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Abstract. Recently augmented Lagrangian method has been successfully applied to image
restoration with L2 fidelity. In this paper we extend the method to total variation (TV) restoration
models with non-quadratic fidelities. We will first introduce the method and present the iterative
algorithm for TV restoration with a quite general fidelity. In each iteration, three sub-problems need
to be solved, two of which can be very efficiently solved via FFT implementation or closed form
solution. In general the third sub-problem need iterative solvers. We then apply our method to TV
restoration with L

1 and Kullback-Leibler (KL) fidelities, two common and important data terms for
deblurring images corrupted by impulsive noise and Poisson noise, respectively. For these typical
fidelities, we show that the third sub-problem also has closed form solution and thus can be efficiently
solved. In addition, convergence analysis of these algorithms are given, which cannot be obtained by
previous analysis techniques.
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1. Introduction. Total variation regularization was first introduced in [48]. It
has been demonstrated very successful in image restoration and extensively general-
ized [10, 15, 65, 38, 39, 30, 50, 49, 3, 5, 16]. The essential reason of the achievement
is that in most images the gradient is sparse and TV catches this property, like the
basis pursuit problem [18] in compressive sensing [8, 22]. Although the computation
is difficult due to the nonlinearity and non-differentiability, a lot of effort has been
contributed to design fast solvers [14, 9, 11, 67, 68, 56, 57, 59, 32, 63, 28, 54, 58].

However, all of these consider TV minimization with squaredL2 fidelity term (TV-
L2 model), which is particularly suitable for recovering images corrupted by Gaussian
noise. In many important data, the noise may not obey Gaussian distribution and
thus the data fidelity term is non-quadratic. Two typical and important examples are
impulsive noise [4] and Poisson noise [36, 6].

Impulsive noise is often generated by malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or erroneous transmission [4]. It has two
common types, salt-and-pepper noise and random-valued noise. Salt-and-pepper (or
random-valued) noise corrupts a portion of the image pixels with minimal or maximal
intensities (or random-valued intensities) while keeping other pixels unaffected. To
remove this kind of noise is quite difficult, since the corrupted pixels are randomly
distributed in the image and the intensities at corrupted pixels are usually distin-
guishable from those of their neighbors. By applying TV regularization and Bayesian
statistic, one obtains a variational approach which minimizes a TV-L1 functional.
Compared with TV-L2 model, TV-L1 uses a non-smooth fidelity which has great ad-
vantages in impulsive noise removal [42, 43]. It is shown that the L1 fidelity can fit
uncorrupted pixels exactly and regularize the corrupted pixels perfectly. This model
also provides many other useful properties proved recently in [17, 61, 62]. In addition,
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it has been noticed in [1, 40, 37] that TV-L1 model (with no blur kernel) connects
closely to classical median type filters [19, 24, 33, 45, 41]. It can also be applied to
the recent particularly effective two-phase method [12]. However, the TV-L1 model
is hard to compute due to the nonlinearity and non-differentiability of both the TV
term and the data fidelity. Some existing numerical methods include gradient descent
method [17], LAD method [26], the splitting-and-penalty based method [60], and the
primal-dual method [20] based on semi-smooth Newton algorithm [31], as well as al-
ternating direction methods [25]. We should mention that in [25], the authors treat
the operators in a compact way so that penalty parameters for different auxiliary
variables are the same. When we tested our algorithms, we found it’s more efficient
to use different parameters for different auxiliary variables.

Poisson noise is a very common signal dependent noise, and is contained in sig-
nals in various applications such as radiography, fluorescence microscopy, positron-
emission-tomography (PET), optical nanoscopy and astronomical imaging applica-
tions [36, 6]. To recover a blurry image corrupted by Poisson noise is difficult. Some
classical methods based on some special assumptions can be found in [2, 34, 35, 55],
which were designed for denoising only. Recently, variational methods based on TV
regularization have been applied to this problem. According to the characteristic of
Poisson distribution, people derived a TV regularization model with the so called
Kullback-Leibler divergence as fidelity term [36, 6]. In this paper we call this model
as TV-KL model. It has been shown that TV-KL model behaves much stable and
robust than the standard expectation maximization (EM) reconstruction (where no
TV regularization is applied) [52], and much more effective than TV-L2 in the case of
Poisson noise removal [36]. Some existing method for the TV-KL model are gradient
descent [36, 44], multilevel method [13], the scaled gradient projection method [66],
and EM-TV alternative minimization [6].

Therefore, in those image restoration problems with non-Gaussian noise we need
to minimize functionals with TV regularization and non-quadratic fidelities. To design
fast solvers for these restoration models is still highly desired and is much harder
than that for TV-L2, since the first order variations of these fidelities are no longer
linear. In this paper, we extend augmented Lagrangian method [29, 46, 47] for TV-L2

restoration [54, 58] to solve the problem. In particular, we will first give the algorithms
for TV restoration with a general fidelity term and then apply these algorithms to
recover blurry images corrupted by impulsive noise or Poisson noise. We will show
that for these two special cases, augmented Lagrangian method is extremely efficient
since all the sub-problems have closed form solutions. Besides, convergence analysis
of these algorithms will be provided, which cannot be obtained by using previous
techniques.

The paper is organized as follows. In the next section, we give some notation.
In Section 3, we present TV restoration model with general fidelity. Augmented
Lagrangian method will be given in Section 4 with convergence analysis. In Section
5, we apply our algorithms for deblurring images corrupted by impulsive noise or
Poisson noise. The paper is concluded in Section 6.

2. Notation. Without the loss of generality, we represent a gray image as an
N ×N matrix. The Euclidean space R

N×N is denoted as V . The discrete gradient
operator is a mapping ∇ : V → Q, where Q = V × V . For u ∈ V , ∇u is given by

(∇u)i,j = ((D̊+
x u)i,j , (D̊

+
y u)i,j),
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with

(D̊+
x u)i,j =

{

ui,j+1 − ui,j , 1 ≤ j ≤ N − 1
ui,1 − ui,N , j = N

(D̊+
y u)i,j =

{

ui+1,j − ui,j , 1 ≤ i ≤ N − 1
u1,j − uN,j, i = N

,

where i, j = 1, . . . , N. Here we use D̊+
x and D̊+

y to denote forward difference operators
with periodic boundary condition (u is periodically extended). Consequently FFT
can be adopted in our algorithm.

We denote the usual inner product and Euclidean norm (L2 norm) of V as (·, ·)V

and ‖ · ‖V , respectively. We also equip the space Q with inner product (·, ·)Q and
norm ‖ · ‖Q, which are defined as follows. For p = (p1, p2) ∈ Q and q = (q1, q2) ∈ Q,

(p, q)Q = (p1, q1)V + (p2, q2)V ,

and

‖p‖Q =
√

(p, p)Q.

