
A FORMALIZATION OF DARCS PATCH THEORY USING
INVERSE SEMIGROUPS

JUDAH JACOBSON

Abstract. Darcs is a distributed version control system with a flexible repos-

itory model. An abstract “theory of patches” determines how changes from
multiple sources are combined and transformed while maintaining a consistent

history. Previous formalizations of the semantics of Darcs have generally relied

on definitions and assumptions chosen specifically to model that system.
We present a formalization of patch theory which builds upon established

mathematical concepts. In particular, we model patch effects as elements of

inverse semigroups, which generalize the properties of partial injective func-
tions. We demonstrate that our approach provides a useful framework for

discussing and proving results about the operations performed by Darcs. We

also give new insight into conflictors, which are used to merge incompatible
changes and can affect reliability and performance of the software.

1. Patch theory

1.1. Version control systems. A version control system manages changes to a
repository of files. More traditional software such as Subversion [20] and Perforce
[14] synchronize changes from different users by means of a central repository. In
contrast, distributed revision control systems (DVCS) allow each user to record
changes in their own copy of the repository. Users can asynchronously apply changes
from other repositories to their own.

Some care is needed when merging changes between repositories. For example,
suppose that Alice and Bob each start with identical copies of the repository. Alice
makes the changes

(A) insert ‘foo’ as a new line at the beginning of file F
(B) rename file F to G

while Bob independently makes the change

(C) change line five of F from ‘bar’ to ‘baz’

Then the following is a valid merger of their changes:

(A) insert ‘foo’ as a new line at the beginning of file F
(B) rename file F to G

(C′) change line six of file G from ‘bar’ to ‘baz’

Notice how the line number and filename of (C) must be altered in order to obtain
a consistent history.

Darcs [3] is a DVCS which builds its merging algorithms on a “theory of patches.”
Patch theory [2, 5, 11, 18] is an attempt to define patches abstractly and to pro-
vide provably correct merging algorithms. The authors of Darcs assert that their
approach makes the software simpler and more robust.

1



2 JUDAH JACOBSON

This paper presents a new formalization of patch theory which builds upon es-
tablished mathematical concepts. Specifically, we model patch effects as elements
of an inverse semigroup. We describe commutation, which reorders patches while
preserving their original intent, and show how it enables Darcs to merge changes
from different sources. We prove that certain operations performed by Darcs are
sensible, i.e. produce patch sequences which make consistent changes to the repos-
itory state. We furthermore use our model to discuss two open areas of research:
permutivity, which affects synchronization between more than two repositories; and
conflictors, which resolve incompatible changes from different users.

1.2. Modelling patches. A “patch” in Darcs denotes a change in the repository
state. For example:

• Add or remove an empty file
• Move (i.e., rename) a file
• Replace a contiguous sequence of lines with another (which may be of dif-

ferent length)
• Replace all instances of one word in the file with another

Letting R represent the set of repository states, we model changes as partial one-
to-one functions f : D ⊆ R→ R. Two partial functions f and g may be composed
on a restricted set; i.e., (fg)(x) = g(f(x)) when

x ∈ Dom(fg) = f−1 (Ran(f) ∩Dom(g)) .

Our choice for order of composition differs from the usual mathematical notation,
but will allow us to better match the standard formulations of patch theory. Also
note that the above composition may result in the “zero” function with empty
domain and range.

Every partial one-to-one f has a unique inverse f−1 : Ran(f) → Dom(f) such
that f−1(f(x)) = x on Dom(f) and f(f−1(x)) = x on Ran(f). For example:

• The function “add a file F” has domain {F does not exist} and range {F
exists and is empty}.
• Its inverse “remove the file F” has domain {F exists and is empty} and

range {F does not exist}.
• The function “rename file F to G” has domain {F exists and G does not

exist} and range {F does not exist and G exists}.
• The function “insert one line ‘foobar’ at the start of F” has domain {F

exists} and range {F exists and its first line is ‘foobar’}.
The following definition [7, 8] generalizes the above concepts of composition and

inversion:

Definition 1.1. A set X with a binary multiplication operation is called an inverse
semigroup if:

• Multiplication is associative; i.e., x(yz) = (xy)z for all x, y, z ∈ X.
• Every x ∈ X has a unique inverse x−1 such that xx−1x = x and x−1xx−1 =

x−1.

