches the source image onto the target
after 140 iterations, even with random initialization.

Figure 5. Two images taken from the “Tsukuba” stereo matching
dataset. These images were taken from slightly different positions,
and the deformation field relating them can be interpreted as a
depth map.

shifts are considered. The top and bottom images in figure (4) depict the origi-
nal and shifted image, respectively. For simplicity, periodic boundary conditions
have been used for this problem. This is a pathologically difficult stereo matching
problem due to the presence of many local minima, which occur whenever any of
the rectangular outlines of the two images are aligned. Random initialization is
used for the variables in the primal dual algorithm. The method presented in this
paper perfectly maps the shifted image onto the original after 140 iterations of the
primal-dual algorithm, and thus exactly recovers the global minimum. It has been
shown in [49] that the positivity constraint is not strictly necessary in the scalar
valued case. However, the unconstrained algorithm converged in 155 iterations -
slightly slower than the constrained version that we propose.

We demonstrate the performance of this algorithm on stereo matching data using
the “Tsukuba” images from the middle optical flow benchmark, depicted in figure
5. Figure 6 shows the resulting depth/displacement field map when the convex
algorithm is used. This result was recovery in 454 iterations using our constrained
formulation. The unconstrained formulation required 531 iterations to reach the
same result.
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Figure 6. Depth map for the “Tsukuba” dataset, recovered using
the global minimization scheme.

We next consider the vector-valued analog of the above synthetic example. This
is an optical flow registration problem involving both horizontal and vertical trans-
lations. Results are depicted in figure (7). The source image has been obtained
from the target image by shifting the image in both the horizontal and vertical
directions. For simplicity, periodic boundary conditions have been used for this
problem. Like the stereo problem, this registration problem has many local min-
ima, which occur whenever any of the rectangular outlines in the source and target
images are aligned. Despite this fact, our algorithm obtains the global minimum
after 800 iterations of the primal-dual algorithm. To demonstrate the necessity of
the non-negativity constraint, D2

γ ≥ 0, we compare our convex formulation to the
2-dimensional analog of the unconstrained model. In this formulation, the mixed
partial term is placed within an absolute value, as is done in (19), and minimization
is carried out without an inequality constraint. Note that, without the inequality
constraint, the algorithm fails to find a global minimizer. Furthermore, results are
dependent on initialization. By introducing the positivity constraint, our model
finds the exact global minimizer, even when a random initialization is used.

We now apply the global minimization algorithm to two video tracking problems
from the Middlebury benchmark dataset. Depicted in figure 8 are two images of
a traffic intersection taken from the “dump truck” dataset. Figure 10 depicts the
“basketball” dataset. The optical flow model (8) was applied to both datasets using
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Figure 7. A synthetic registration problem. (left) The origi-
nal/target image, I0. (center) The shifted/source image, I1. (right)
Registration using an analog of the algorithm presented in [51]
without positivity constraint, using random initialization, after
10000 iterations. If the proper global minimum were found, this im-
age, which represents I1(x + u), should be identical to I0. For this
problem, registration using our model with positivity constraint
perfectly registers the source image onto the target after 800 iter-
ations, even with random initialization.

Figure 8. Two images of a traffic intersection taken at different
times. The cars have moved, while the environment remains fixed.
Using the global minimization algorithm, we can recover the dis-
placement field describing the movement of the cars.

p = q = α = 1. The recovered displacement fields are shown in figures (9) and
(11). Note that the vehicles correspond to regions of motion, while the background
environment remains fixed. Note also that there are few speckle artifacts present
in the displacement field because the global method is robust to noise.

Finally, we wish to emphasize that the primary limitation of this method is
memory usage. By adding 2 new dimensions to the registration problem, the size
of the problem is dramatically increased. For this reason, lifting is not a practical
approach for problems involving high resolution images, or large displacements.
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Figure 9. Displacement field for the “dump truck” images, re-
covered using the global minimization scheme.

Figure 10. Two images from the “basketball” dataset. Using
the global minimization algorithm, we can track the motion of the
players and the ball.

4. Conclusion

We have presented a technique for minimizing non-convex, vector-valued energy
functions defined on Markov random fields using a functional lifting approach. This
technique can be viewed as an extension of previous work on functional lifting. How-
ever, while previous methods can only handle the case of scalar-valued functions,
our technique can be used to minimize over vector-valued functions. This level of
generality allows to solve a broad class of non-convex problems such as the image
registration problem considered in this paper. There are many other areas where
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Figure 11. Displacement field for the “basketball” dataset, re-
covered using the global minimization scheme.

optimization of vector valued functions becomes important. Two such examples
are multiphase segmentation problems [13, 49] and diffusion tensor imaging. The
application of our convexification technique to these problems will be a subject of
future research.
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