In addition, we mention that, at each pixel (i, j),

|pi,j | = |(p1
i,j , p

2
i,j)| =

√

(p1
i,j)

2 + (p2
i,j)

2,

the usual Euclidean norm in R
2. From the subscript i, j, one may regard |pi,j | as

pixel-by-pixel norm of p. In the case without confusion, we will omit the subscripts
V and Q and just use (·, ·) and ‖ · ‖ to denote the usual inner products and L2 norms.
In this paper, we also use ‖v‖L1 to denote the L1 norm of v ∈ V .

Using the inner products of V and Q, we can find the adjoint operator of −∇,
i.e., the discrete divergence operator div : Q→ V . Given p = (p1, p2) ∈ Q, we have

(divp)i,j = p1
i,j − p1

i,j−1 + p2
i,j − p2

i−1,j = (D̊−
x p

1)i,j + (D̊−
y p

2)i,j ,

where D̊−
x and D̊−

y are backward difference operators with periodic boundary condi-
tions p1

i,0 = p1
i,N and p2

0,j = p2
N,j.

3. The total variation (TV) image restoration. Assume f ∈ V is an ob-
served image containing both blur and noise. The degradation procedure is in general
modelled as follows

u
blur−−→ Ku

noise−−−→ f, (3.1)

where u ∈ V is the true image and K : V → V is a blur operator. Here we do not
specify the noise model. It can be Gaussian, impulsive, Poisson and even others. Dif-
ferent noise models give different degradation f . Image restoration aims at recovering
u from f . Since the problem is usually ill-posed, we cannot directly solve u from (3.1).
Regularization on the solution should be considered. One of the most basic and suc-
cessful image restoration model is based on the total variation (TV) regularization,
which reads

min
u∈V

{E(u) = R(∇u) + F (Ku)}, (3.2)
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where

R(∇u) = TV(u) =
∑

1≤i,j≤N

|(∇u)i,j |, (3.3)

is the total variation of u [48], and F (Ku) is a fidelity term. Note here R(·) is regarded
as a functional of ∇u.

In this paper we only consider the case where the blur operator K is given. Since
the blur is essentially averaging, it is reasonable to assume

• Assumption 1. null(∇) ∩ null(K) = {0},
where null(·) is the null space of ·.

The form of the fidelity term depends on the statistic of the noise model. Some
typical noise models and their corresponding fidelity terms are as follows:

1. Gaussian noise:

F (Ku) =
α

2
‖Ku− f‖2,

2. Impulsive noise:

F (Ku) = α‖Ku− f‖L1 ,

3. Poisson noise (assuming fi,j > 0, ∀i, j, as in [36]):

F (Ku) =

{

α
∑

1≤i,j≤N

((Ku)i,j − fi,j log(Ku)i,j), u ∈ V, (Ku)i,j > 0

+∞, otherwise
,

where α > 0 is a parameter. Note for Poisson noise, we extend the definition of the
fidelity to the whole space V , compared to [36] (where K = I) and [6]. To define
the fidelity over the whole space is convenient for analysis. We make the following
assumptions for the fidelity term:

• Assumption 2. dom(R ◦ ∇) ∩ dom(F ◦K) 6= ∅;
• Assumption 3. F (z) is convex, proper, and coercive;
• Assumption 4. F (z) is continuous over dom(F ),

where dom(F ) = {z ∈ V : −∞ < F (z) < +∞} is the domain of F , with similar
definitions for dom(R ◦ ∇) and dom(F ◦K). These assumptions are relatively quite
general and many fidelities such as those listed above meet all of them.

Under the Assumptions 1, 2, 3 and 4, it can be verified that the functional E(u)
in (3.2) is convex, proper, coercive, and lower semi continuous. According to the
generalized Weierstrass theorem and Fermat’s rule [23, 27], we have the following
result.

Theorem 3.1. The problem (3.2) has at least one solution u, which satisfies

0 ∈ K∗∂F (Ku) − div∂R(∇u), (3.4)

where ∂F (Ku) and ∂R(∇u) are the sub-differentials [23] of F at Ku and R at ∇u,
respectively. Moreover, if F ◦K(u) is strictly convex, the minimizer is unique.

The total variation minimization with a quadratic fidelity has been widely studied.
Many efficient algorithms have been proposed to solve the problem [14, 9, 11, 67, 68,
56, 57, 59, 32, 63, 28, 54, 58]. We here extend our recent work [54, 58] to total variation
restoration with non-quadratic fidelity terms satisfying the above assumptions.
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4. Augmented Lagrangian method for total variation restoration. In
this section we present to use augmented Lagrangian method for total variation
restoration with a non-quadratic fidelity term which satisfies our (relatively quite
general) assumptions. Since F (Ku) is non-quadratic, its first order variation is not
linear. Compared with the augmented Lagrangian method for TV-L2 model [54, 58],
we need one more auxiliary variable to eliminate the nonlinearity for u as done in [60]
for TV-L1 restoration.

In particular, we introduce two new variables p ∈ Q and z ∈ V and reformulate
the problem to be the following constrained optimization problem

min
u∈V,p∈Q,z∈V

{G(p, z) = R(p) + F (z)}
s.t. p = ∇u, z = Ku

. (4.1)

To solve (4.1), we define the following augmented Lagrangian functional

L (u, p, z;λp, λz)
= R(p) + F (z) + (λp, p−∇u) + (λz , z −Ku) +

rp

2 ‖p−∇u‖2 + rz

2 ‖z −Ku‖2,

(4.2)
with Lagrange multipliers λp ∈ Q, λz ∈ V and positive constants rp, rz , and then
consider the following saddle-point problem:

Find (u∗, p∗, z∗;λ∗p, λ
∗
z) ∈ V ×Q× V ×Q× V,

s.t.
L (u∗, p∗, z∗;λp, λz) ≤ L (u∗, p∗, z∗;λ∗p, λ

∗
z) ≤ L (u, p, z;λ∗p, λ

∗
z),

∀(u, p, z;λp, λz) ∈ V ×Q× V ×Q× V.

(4.3)

Note that, differently from [25], here it is no need for rp = rz. According to our
test, much more efficiency can be achieved by using different penalty parameters. As
one will see, the convergence analysis when rp 6= rz is more difficult than the case
rp = rz.

Similarly with [58], we can prove the following result.

Theorem 4.1. u∗ ∈ V is a solution of (3.2) if and only if there exist (p∗, z∗) ∈
Q× V and (λ∗p, λ

∗
z) ∈ Q× V such that (u∗, p∗, z∗;λ∗p, λ

∗
z) is a solution of (4.3).

Proof We just provide a sketch since the idea is similar with that in [58].