Inverses in the above definition follow some of the same laws as in groups; for
example, it can be shown that (xy)−1 = y−1x−1. However, in general xx−1 is not
the identity element (if one such even exists in X). It is idempotent, though, since
(xx−1)(xx−1) = x(x−1xx−1) = xx−1.



A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 3

Definition 1.2. An idempotent of a semigroup is an element y with yy = y.

Idempotents play an important role in the theory of inverse semigroups. For
example, if f and g are partial one-to-one functions then ff−1 = idDom(f) and
ff−1g is the restriction g|Dom(g)∩Dom(f); similarly f−1f = idRan(f).

We are led to a natural partial ordering: g ≤ f if Dom(g) ⊆ Dom(f) and g = f
on Dom(g). That ordering generalizes to arbitrary inverse semigroups:

Definition 1.3. Let x, y be elements of an inverse semigroup X. Then x ≤ y if
x = ay for some idempotent a.

It can be shown that this relation is equivalent to letting x ≤ y if x = ya for
some idempotent a. Furthermore, this relation has the following properties:

• x ≤ y, y ≤ x =⇒ x = y (antisymmetry)
• x ≤ y, y ≤ z =⇒ x ≤ z (transitivity)
• w ≤ x, y ≤ z =⇒ wy ≤ xz
• w ≤ x ⇐⇒ w−1 ≤ x−1.

Finally, we can generalize the partial function with empty domain:

Definition 1.4. A semigroup X has a zero element (denoted “0”) if 0x = x0 = 0
for any x ∈ X.

The following properties can be shown for any x, y ∈ X :
• x ≥ 0.
• If xy 6= 0 then x, y 6= 0.
• x 6= 0 iff x−1 6= 0.

1.3. Patch systems. The patches in Darcs are concretely representable units of
change. Patches also contain metatdata such as a description, a unique identifier
or the name of the user who originally recorded it. Since metadata is relevant to
some merging algorithms, we will model the concepts of patches and changes as
distinct mathematical objects.

We choose the following model:

Definition 1.5. Call a set P a patch set if it has an inversion operation satisfying
(p−1)−1 = p for all p ∈ P.

Definition 1.6. Let P be a patch set, S be an inverse semigroup, and E : P → S
a function satisfying E(p−1) = E(p)−1 for all p ∈ P. Then we say that (P, S, E) is
a patch system.

Informally, E assigns an effect, or change of the shared state, to each patch in P.
The history of a repository contains a list of consecutive changes; thus we will

also consider sequences of patches.

Definition 1.7. Let (P, S, E) be a patch system. Then P∗ is the set of all patch
sequences p = (p1, p2, . . . , pn) where each pi ∈ P. We define inversion on P∗ by

(p1, p2, . . . , pn)−1 = (pn
−1, . . . , p2

−1, p1
−1).

Furthermore, we extend E to the map E∗ : P∗ → S by

E∗((p1, . . . , pn)) = E(p1) . . . E(pn).



4 JUDAH JACOBSON

When convenient, we will denote a sequence (p) which consists of only one patch
as just p. We also define multiplication in P∗ to be sequence concatenation.

The following proposition follows trivially from the definitions:

Proposition 1.1. Let (P, S, E) be a patch system. Then (P∗, S, E∗) is also a patch
system.

It can also be extended to a nice algebraic formulation:

Proposition 1.2. Let (P, S, E) be a patch system. Then P∗ is a semigroup with
involution; namely the inversion operation satisfies the laws (p−1)−1 = p and
(pq)−1 = q−1p−1.

Furthermore, E∗ is a semigroup homomorphism which preserves involution; i.e.,

E∗(pq) = E∗(p)E∗(q) and E∗(p−1) = E∗(p)−1
.

The definitions so far permit arbitrary sequences of patches; however, in practice
some combinations are not reasonable. For example, a file cannot be edited before
it has been added to the repository. We model that concept as follows:

Definition 1.8. Let (P, S, E) be a patch system. Then we say that a patch p ∈ P
is sensible if E(p) 6= 0.

As an example use of the theory, we prove that it is always sensible to apply the
inverse of the most recent patch:

Proposition 1.3. Let S be an inverse semigroup, and x, y ∈ S. If xy is nonzero,
then so is xyy−1.