Suppose (u∗, p∗, z∗;λ∗p, λ
∗
z) is a solution of (4.3). From the first inequality in (4.3),

we have

{

p∗ −∇u∗ = 0,
z∗ −Ku∗ = 0.

(4.4)

The above relation, together with the second inequality in (4.3), indicates that u∗ is
a solution of (3.2).

Conversely, we assume that u∗ ∈ V is a solution of (3.2). We take p∗ = ∇u∗ ∈ Q

and z∗ = Ku∗ ∈ V . From (3.4), there exist λ∗p and λ∗z such that −λ∗p ∈ ∂R(∇u∗) and
−λ∗z ∈ ∂F (Ku∗) with −K∗λ∗z + divλ∗p = 0. We can verify that (u∗, p∗, z∗;λ∗p, λ

∗
z) is a

saddle-point of L , which completes the proof. �

Theorems 3.1 and 4.1 show that the saddle-point problem (4.3) has at least one
solution and this solution will provide a solution of the original problem (3.2). In
the following we present an iterative algorithm to solve the saddle-point problem and
address three sub-problems raised up in each iteration.
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Algorithm 4.1 Augmented Lagrangian method for TV restoration with non-
quadratic fidelity

1. Initialization: λ0
p = 0, λ0

z = 0;
2. For k=0,1,2,...:

(a) compute (uk, pk, zk) as an (approximate) minimizer of the augmented
Lagrangian functional with the Lagrange multipliers λk

p , λ
k
z , i.e.,

(uk, pk, zk) ≈ arg min
(u,p,z)∈V ×Q×V

L (u, p, z;λk
p, λ

k
z ), (4.5)

where L (u, p, z;λk
p, λ

k
z) is as in (4.2);

(b) update

λk+1
p = λk

p + rp(p
k −∇uk)

λk+1
z = λk

z + rz(z
k −Kuk)

. (4.6)

4.1. An iterative algorithm for the saddle-point problem. In augmented
Lagrangian method, we use an iterative algorithm to solve the saddle-point problem;
see Algorithm 4.1.

Since the variables u, p, z in L (u, p, z;λk
p, λ

k
z) are coupled together in the mini-

mization problem (4.5), it’s difficult to solve them simultaneously. Therefore we sep-
arate the problem to be three sub-problems and apply an alternative minimization.
The three sub-problems are as follows:

• u−sub problem: Given p, z,

min
u∈V

{(λk
p ,−∇u) + (λk

z ,−Ku) +
rp

2
‖p−∇u‖2 +

rz

2
‖z −Ku‖2}. (4.7)

• p−sub problem: Given u, z,

min
p∈Q

{R(p) + (λk
p , p) +

rp

2
‖p−∇u‖2}. (4.8)

• z−sub problem: Given u, p,

min
z∈V

{F (z) + (λk
z , z) +

rz

2
‖z −Ku‖2}. (4.9)

Note here we omit the constant terms in the objective functionals in (4.7), (4.8) and
(4.9).

In the following we show how to efficiently solve these sub-problems and then
present an alternative minimization algorithm to solve (4.5).

4.1.1. Solving the u−sub problem (4.7). (4.7) is a quadratic optimization
problem, whose optimality condition reads

divλk
p −K∗λk

z + rpdiv(p−∇u) − rzK
∗(z −Ku) = 0,

by considering the periodic boundary conditions. Following [56, 57, 59, 60, 54, 58],
we use Fourier transform (and hence FFT implementation) to solve the above linear
equation. Denoting F(u) as the Fourier transform of u, we have

(rzF(K∗)F(K) − rpF(4))F(u)

= F(K∗)(F(λk
z ) + rzF(z)) −F(D̊−

x )(F((λ1
p)k) + rpF(p1)) −F(D̊−

y )(F((λ2
p)k) + rpF(p2))

,

(4.10)
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where λk
p = ((λ1

p)
k , (λ2

p)
k) and p = (p1, p2); and Fourier transforms of operators

such as K, D̊−
x , D̊

−
y ,4 = D̊−

x D̊
+
x + D̊−

y D̊
+
y are regarded as the transforms of their

corresponding convolution kernels.

4.1.2. Solving the p−sub problem (4.8). Similarly with [7, 56, 57, 54, 58],
(4.8) has the following closed form solution

pi,j = max(0, 1 − 1

rp|wi,j |
)wi,j , (4.11)

where

w = ∇u−
λk

p

rp
∈ Q. (4.12)

Here we would like to provide a geometric interpretation of the formulae (4.11).
According to the definition of R(p) and ‖ · ‖Q, we rewrite the problem (4.8) as

min
p∈Q

{
∑

1≤i,j≤N

|pi,j | +
rp

2

∑

1≤i,j≤N

|pi,j − (∇u−
λk

p

rp
)i,j |2 + Constant}.

As one can see, the above problem is decomposable and at each pixel (i, j), the
problem takes the form as follows

min
q∈R2

{|q| + rp

2
|q − w|2}, (4.13)

where w ∈ R
2; see Fig. 4.1.

��

�

O

q1

q2

wq

q∗

Fig. 4.1. A geometric interpretation of the formulae (4.11)

First of all, it can be verified (and imagined) that the potential minimizer should
locate inside of the solid circle. By constructing symmetric points, we can further
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demonstrate that the potential minimizer should locate in the same quadrant as w.
Therefore in the example in Fig. 4.1, we only need to consider those points located
inside of the solid circle and in the first quadrant, e.g., q. For a such point q, we draw
a dashed circle with O as the center and |q| as the radius. Assume this circle intersects
the line segment Ow at q∗. By the triangle inequality of the Euclidean norm | · | in
R

2, we have

|q| + |q − w| ≥ |w| = |q∗| + |q∗ − w|.

Since |q| = |q∗|, we obtain

|q − w| ≥ |q∗ − w|,

indicating

|q| + rp

2
|q − w|2 ≥ |q∗| + rp

2
|q∗ − w|2.

This means the solution of the problem (4.13) will locate on the line segment Ow.
Denoting q = βw with 0 ≤ β ≤ 1, we hence simplify (4.13) to be the following
1-dimensional problem

min
0≤β≤1

{β|w| + rp

2
(β − 1)2|w|2}. (4.14)

(4.14) can be solved exactly, with a closed form solution as

β∗ = max(0, 1− 1

rp|w|
).

The solution of (4.13) follows immediately.
We further give two comments on this geometric interpretation. First, this ob-

servation (to solve (4.13)) can be extended to high (> 2) dimensional problems as we
did in [58] for vectorial and high order TV models. Second, the method can also be
applied to problems with general regularization terms, say, a general R(q) replacing
|q| in (4.13), as long as the regularizer R(q) depends only on |q|.

4.1.3. Solving the z−sub problem (4.9). For a general fidelity F , it is no
reason to find a closed form solution for (4.9). Fortunately, the objective functional
in (4.9) is strictly convex, proper, coercive and lower semi continuous. Therefore,
(4.9) has a unique solution and can be obtained by various numerical optimization
methods.

There is one fact we need mention. For some special and typical (non-quadratic)
fidelities, we still have closed form solutions; see Section 5. Our method is therefore
particularly efficient for these typical and important fidelities.

After knowing how to solve (4.7), (4.8) and (4.9), we now present the following
alternative minimization procedure to solve (4.5). It is with Gauss-Seidel flavor.

Here L can be chosen using some convergence test techniques. In this paper, we
simply set L = 1. In our experiments we found that with larger L (> 1) the algorithm
wastes the accuracy of the inner iteration and does not speed up dramatically the
convergence of the overall algorithm (Algorithm 4.1 with Algorithm 4.2 as a sub
algorithm). This has also been observed in [28], for the split Bregman method (which
is equivalent to augmented Lagrangian method). To simply set L = 1 also benefits
the efficiency of the algorithm, since we do not need to compute those residuals of the
optimality conditions.
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Algorithm 4.2 Augmented Lagrangian method for TV restoration with non-
quadratic fidelity – solve the minimization problem (4.5)

• Initialization: uk,0 = uk−1, pk,0 = pk−1, zk,0 = zk−1;
• For l = 0, 1, 2, ..., L− 1:

– compute uk,l+1 from (4.10) for p = pk,l, z = zk,l;
– compute pk,l+1 from (4.11) for u = uk,l+1;
– compute zk,l+1 by solving (4.9) for u = uk,l+1;

• uk = uk,L, pk = pk,L, zk = zk,L.

4.2. Convergence analysis. In this subsection we give some convergence re-
sults of the augmented Lagrangian method applied to total variation restoration with
non-quadratic fidelity. We focus on analyzing Algorithm 4.1. In particular, we will
prove the convergence of Algorithm 4.1 in two limiting cases where the minimization
problem (4.5) is computed by Algorithm 4.2 with full accuracy (L→ ∞, by assuming
Algorithm 4.2 is convergent) and rough accuracy (L = 1), respectively. The conver-
gence of Algorithm 4.2 depends on the fidelity F and can be checked when F is given;
see Section 5 for two important fidelities.

It should be pointed out that the previous analysis techniques in [27, 58] cannot
be applied to our case. Because in general rp 6= rz , the monotonically decreasing
sequences constructed in [27, 58] do not hold. In the following proofs we construct
two new monotonically decreasing sequences and use these sequences to derive the
results.

Theorem 4.2. Assume (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz).

Suppose that the minimization problem (4.5) is exactly solved in each iteration, i.e.,
L → ∞ in Algorithm 4.2. Then the sequence (uk, pk, zk;λk

p , λ
k
z ) generated by Algo-

rithm 4.1 satisfies














lim
k→∞

(R(pk) + F (zk)) = R(p∗) + F (z∗) = E(u∗),

lim
k→∞

‖pk −∇uk‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0.

(4.15)

Moreover, (4.15) indicates that uk is a minimizing sequence of E(·). If the minimizer
of E(·) is unique, then uk → u∗.

Proof Let us define uk, pk, zk, λp
k
, λz

k
, as

uk = uk − u∗, pk = pk − p∗, zk = zk − z∗, λp

k
= λk

p − λ∗p, λz

k
= λk

z − λ∗z .

Since (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz), we have

L (u∗, p∗, z∗;λp, λz) ≤ L (u∗, p∗, z∗;λ∗p, λ
∗
z) ≤ L (u, p, z;λ∗p, λ

∗
z),

∀(u, p, z;λp, λz) ∈ V ×Q× V ×Q× V.
(4.16)

From the first inequality of (4.16), we have
{

p∗ = ∇u∗,
z∗ = Ku∗.

This relationship, together with (4.6), indicates
{

λp

k+1
= λp

k
+ rp(p

k −∇uk),

λz

k+1
= λz

k
+ rz(z

k −Kuk),
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which is equivalent to

{ √
rzλp

k+1
=

√
rzλp

k
+ rp

√
rz(p

k −∇uk),
√
rpλz

k+1
=

√
rpλz

k
+ rz

√
rp(z

k −Kuk).
(4.17)

The observation (4.17) is a key formula in our proof, and helps to construct a useful
monotonically decreasing sequence, which is different from that in [27, 58].

It then follows that

(rz‖λp

k‖2 + rp‖λz

k‖2) − (rz‖λp

k+1‖2 + rp‖λz

k+1‖2)

= −2rprz(λp

k
, pk −∇uk) − r2prz‖pk −∇uk‖2 − 2rprz(λz

k
, zk −Kuk) − r2zrp‖zk −Kuk‖2.

(4.18)
In the following we show that the right hand side of (4.18) is not less than 0 and thus

the sequence {(rz‖λp

k‖2 + rp‖λz

k‖2)} is monotonically decreasing.
From the second inequality of (4.16), (u∗, p∗, z∗) is characterized by

(divλ∗p, u− u∗) + rp(div(p∗ −∇u∗), u− u∗)
+(λ∗z ,−K(u− u∗)) + rz(z

∗ −Ku∗,−K(u− u∗)) ≥ 0, ∀u ∈ V,
(4.19)

R(p) −R(p∗) + (λ∗p, p− p∗) + rp(p
∗ −∇u∗, p− p∗) ≥ 0, ∀p ∈ Q, (4.20)

F (z) − F (z∗) + (λ∗z , z − z∗) + rz(z
∗ −Ku∗, z − z∗) ≥ 0, ∀z ∈ V. (4.21)

Similarly, (uk, pk, zk) is characterized by

(divλk
p , u− uk) + rp(div(pk −∇uk), u− uk)

+(λk
z ,−K(u− uk)) + rz(z

k −Kuk,−K(u− uk)) ≥ 0, ∀u ∈ V,
(4.22)

R(p) −R(pk) + (λk
p , p− pk) + rp(p

k −∇uk, p− pk) ≥ 0, ∀p ∈ Q, (4.23)

F (z) − F (zk) + (λk
z , z − zk) + rz(z

k −Kuk, z − zk) ≥ 0, ∀z ∈ V, (4.24)

since (uk, pk, zk) is the solution of (4.5). Taking u = uk in (4.19), u = u∗ in (4.22),
p = pk in (4.20), p = p∗ in (4.23), z = zk in (4.21), and z = z∗ in (4.24), respectively,
we obtain, by addition

−(λp
k
, pk −∇uk) − (λz

k
, zk −Kuk) ≥ rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2, (4.25)

which is equivalent to

−rprz(λp

k
, pk −∇uk)− rprz(λz

k
, zk −Kuk) ≥ r2prz‖pk −∇uk‖2 + rpr

2
z‖zk −Kuk‖2.