Proof. Suppose instead that 0 = xyy−1. Then

0 = 0y = xyy−1y = xy,

contradicting the assumption that xy was nonzero. �

Corollary 1.4. If the patch sequence pq is sensible, then so is pqq−1.

2. Commutation

2.1. Description. Suppose that Alice and Bob each start with the same history
of changes. Alice, in her copy of the repository, records the patch p =“move file F
to G;” whereas Bob records q =“insert ‘foobar’ at the start of F .” Care must be
taken when merging their changes into a single consistent history; for example, the
sequence pq is not sensible. Instead, the two changes may be sensibly combined
into either qp or pr, where r =“insert ‘foobar’ at the start of G.”

Darcs uses merging algorithms which are built on the concept of patch commu-
tation. Informally, a pair of patches (p, q) commutes when we can find another pair
(q′, p′) , with p′ and q′ having the same “meaning” as p and q respectively, such
that pq ≡ q′p′. We write this relation as (p, q) ↔ (q′, p′). (If pq = qp, we will say
that p and q trivially commute.)

For example, the patches in the above example are related by commutation,
namely (q, p) ↔ (p, r). Not every pair of patches may be commuted; for example,
adding a file and then modifying it only makes sense in the original order. In that
case we say that the latter patch depends on the former.

In addition to providing a flexible approach to merging (which we will revisit in
a later section), commutation enables “cherry-picking” from a patch sequence. For



A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 5

example, suppose Alice has the patch sequence p, Bob has pqr, and Alice wishes to
synchronize with Bob’s history but does not want patch q. She cannot simply pull
r to form pr; in particular, there is no guarantee that sequence is sensible. Instead,
she first commutes the last two patches of Bob’s history, resulting in pr′q′; this new
sequence is sensible since it has the same effect as Bob’s. Then, she adds r′ to her
history to obtain the also-sensible (as well as semantically correct) pr′.

Previous formulations of Darcs patch theory (e.g., [11, 19]) have started by as-
suming that commutation satisfies several useful properties. The following defini-
tion starts integrating those requirements into our model.

Definition 2.1. Let (P, S, E) be a patch system. Let ↔ be a relation on pairs of
elements of P. Then we call ↔ a commutation relation if all of the following hold:

• Effect-preserving: If (p, q)↔ (r, s) , then E(pq) = E(rs).
• Symmetric: If (p, q)↔ (r, s) , then (r, s)↔ (p, q).
• Rotating: If (p, q)↔ (r, s) then

(
r−1, p

)
↔
(
s, q−1

)
.

Informally, the rotating property asserts that we may rotate the following com-
mutative diagram clockwise:

A
p−−−−→ Byr

yq

C
s−−−−→ D

=⇒

C
r−1

−−−−→ Ays

yp

D
q−1

−−−−→ B

From repeated application of the symmetric and rotating properties, it follows
that the diagram stays correct under arbitrary flips or rotations. In particular, by
applying the symmetric property twice we find that (p, q) ↔ (r, s) if and only if
(r, s)↔ (p, q) ; and by applying the rotating property four times we find that

(p, q)↔ (r, s) ⇐⇒
(
r−1, p

)
↔
(
s, q−1

)
⇐⇒

(
s−1, r−1

)
↔
(
q−1, p−1

)
⇐⇒

(
q, s−1

)
↔
(
p−1, r

)
.

Definition 2.2. Let (P, S, E) be a patch system with commutation relation ↔.
We say that ↔ is uniquely commuting if for each p and q in P there is at most one
pair (r, s) with (p, q)↔ (r, s).

If that uniqueness property is satisfied, then we can consider commutation as
an operation on patches, rather than a relation. This view helps derive properties
of the algorithms of Darcs. For example, uniqueness plus symmetry implies that
commuting two patches twice must result in the original pair.

2.2. Commutation of sequences. Most of Darcs’ commands transform a history
of changes rather than just a single patch. As a result, we also consider commutation
relations on patch sequences.



6 JUDAH JACOBSON

For example, let p = (p0, p1) and q = (q0, q1). By commuting adjacent primitive
patches, we may reorder pq into q′′p′′ as follows:

pq = (p0, p1, q0, q1)↔ (p0, q
′
0, p
′
1, q1) if (p1, q0)↔ (q′0, p

′
1)

↔ (q′′0 , p′0, p
′
1, q1) if (p0, q

′
0)↔ (q′′0 , p′0)

↔ (q′′0 , p′0, q
′
1, p
′′
1) if (p′1, q1)↔ (q′1, p

′′
1)

↔ (q′′0 , q′′1 , p′′0 , p′′1) = q′′p′′ if (p′0, q
′
1)↔ (q′′1 , p′′0)

We say that (p, q)↔∗ (q′′, p′′) if each pair of primitive patches commutes as above.
It is possible to express the above relationships succinctly as a commutative

diagram, as in [16]:

(1)

p0−−−−→ p1−−−−→yq′′0

yq′0

yq0

p′0−−−−→ p′1−−−−→yq′′1

yq′1

yq1

p′′0−−−−→ p′′1−−−−→
The definitions from the previous section apply naturally to patch sequences:

Proposition 2.1. Let (P, S, E) be a patch system with commutation relation ↔.
Then we can construct a commutation relation ↔∗ for the patch system (P∗, S, E∗).

Furthermore, if ↔ is uniquely commuting, then so is ↔∗.

A complete formal construction and proof requires some tedious notation. Thus
we will give an outline of the necessary steps, and defer the details to a separate
paper.

Proof. Assume that we are given a patch system with an associated commuta-
tion relation ↔. Then we say that two patch sequences p = (p0, . . . , pn) and
q = (q0, . . . , qm) commute if there exist doubly-indexed sequences of intermediate
patches p

(k)
i and q

(l)
j filling in a diagram similar to (1), such that each intermediate

“box” of commutation holds:
p
(j)
m−i−−−−→yq

(i+1)
j

yq
(j)
i

p
(m−i)
j+1−−−−→

Now, by rotating (1) ninety degrees we find that rotation for ↔∗ follows di-
rectly from rotation for ↔. Similarly, flipping (1) along the diagonal demonstrates
symmetry of ↔∗ from the symmetry of ↔.

For effect-preservation, we consider paths through the arrows of (1) which start
at the top left corner and finish at the bottom right. The path which takes the top
and right sides of the diagram has effect E∗(pq). We can use effect-preservation
of ↔ to show by induction that the same effect must result from any path; and in
particular, that includes the path taking the left and bottom sides.

Finally, assume that ↔ is uniquely commuting. Then for each intermediate box
of commutation, the top and right sides specify unique values for the left and bottom



A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 7

sides. But specifying p and q specifies the top and right sides of (1), so we can
use induction to show that p and q also specify unique values at each intermediate
step. �

3. Merging

In this section we will provide a simplified description of how Darcs uses com-
mutation to merge patches from different authors.

Assume that Alice has history cp and Bob has history cq. They synchronize
repositories by adding the patches from the other user to the end of their own
history. Namely:

• Alice gets cpr, where r has the same “meaning” as q but makes sense when
applied after p;
• Bob gets cqs, where s has same “meaning” as p but can be applied after

q.
Since the two repositories ought to be consistent, we expect that E∗(pr) and E∗(qs)
should be equal. Thus, assuming that this patch “meaning” is the same concept
as in commutation, we merge p and q by looking for sequences r and s with
(p, r)↔ (q, s).

Furthermore, by the symmetric and rotating properties we have

(p, r)↔ (q, s) ⇐⇒
(
q−1, p

)
↔
(
s, r−1

)
⇐⇒ (q, s)↔ (p, r) ⇐⇒

(
p−1, q

)
↔
(
r, s−1

)
.

Therefore we can compute r and s by commuting either
(
p−1, q

)
or
(
q−1, p

)
. If

p−1 and q cannot be commuted, then we say that p and q conflict ; we will discuss
how Darcs handles that case in Section 5.

Another way to understand the relevance of commuting
(
p−1, q

)
is the following.

Assuming that cp and cq are sensible, we might hope that cpp−1q is also sensible.
If so, then

(
p−1, q

)
↔
(
r, s−1

)
means that we can replace p−1q with rs−1 to

form cprs−1. That sequence is still sensible since ↔ is effect-preserving; thus its
subsequence cpr must also be sensible.

However, in the general setting it is not enough to assume that cp and cq are
sensible. For example, let

• p =“change the first line of file F from ‘foo’ to ‘bar’”
• q =“change the second line of file F from ‘foo’ to ‘baz’”
• E∗(c) be some partial function whose range is {Either the first or second

line of F is ‘foo’, but not both}.
Then cp and cq are both sensible; and their merger ought to be cpq since (p, q)↔
(q, p). But Dom(pq) is {Both the first and second lines of F are ‘foo’}, so cpq is
not sensible.