(4.26)
From (4.18) and (4.26), we have

(rz‖λp
k‖2+rp‖λz

k‖2)−(rz‖λp
k+1‖2+rp‖λz

k+1‖2) ≥ r2prz‖pk−∇uk‖2+rpr
2
z‖zk−Kuk‖2,

(4.27)
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which indicates










{λk
p : ∀k} and {λk

z : ∀k} are bounded,
lim

k→∞
‖pk −∇uk‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0.
(4.28)

On the other hand, the second inequality of (4.16) implies

R(p∗) + F (z∗) ≤ R(pk) + F (zk) + (λ∗p, p
k −∇uk) + (λ∗z , z

k −Kuk)
+

rp

2 ‖pk −∇uk‖2 + rz

2 ‖zk −Kuk‖2.
(4.29)

If we take u = u∗ in (4.22), p = p∗ in (4.23), and z = z∗ in (4.24), we have, by
addition,

R(p∗) + F (z∗) ≥ R(pk) + F (zk) + (λk
p , p

k −∇uk) + (λk
z , z

k −Kuk)
+rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2.

(4.30)

Using (4.28), we have

lim inf(R(pk) + F (zk)) ≥ R(p∗) + F (z∗) ≥ lim sup(R(pk) + F (zk)), (4.31)

by taking lim inf in (4.29) and lim sup in (4.30). Hence we complete the proof of
(4.15).

Since R(·) and F (·) are both continuous over their domains, (4.15) implies clearly
that uk is a minimizing sequence of E(·). If the minimizer of E(·) is unique, then
uk → u∗. �

Theorem 4.3. Assume (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz).

Suppose that the minimization problem (4.5) is roughly solved in each iteration, i.e.,
L = 1 in Algorithm 4.2. Then the sequence (uk, pk, zk;λk

p , λ
k
z) generated by Algorithm

4.1 satisfies














lim
k→∞

(R(pk) + F (zk)) = R(p∗) + F (z∗) = E(u∗),

lim
k→∞

‖pk −∇uk‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0.

(4.32)

Moreover, (4.32) indicates that uk is a minimizing sequence of E(·). If the minimizer
of E(·) is unique, then uk → u∗.

Proof Again we define the following errors uk, pk, zk, λp

k
, λz

k
, as

uk = uk − u∗, pk = pk − p∗, zk = zk − z∗, λp

k
= λk

p − λ∗p, λz

k
= λk

z − λ∗z .

In this case, (4.18) still holds, which is represented as follows

(rz‖λp

k‖2 + rp‖λz

k‖2) − (rz‖λp

k+1‖2 + rp‖λz

k+1‖2)

= −2rprz(λp

k
, pk −∇uk) − r2prz‖pk −∇uk‖2 − 2rprz(λz

k
, zk −Kuk) − r2zrp‖zk −Kuk‖2.

(4.33)
Since (u∗, p∗, z∗;λ∗p, λ

∗
z) is a saddle-point of L (u, p, z;λp, λz), (u∗, p∗, z∗) is char-

acterized by

(divλ∗p, u− u∗) + rp(div(p∗ −∇u∗), u− u∗)
+(λ∗z ,−K(u− u∗)) + rz(z

∗ −Ku∗,−K(u− u∗)) ≥ 0, ∀u ∈ V,
(4.34)



12 Chunlin Wu, Juyong Zhang, Xue-Cheng Tai

R(p) −R(p∗) + (λ∗p, p− p∗) + rp(p
∗ −∇u∗, p− p∗) ≥ 0, ∀p ∈ Q, (4.35)

F (z) − F (z∗) + (λ∗z , z − z∗) + rz(z
∗ −Ku∗, z − z∗) ≥ 0, ∀z ∈ V. (4.36)

Similarly, by the construction of (uk, pk, zk) (Algorithm 4.2 with L = 1), we have

(divλk
p , u− uk) + rp(div(pk−1 −∇uk), u− uk)

+(λk
z ,−K(u− uk)) + rz(z

k−1 −Kuk,−K(u− uk)) ≥ 0, ∀u ∈ V,
(4.37)

R(p) −R(pk) + (λk
p , p− pk) + rp(p

k −∇uk, p− pk) ≥ 0, ∀p ∈ Q, (4.38)

F (z) − F (zk) + (λk
z , z − zk) + rz(z

k −Kuk, z − zk) ≥ 0, ∀z ∈ V, (4.39)

Taking u = uk in (4.34), u = u∗ in (4.37), p = pk in (4.35), p = p∗ in (4.38), z = zk

in (4.36), and z = z∗ in (4.39), respectively, we obtain, after addition

−(λp

k
, pk −∇uk) − (λz

k
, zk −Kuk)

≥ rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2 + rp(∇uk, pk − pk−1) + rz(Ku
k, zk − zk−1).

(4.40)
(4.33) and (4.40) indicate

(rz‖λp

k‖2 + rp‖λz

k‖2) − (rz‖λp

k+1‖2 + rp‖λz

k+1‖2)
≥ r2prz‖pk −∇uk‖2 + rpr

2
z‖zk −Kuk‖2

+2r2prz(∇uk, pk − pk−1) + 2rpr
2
z(Kuk, zk − zk−1).

(4.41)

On the other hand, we have, by using the same technique as in [27, 58], the following
estimates

{

(∇uk, pk − pk−1) ≥ 1
2 (‖pk‖2 − ‖pk−1‖2 + ‖pk − pk−1‖2),

(Kuk, zk − zk−1) ≥ 1
2 (‖zk‖2 − ‖zk−1‖2 + ‖zk − zk−1‖2).

(4.42)

We then obtain, from (4.41) and (4.42),

(rz‖λp
k‖2 + rp‖λz

k‖2 + r2prz‖pk−1‖2 + rpr
2
z‖zk−1‖2)

−(rz‖λp
k+1‖2 + rp‖λz

k+1‖2 + r2prz‖pk‖2 + rpr
2
z‖zk‖2)

≥ r2prz‖pk −∇uk‖2 + rpr
2
z‖zk −Kuk‖2

+r2prz‖pk − pk−1‖2 + rpr
2
z‖zk − zk−1‖2,

(4.43)

which implies































{λk
p : ∀k}, {λk

z : ∀k}, {pk : ∀k}, {zk : ∀k}, {∇uk : ∀k}, and {Kuk : ∀k} are bounded,
lim

k→∞
‖pk −∇uk‖ = 0,

lim
k→∞

‖pk − pk−1‖ = 0,

lim
k→∞

‖zk −Kuk‖ = 0,

lim
k→∞

‖zk − zk−1‖ = 0.

(4.44)
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On the other hand, since (u∗, p∗, z∗;λ∗p, λ
∗
z) is a saddle-point of L (u, p, z;λp, λz),

we have

R(p∗) + F (z∗) ≤ R(pk) + F (zk) + (λ∗p, p
k −∇uk) + (λ∗z , z

k −Kuk)
+

rp

2 ‖pk −∇uk‖2 + rz

2 ‖zk −Kuk‖2.
(4.45)

If we take u = u∗ in (4.37), p = p∗ in (4.38), and z = z∗ in (4.39), we have, by
addition,

R(p∗) + F (z∗) ≥ R(pk) + F (zk) + (λk
p , p

k −∇uk) + (λk
z , z

k −Kuk)
+rp‖pk −∇uk‖2 + rz‖zk −Kuk‖2

+rp(∇uk, pk − pk−1) + rz(Ku
k, zk − zk−1).

(4.46)

Using (4.44), we have

lim inf(R(pk) + F (zk)) ≥ R(p∗) + F (z∗) ≥ lim sup(R(pk) + F (zk)), (4.47)

by taking lim inf in (4.45) and lim sup in (4.46). This completes the proof of (4.32).
By the continuity of R(·) and F (·) over their domains, (4.32) indicates clearly

that uk is a minimizing sequence of E(·). If the minimizer of E(·) is unique, then
uk → u∗. �

We would like to add a comment on Theorem 4.3. It is stated in [64] that aug-
mented Lagrangian method requires (numerically) increasing accuracy of the inner
iteration to ensure the convergence of the overall algorithm. Theorem 4.3 indicates
that, even if we just simply set L = 1 (thus not explicitly increasing the accuracy by
checking optimality conditions), the accuracy of the inner iteration will also essen-
tially and automatically increase, justifying the statement in [64]. As a consequence,
setting L = 1 provides a simple stopping criterion of the inner iteration, which does
not need to compute those optimality conditions.

5. Applications. In this section we apply augmented Lagrangian method to
TV restoration with some typical and important non-quadratic fidelities. We focus
on TV-L1 restoration for recovering blurred images corrupted by impulsive noise
(e.g., salt-and-pepper noise and random-valued noise), and TV-KL restoration for
recovering blurred images corrupted by Poisson noise. In these two cases, the z−sub
problems have closed form solutions, which can be solved very efficiently. For the sake
of completeness, we elaborate Algorithm 4.2 for TV-L1 and TV-KL restoration as the
following Algorithm 5.1 and Algorithm 5.2, respectively. Moreover, we will prove the
convergence of these two algorithms.

5.1. Augmented Lagrangian method for TV-L1 restoration. TV-L1 restora-
tion model is especially useful for deblurring images corrupted by impulsive noise. It
aims at solving the following minimization problem:

min
u∈V

{ETVL1(u) = R(∇u) + α‖Ku− f‖L1}, (5.1)

whereR(∇u) = TV(u). The fidelity term is non-quadratic (and even non-differentiable).
The problem (5.1) is a special case of (3.2) where the fidelity term is

F (Ku) = α‖Ku− f‖L1 . (5.2)

Therefore we can apply Algorithms 4.1 and 4.2 to solve (5.1). For this special fidelity,
we have the following explicit solution for the z−sub problem (4.9):

zi,j = fi,j + max(0, 1 − α

rz|wi,j − fi,j |
)(wi,j − fi,j), (5.3)
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where

w = Ku− λk
z

rz
∈ V. (5.4)

The derivation of (5.3) is similar to (4.11) by the geometric interpretation.
Hence in this case Algorithm 4.2 can be detailed as follows.

Algorithm 5.1 Augmented Lagrangian method for TV-L1 restoration – solve the
minimization problem (4.5)

• Initialization: uk,0 = uk−1, pk,0 = pk−1, zk,0 = zk−1;
• For l = 0, 1, 2, ..., L− 1:

– compute uk,l+1 from (4.10) for p = pk,l, z = zk,l;
– compute pk,l+1 from (4.11) for u = uk,l+1;
– compute zk,l+1 from (5.3) for u = uk,l+1;

• uk = uk,L, pk = pk,L, zk = zk,L.

We have the following convergence result for Algorithm 5.1.
Theorem 5.1. For TV-L1 restoration, the sequence {(uk,l, pk,l, zk,l) : l = 0, 1, 2, · · · }

generated by Algorithm 5.1 converges to a solution of the problem (4.5).
Proof The proof is motivated by [60] and similar to that of Theorem 4.2 in [58].
Here we just sketch the differences.

Similarly with sτ (and s) in [60], we define operators s1 (and s2) as

s1(t) = max(0, 1− α

rz |t|
)t, for t ∈ R,

and

s2(t) = max(0, 1− 1

rp|t|
)t, for t ∈ R

2.

According to (5.3), it is useful to further define

(S1)i,j(t) = fi,j + s1(t),

for each pixel (pair (i, j) of index).
By (S1)i,j and s2, we then construct operators S1 and S2 such that (5.3) and

(4.11) can be reformulated as z = S1(w − f) and p = S2(w), respectively, with w

defined in (5.4) and w in (4.12). Therefore the iterative scheme in Algorithm 5.1 can
be written as











uk,l+1 = (rzK
∗K + rp∇∗∇)−1(K∗(λk

z + rzz
k,l) + ∇∗(λk

p + rpp
k,l)),

pk,l+1 = S2(∇uk,l+1 − λk
p

rp
),

zk,l+1 = S1(Ku
k,l+1 − λk

z

rz
− f),

(5.5)

where ∇∗ = −div is the adjoint operator of ∇. Here we also mention the existence of
(rzK

∗K + rp∇∗∇)−1 for the assumption Null(∇) ∩ Null(K) = {0}.
Furthermore, we define two linear operators h2 : Q×V → Q and h1 : Q×V → V

as follows:






h2(p, z) = ∇(rzK
∗K + rp∇∗∇)−1(K∗(λk

z + rzz) + ∇∗(λk
p + rpp)) − λk

p

rp
,

h1(p, z) = K(rzK
∗K + rp∇∗∇)−1(K∗(λk

z + rzz) + ∇∗(λk
p + rpp)) − λk

z

rz
− f.

(5.6)
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Rewriting the iterative scheme (5.5) as
{

uk,l+1 = (rzK
∗K + rp∇∗∇)−1(K∗(λk

z + rzz
k,l) + ∇∗(λk

p + rpp
k,l)),

(pk,l+1, zk,l+1) = (S2 ◦ h2;S1 ◦ h1)(p
k,l, zk,l),

(5.7)

one can show the convergence via a similar argument in [60]. �

Here we show some examples. In Tables 5.1, 5.2, and 5.3, we compute the TV-L1

model for removing 7× 7 sized Gaussian blur and salt-and-pepper noise from 30% to
60%. The TV-L1 model is also computed for removing 7× 7 sized Gaussian blur and
random-valued noise from 20% to 50% in Tables 5.4 and 5.5. In Table 5.6 an example
is provided to show the TV-L1 restoration of the cameraman degraded by 15 × 15
sized Gaussian blur and salt-and-pepper noise from 30% to 60%.