As a result, different assumptions are necessary in order to prove that a merged
history is sensible. We start with the following definition:

Definition 3.1. Let X be an inverse semigroup. Then x ∈ X is called minimal if
there is no nonzero element strictly less than x.

For example, any partial function whose domain consists of a single element is
minimal. (The mathematical literature (e.g., [8]) refers to minimal idempotents as
“primitive,” but that name is already part of the terminology of Darcs.)



8 JUDAH JACOBSON

Definition 3.2. Let (P, S, E) be a patch system, and let e be an idempotent in S.
We say that p ∈ P is e-sensible if eE(p) is nonzero.

In particular, let R be the state of a repository with no files or folders, and let e
be the identity function whose domain is the singleton set {R}. Since every Darcs
repository is initialized to R, its full history must be an e-sensible patch sequence.
The same holds for any subsequence which starts at the beginning of the history.

To prove that a merger is e-sensible, we will need the following lemma.

Lemma 3.1. Let X be an inverse semigroup. If x, e ∈ X and e is a minimal
idempotent, then ex is also minimal.

Proof. Fix x, z, e ∈ X, where e is a minimal idempotent and z 6= 0. If z ≤ ex then
z = exy for some idempotent y ∈ X; we will show that exy = ex.

It is a basic fact of inverse semigroups that idempotents trivially commute [7, 8].
In particular, x−1xy = yx−1x, so

0 6= exy = exx−1xy = exyx−1x.

Therefore exyx−1 must also be nonzero. Furthermore exy ≤ ex, so

0 6= exyx−1 ≤ exx−1 ≤ e.

By minimality of e, it follows that e = exyx−1. Therefore

ex = exyx−1x = exx−1xy = exy.

�

Proposition 3.2. Let (P, S, E) be a patch system and ↔ a commutation relation
on P. Let e be a minimal idempotent, and assume that (p, r)↔∗ (q, s) where c, r,
q and s are all in P∗. If cp and cq are both e-sensible, then so are cpr and cqs.

Proof. Let c = E∗(c), p = E∗(p), and q = E∗(q). We have ecpr = ecqs since ↔∗ is
effect-preserving, so it suffices to show that ecpr is nonzero.

Since ecp is nonzero, by Proposition 1.3 we have 0 6= ecpp−1 ≤ ec. But ec is
minimal by Lemma 3.1; so ecpp−1 = ec. Then

0 6= ecq = ecpp−1q = ecprs−1

since p−1q = rs−1 by the rotating and effect-preserving properties. Thus ecpr is
also nonzero. �

4. Permutivity

The previous section described how to merge changes from two distributed repos-
itories. When three or more repositories are involved, we can apply the same tech-
nique by repeatedly performing pairwise merges until all of the repositories have
been synchronized with each other.

However, although effect-preservation ensures that two merged histories must
have the same effect, we cannot conclude the same when several repositories are
merged together. In particular, suppose that three remote repositories each have
distinct patches p1, p2 and p3. Ideally, the order in which we merge those patches
into our own repository should not change their overall effect. However, it is not
possible to prove, e.g., that the order p1, p2, p3 will have the same effect as p2, p1, p3,
if we only use the definitions from the previous sections. (A simple counter-example
in a related setting is described by [6].)



A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 9

It turns out that one last condition is required, known in the Darcs literature as
permutivity. Informally, it states that if a patch sequence is rearranged by repeat-
edly commuting adjacent elements, then the resulting sequence should depend only
on the final order of elements and not the choice of intermediate swaps.

Our formalization of permutivity is similar to [5], but highlights some additional
mathematical structure.

Definition 4.1. Let Gn denote the group of permutations of sequences of n ele-
ments. Let Tn denote the set of all adjacent transpositions in Gn, i.e. those whose
only effect is to swap two consecutive elements.

Definition 4.2. Let P be a patch set; then let Pn denote the set of sequences in
P∗ with length n. Let S(Pn) be the inverse semigroup whose elements are partial
injective functions on Pn.

Definition 4.3. Fix a uniquely commutating relation ↔. Define the associated
Fn : Tn → S(Pn) as follows. Fix t ∈ Tn which swaps elements i and i + 1. Then
Fn(t) is the element of S(Pn) which acts on (p1, . . . , pn) by commuting pi and pi+1

when ↔ permits it, and which is undefined otherwise.