In each figure, α, t, and SNR denote the parameter of the model, the CPU cost
(in seconds), and the signal-noise ratio of the image, respectively. Note here we use
the same α’s for all the methods in each example, since our goal is to compare the
efficiency of different methods for the same model.

We compare our method (ALM with parameters rp and rz) with the FTVd pack-
age. The FTVd v2.0 is denoted for the FTVd version 2.0, and FTVd v4.0 is for
FTVd version 4.0. As far as we know, FTVd version 2.0 is one of the most efficient
published algorithms for TV-L1 restoration; see [60]. When this paper was nearly fin-
ished, we got to know that the group of Prof. Wotao Yin had released FTVd version
4.0 recently. Therefore we compare our method to these two versions. As one can see,
augmented Lagrangian method is much more efficient than FTVd version 2.0. The
potential reason may be as follows. First, in our method, we simply set L = 1 for in-
ner iteration and hence do not need to compute those residuals for stopping criterion,
which are calculated in FTVd version 2.0. Second, augmented Lagrangian method
benefits from its Lagrange multipliers update, which can be actually interpreted as
sub-gradients update in split Bregman iteration, and makes the method extremely
efficient for homogeneous 1 objective functionals. The performances of our method
and FTVd version 4.0 are very similar. For low noise level, our method seems to be
a little more efficient that FTVd version 4.0. For high noise level, FTVd version 4.0
appears to be a bit better than ours.

5.2. Augmented Lagrangian method for TV-KL restoration. To deblur
images corrupted by Poisson noise, KL divergence is used as the data fidelity. In
particular, we consider the following minimization problem:

min
u∈V

{ETVKL(u) = R(∇u) +α
∑

1≤i,j≤N

((Ku)i,j − fi,j log(Ku)i,j) : (Ku)i,j > 0, ∀(i, j)},

(5.8)
where R(∇u) = TV(u).

The problem (5.8) is a special case of (3.2) where

F (Ku) =

{

α
∑

1≤i,j≤N

((Ku)i,j − fi,j log(Ku)i,j), u ∈ V, (Ku)i,j > 0

+∞, otherwise
. (5.9)

Therefore, Algorithms 4.1 and 4.2 can be applied to compute (5.8). For this special
fidelity, we also have, by considering zi,j > 0, a closed form solution to the z-sub
problem (4.9):

zi,j =
1

2
(

√

(wi,j −
α

rz
)2 + 4

α

rz
fi,j + (wi,j −

α

rz
)), (5.10)
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Table 5.1

TV-L1 restoration from 7×7 sized Gaussian blur with salt-and-pepper noise from 30% to 60%.

Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered (α: 13) Recovered (α: 10) Recovered (α: 8) Recovered (α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 11.8s, SNR: 13.78dB t: 13.1s, SNR: 12.97dB t: 14.6s, SNR: 12.21dB t: 18.3s, SNR: 10.98dB

Recovered (α: 13) Recovered (α: 10) Recovered (α: 8) Recovered (α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 3.7s, SNR: 13.19dB t: 3.9s, SNR: 12.66dB t: 3.5s, SNR: 12.07dB t: 3.3s, SNR: 10.95dB

Recovered (α: 13) Recovered (α: 10) Recovered (α: 8) Recovered (α: 4)
(ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 25)
t: 2.8s, SNR: 13.28dB t: 3.1s, SNR: 12.73dB t: 3.5s, SNR: 12.08dB t: 3.3s, SNR: 10.86dB

where

w = Ku− λk
z

rz
∈ V. (5.11)

Here we elaborate Algorithm 4.2 for TV-KL restoration as Algorithm 5.2.
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Table 5.2

TV-L1 restoration from 7×7 sized Gaussian blur with salt-and-pepper noise from 30% to 60%.

Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 13.3s, SNR: 14.53dB t: 11.7s, SNR: 13.52dB t: 12.9s, SNR: 12.72dB t: 15.9s, SNR: 11.24dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 4.2s, SNR: 14.20dB t: 3.5s, SNR: 13.43dB t: 3.2s, SNR: 12.72dB t: 2.9s, SNR: 11.23dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 100) (ALM, rp: 10, rz: 25)
t: 3.5s, SNR: 14.39dB t: 3.1s, SNR: 13.48dB t: 4.1s, SNR: 12.83dB t: 3.7s, SNR: 11.23dB

For Algorithm 5.2, we have the following convergence result.

Theorem 5.2. For TV-KL restoration, the sequence {(uk,l, pk,l, zk,l) : l =
0, 1, 2, · · · } generated by Algorithm 5.2 converges to a solution of the problem (4.5).

Proof As one can see, the only difference between Algorithm 5.2 and 5.1 is in the
solutions of the z−sub problems. We therefore define a mapping Ψ = (ψi,j) : V → V ,
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Table 5.3

TV-L1 restoration from 7×7 sized Gaussian blur with salt-and-pepper noise from 30% to 60%.

Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 75.5s, SNR: 17.77dB t: 76.8s, SNR: 16.79dB t: 77.4s, SNR: 15.92dB t: 92.7s, SNR: 14.43dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 17.1s, SNR: 16.62dB t: 16.3s, SNR: 16.12dB t: 15.4s, SNR: 15.53dB t: 14.1s, SNR: 14.28dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 35)
t: 11.6s, SNR: 16.90dB t: 12.0s, SNR: 16.30dB t: 13.9s, SNR: 15.51dB t: 16.3s, SNR: 14.26dB

according to (5.10), with ψi,j as

ψi,j(t) =
1

2
(

√

t2 + 4
α

rz
fi,j + t). (5.12)

In the following we prove the convergence in three steps.
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Table 5.4

TV-L1 restoration from 7×7 sized Gaussian blur with random-valued noise from 20% to 50%.

Blurry&Noisy:
20% Random-Valued 30% Random-Valued 40% Random-Valued 50% Random-Valued

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 9.9s, SNR: 15.24dB t: 12.3s, SNR: 13.29dB t: 14.0s, SNR: 12.44dB t: 16.8s, SNR: 10.83dB

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 5.7s, SNR: 13.62dB t: 4.0s, SNR: 12.97dB t: 3.1s, SNR: 12.32dB t: 3.1s, SNR: 11.00dB

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 100) (ALM, rp: 15, rz: 120) (ALM, rp: 10, rz: 45)
t: 5.1s, SNR: 14.63dB t: 2.8s, SNR: 13.04dB t: 3.2s, SNR: 12.33dB t: 3.4s, SNR: 10.90dB

First, we show the sequence {(uk,l, pk,l, zk,l) : l = 0, 1, 2, · · · } is bounded. Accord-
ing to Algorithm 5.2, we have

L (uk,l+1, pk,l, zk,l;λk
p , λ

k
z) ≤ L (uk,l, pk,l, zk,l;λk

p , λ
k
z),

L (uk,l+1, pk,l+1, zk,l;λk
p , λ

k
z) ≤ L (uk,l+1, pk,l, zk,l;λk

p , λ
k
z ),

L (uk,l+1, pk,l+1, zk,l+1;λk
p , λ

k
z) ≤ L (uk,l+1, pk,l+1, zk,l;λk

p , λ
k
z ).
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Table 5.5

TV-L1 restoration from 7×7 sized Gaussian blur with random-valued noise from 20% to 50%.