We have Fn well-defined since↔ is uniquely commuting. Furthermore, the sym-
metric property implies that each Fn(t) is injective, and that Fn(t)−1 = Fn(t−1).

Definition 4.4. We say that a uniquely commuting relation is n−permutative if

s1 · · · sk = t1 · · · tm =⇒ Fn(s1) · · · Fn(sk) = Fn(t1) · · · Fn(tm),

for any si, tj ∈ Tn. (Note that the left-hand side is a composition of permutations,
whereas the right-hand side is a composition of partial functions in S(Pn).) We
say that ↔ is permutative if it is n-permutative for all n > 0.

Algebraically, permutivity means that Fn can be extended to a semigroup ho-
momorphism from Gn to S(Pn).

Permutivity may seem like a difficult property to verify in practice. Luckily, the
following result, which was proved in [5], saves a great deal of work:

Theorem 4.1. If a uniquely commuting relation is 3-permutative, then it is per-
mutative.

Checking permutivity only for sequences of length 3 is a much more tractible
problem, if still somewhat tedious. It can be aided by an automated theorem
prover, for example as in [6].

In future work, we hope to use the permutivity property to fully specify the n-
way merge algorithm and show that it results in distributed histories with identical
effects.

5. Managing conflicts

5.1. Conflictors in Darcs. The previous discussion of history merging is not
directly applicable when patches in different repositories conflict — for example,
if they make different changes to the same line of the same file. Specifically, the
merge algorithm breaks down when we try to merge two patches p and q such that(
p−1, q

)
does not commute.

Darcs solves that issue by add a new patch type, called a conflictor [19], which
“forces” a merge between any two patches that would otherwise conflict. When



10 JUDAH JACOBSON

Darcs creates a conflictor, it undoes the effects of both conflicting patches and
marks the file as needing resolution. The user is then expected to record a new
patch which manually merges the conflicting changes.

We will denote a conflictor as a pair of patches C(p, q). In practice, the repre-
sentation that Darcs uses is more complicated. However, that simplification makes
it simpler to demonstrate the usefulness of our inverse semigroup model. We will
elaborate on avenues of future work in Section 5.4.

The best way to understand the semantics of conflictors is to consider how they
are used in merges. Suppose that Alice has patch p and Bob has conflicting patch q.
Recall that merging causes new patches to be added to the end of one’s repository;
thus Alice ends up with history pC(p, q), while Bob has qC(q, p).

As in Section 3, we guide ourselves by requiring that

(2) (p, C(p, q))↔ (q, C(q, p))

when p and q conflict. The hope is that by combining the other desired commutation
properties with (2), we can derive the full semantics of conflictor commutation.

In particular, substituting p−1 for p and applying the rotating and symmetric
properties produces

(p, q)↔
(
C(p−1, q), C(q, p−1)

−1
)

when (p, q) cannot be otherwise commuted. In other words, conflictors should
extend commutation of patches to another relation which can commute any pair of
elements.

5.2. Conflictor effects. In order to model conflictors using our semigroup frame-
work, we must precisely describe their image under the effect map. In what follows,
assume that we have a patch system with effect map E . For brevity, we will use
the notation p̂ = E(p).

We propose to take

E(C(p, q)) = p̂−1q̂q̂−1.

That effect makes the same change to the repository state as p̂−1, but restricts its
range to be compatible with the domain of q̂.

For example, if c is some previous history, we find that

E∗(cpC(p, q)) = E∗(c)p̂p̂−1q̂q̂−1.

In terms of partial functions, that effect restricts the range of E∗(c) to be contained
in Dom(p) ∩ Dom(q). In other words, it restricts the repository history such that
either p or q could potentially be applied at the end.

It is straightforward to show that merger commutation is effect-preserving, since
idempotents commute:

E∗(pC(p, q)) = p̂p̂−1q̂q̂−1 = q̂q̂−1p̂p̂−1 = E∗(qC(q, p)).

Additionally, there is an analogue of Proposition 3.2: if cp and cq are e-sensible
for some minimal element e, then so are cpC(p, q) and cqC(q, p). As the proof is
essentially the same, we will omit it for brevity.



A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 11

5.3. Inverse conflictors. If conflictors are to be included in a patch system, then
we ought to be able to take their inverse. The effect of such an inverse must be:

E(C(p, q)−1) = E(C(p, q))−1 = (p̂−1q̂q̂−1)
−1

= q̂q̂−1p̂.

This indicates that the inverse of a conflictor patch should be an additional type of
object separate from conflictors themselves.

Happily, our model is consistent with the rotating property. Specifically, after
applying that property to (2):(

q−1, p
)
↔
(
C(q, p), C(p, q)−1

)
,

we can confirm that the commutation remains effect-preserving:

E∗(C(q, p)C(p, q)−1) = q̂−1(p̂p̂−1)(q̂q̂−1)p̂

= q̂−1(q̂q̂−1)(p̂p̂−1)p̂ = q̂−1p̂.

5.4. Issues with conflictors. The main problem with the above approach is that
conflictors can themselves conflict with other patches or with each other. For
example, if p, q and r mutually conflict then attempting to merge r with C(p, q)
produces the conflictor C(r, C(p, q)). As a result, Darcs allows arbitrary nesting of
conflictors within other conflictors.

Unfortunately, the algorithms used by Darcs to commute and merge nested con-
flictors are known to have exponential running time in some cases. In the past, that
issue has significantly affected the reliability and performance of Darcs for certain
large repositories. To the user, the software appears to unpredictably hang while
synchronizing with another repository. As a result, some projects take care to avoid
conflicts between repositories and instead merge conflicting changes by hand [12].

Over the last several years, work has been ongoing to develop a more sophisti-
cated type of conflictor without the above problems. Darcs version 2.0, released
in April 2008, contains a conflictor type which avoids nested conflicts in many
common cases. Unfortunately, it is still possible to construct pathological cases
requiring exponential time in the number of conflicting patches.

Camp [1, 11] is a version control system based on Darcs which aims to develop
more robust and efficient algorithms. The advances of Camp are intended to even-
tually be integrated into Darcs itself. In particular, Camp contains a conflictor type
which is believed to avoid nesting altogether. Ignoring the details, we denote those
conflictors as

C(r, X, p, q).

Here q is the patch represented by this conflictor; p is the “context” of patches
which q depends on but which are represented by other conflictors. The actual
changes made to the state by the conflictor are r; and X is a set of all previous
patches that q conflicts with, plus their contexts.

We claim that our above model of conflictor effects can be extended to Camp
by:

E(C(r, {x1, . . . , xn}, p, q)) = E∗(rx1x1
−1 · · ·xnxn

−1pqq−1p−1).

We hope to further explore this approach in a future work, merging Camp’s
existing theoretical framework with our own to produce a more robust and com-
prehensible theory of patches.



12 JUDAH JACOBSON

6. Related work and conclusions

6.1. Previous Darcs formalizations. Our model of patches and patch sequences
is most closely related to [11]. That paper defines concepts such as inverses and
sensibility using axioms directly related to the algorithms of Darcs. For example,
our Corollary 1.4 is taken as part of the definition of sensibility. In contrast, we
have shown how that result follows from patch effects being injective (and thus
forming an inverse semigroup).

Previous work [2, 18] has formalized patches using a different approach. Patches
are represented by a change (for example, “add file F”) plus an input and out-
put context. The contexts essentially model the complete state of the repository
(including files other than F ) before and after the patch was applied. The usual
notation for a patch under that formalism is oAa, where A is the change and o, a
are the input/output contexts.

Patches in those works can be only be composed if the contexts match up; we
may compose oAa and a′Bb into oABb only when a = a′. Contrast that formalism
with [11] and our own, in which any two patches may be composed but only certain
sequences are labelled “sensible.” The inverse of a patch oBb is a patch bB

o
with

swapped contexts whose change B undoes the change made by B. The definitions of
commutation, permutation, etc. similarly require that contexts match up correctly,
so that all operations will make consistent changes to the repository state.

Löh et. al. [10] model patches as a triple of sets. As in the previous work on
Darcs patch theory, only certain compatible pairs of patches may be composed.
They note that their definitions form a groupoid, i.e. a category in which each
morphism has an inverse. The previous Darcs patch theory can also be adapted
to the groupoid setting; the patch contexts are category-theoretic objects, and the
patches are morphisms between the contexts.