Blurry&Noisy:
20% Random-Valued 30% Random-Valued 40% Random-Valued 50% Random-Valued

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 72.8s, SNR: 19.40dB t: 78.5s, SNR: 17.07dB t: 82.9s, SNR: 15.78dB t: 99.1s, SNR: 13.55dB

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 20.1s, SNR: 16.87dB t: 13.6s, SNR: 16.34dB t: 14.7s, SNR: 15.46dB t: 13.8s, SNR: 13.61dB

Recovered(α: 25) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 100) (ALM, rp: 20, rz: 35)
t: 15.5s, SNR: 17.79dB t: 12.4s, SNR: 16.63dB t: 10.9s, SNR: 15.51dB t: 12.4s, SNR: 13.58dB

By adding the above three equations, we have

L (uk,l+1, pk,l+1, zk,l+1;λk
p , λ

k
z) ≤ L (uk,l, pk,l, zk,l;λk

p , λ
k
z ),

indicating that L (uk,l, pk,l, zk,l;λk
p , λ

k
z) is monotonically decreasing. Since L (u, p, z;λk

p, λ
k
z)

is proper and coercive with respect to (u, p, z), {(uk,l, pk,l, zk,l) : l = 0, 1, 2, · · · } is
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Table 5.6

TV-L1 restoration from 15×15 sized Gaussian blur with salt-and-pepper noise from 30% to 60%.

Blurry&Noisy:
30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v2.0) (FTVd v2.0) (FTVd v2.0) (FTVd v2.0)

t: 12.3s, SNR: 11.42dB t: 12.3s, SNR: 10.83dB t: 11.1s, SNR: 10.38dB t: 13.3s, SNR: 9.63dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(FTVd v4.0) (FTVd v4.0) (FTVd v4.0) (FTVd v4.0)

t: 4.7s, SNR: 10.91dB t: 4.3s, SNR: 10.57dB t: 3.5s, SNR: 10.22dB t: 3.0s, SNR: 9.62dB

Recovered(α: 13) Recovered(α: 10) Recovered(α: 8) Recovered(α: 4)
(ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 120) (ALM, rp: 20, rz: 100) (ALM, rp: 10, rz: 40)
t: 4.3s, SNR: 11.34dB t: 3.8s, SNR: 10.75dB t: 3.8s, SNR: 10.34dB t: 4.7s, SNR: 9.66dB

bounded.
Secondly, we verify the mapping ψi,j is non-expansive (actually a contraction

mapping) over bounded domains. Given a bounded domain B and any t1 ∈ B, t2 ∈ B,
we have, by basic calculus,

|ψi,j(t1) − ψi,j(t2)| ≤M |t1 − t2|,
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Algorithm 5.2 Augmented Lagrangian method for TV-KL restoration – solve the
minimization problem (4.5)

• Initialization: uk,0 = uk−1, pk,0 = pk−1, zk,0 = zk−1;
• For l = 0, 1, 2, ..., L− 1:

– compute uk,l+1 from (4.10) for p = pk,l, z = zk,l;
– compute pk,l+1 from (4.11) for u = uk,l+1;
– compute zk,l+1 from (5.10) for u = uk,l+1;

• uk = uk,L, pk = pk,L, zk = zk,L.

with a constant M < 1. Here we used the assumption for TV-KL restoration that
fi,j > 0, ∀(i, j).

On the third, the convergence of Algorithm 5.2 can be proved similarly with that
of Algorithm 5.1. �

We show some examples; see Tables 5.7 and 5.8. In the figures, α, t, and SNR
denote the parameter of the model, CPU costs (in seconds) and signal-noise ratios,
respectively. We compare the restoration results of TV-L2 and TV-KL models cal-
culated by augmented Lagrangian method (ALM) with parameters r and rp, rz, re-
spectively. As one can see, TV-KL model produces much better results than TV-L2.
TV-L2 removes the noise, but has difficulty to preserve sharp edges (see the black
frame in the example of Table 5.7), and blurs textures too much (see the zoom-in pic-
tures in Table 5.8). In addition, TV-KL model can still be calculated very efficiently
by augmented Lagrangian method. In one word, augmented Lagrangian method for
TV-KL model produces much better results than TV-L2 model with an acceptable
CPU cost, when recovering blurred images with Poisson noise.

Table 5.7

Comparisons between TV-L2 and TV-KL restoration: recovering degraded images with 7 × 7
sized Gaussian blur and Poisson noise.

TV-L2 Recovered(α: 20) TV-KL Recovered(α: 20)
Original image Blurry&Noisy: Poisson (ALM, r: 10) (ALM, rp: 10, rz: 20)

SNR: 13.27dB t: 1.7s, SNR: 22.49dB t: 3.8s, SNR: 24.11dB

6. Conclusion. In this paper we extended augmented Lagrangian method for
TV-L2 model to solve TV restoration with non-quadratic fidelity. After presenting
and analyzing the method for TV restoration with a relatively quite general fidelity, we
applied the algorithms to two typical image deblurring problems with non-Gaussian
noise. Due to FFT implementation or closed form solutions for the sub-problems, as
well as simple stopping criterion (L = 1) of the inner iteration, augmented Lagrangian
method is extremely efficient as demonstrated by the experiments. Moreover, we gave
convergence analysis for the proposed algorithms, which cannot be obtained through
previous analysis techniques. A possible future work is to extend the method to color



Augmented Lagrangian Method for TV restoration 23

Table 5.8

Comparisons between TV-L2 and TV-KL restoration: recovering degraded images with 7 × 7
sized Gaussian blur and Poisson noise. The second row is the zoom-in of the first row.

TV-L2 Recovered(α: 20) TV-KL Recovered(α: 20)
Original image Blurry&Noisy: Poisson (ALM, r: 10) (ALM, rp: 20, rz: 40)

SNR: 10.39dB t: 5.3s, SNR: 12.84dB t: 8.4s, SNR: 13.96dB

image recovering via TV (and even Non-Local TV) restoration with non-quadratic
fidelities.
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