In fact, that approach turns out to be dual to our own. The Ehresmann-Schein-
Nambooripad theorem [8] states that inverse semigroups are equivalent to inductive
groupoids (essentially, groupoids with an ordering similar to natural ordering we’ve
previously discussed). For example: if X is the semigroup of partial one-to-one
functions on a set S, then objects in the associated groupoid are subsets of X;
the morphisms between two subsets A and B are partial functions f such that
Dom(f) = A and Ran(f) = B; and fg is defined when Ran(f) = Dom(g).

That correspondence suggests that the separate patch theories are merely dif-
ferent ways of viewing the same underlying mathematical structure. We find our
model more useful for some theoretical analyses, since it allows us to model patches
and sensibility as separate mathematical concepts. In contrast, [2] embeds patch
contexts in the type system. That approach enables the type-checker to confirm at
compile-time that the commutation and merging functions only produce sensible
compositions.

6.2. Alternate systems. The core idea of Darcs, that changes from concurrent
systems must be transformed in order to be meaningfully combined, has appeared
in several other contexts. Prakash and Knister [15] defined a Transpose function
analogous to Darcs’ commutation. They used that function to implement a “se-
lective undo” feature, which can undo an operation in the middle of a history of
commands. As in Darcs, they enforce dependencies between operations by only
allowing certain pairs of operations to be transposed.



A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 13

Roscoe [17] presented an algorithm for synchronizing a certain arrangement of
distributed databases. He modelled database updates abstractly as elements of
an algebraic group. In particular, he used the mathematical concept of group
conjugation to describe abstractly how operations can be transformed to become
compatible with concurrent operations. That theory does not directly apply to
Darcs patches, which do not have inverses in the sense of groups. However, it
would be interesting to study further whether some analogue of conjugation can
give better insight into the properties of Darcs commutation.

Ellis and Gibbs [4] defined operational transformations for use in collaborative
editors which let users view each others’ changes in real-time. A transformation
function T (o2, o1) takes two concurrent operations o1, o2 and produces a new op-
eration o′2 which may be performed after o1 while maintaining the original intent.
Ressel et. al. [16] proposed several properties which T ought to satisfy. In partic-
ular, they showed that correctness of their synchronization algorithm follows from
the following claims:

TP1: o1T (o2, o1) ≡ o2T (o1, o2).
TP2: T (o3, o1T (o2, o1)) = T (o3, o2T (o1, o2)).

Note that their TP1 is similar to the commutation (p, r) ↔ (q, s) which we used
in Section 3 to merge two patches p and q. Additionally, TP2 is similar to our
3-permutivity (Section 4). The other properties listed by [16] also correspond to
those of Darcs’s patch theory (symmetry, rotating, etc.), but are based upon the
merging operation T instead of the commutation operation ↔.

It turns out that finding transformation functions provably satisfying TP2 is
difficult in practice. Imine et. al. [6] achieved TP2 by keeping track of deleted
characters in the distributed state. Methods have also been developed which do
not require TP2 to achieve consistent synchronization; [13] uses a central server,
while [23] assigns a global timestamp to each operation.

Sun et. al. [22, 21] have noted that even if TP1 and TP2 are satisfied, the
final shared state may not preserve the meaning of the original operations. They
proposed the CCI framework which adds an intention preservation requirement. Li
and Li [9] have formalized that property within the CSM framework, which requires
that the transformation function preserve a total ordering among operations, called
an effects relation. For example, when the shared state is an array of characters,
the effects relation orders changes according to the position of the character that
they affect.

In a future work, we plan to model operational transformations using the same
semigroup-based methods that we have applied to Darcs. We suggest that using
a generic, established mathematical model such as semigroup theory may lead to
a better understanding of the connections between the different formalisms which
have been developed so far.

6.3. Conclusion. In this paper, we have described how Darcs uses a theory of
patches to handle the different tasks of revision control. We have connected that
theory to established mathematical objects by modelling patch effects using semi-
group theory. In particular, we have presented novel formulations of the concepts
of patch inversion and sequence sensibility.



14 JUDAH JACOBSON

We have shown that our model leads to clean formal descriptions of the com-
mutation and merging operations which form the basis for the algorithms of Darcs.
Additionally, we have proven the following results within our model:

• It is always sensible to apply the inverse of the patches at the end of a
repository’s history (Corollary 1.4).
• A commutation relation on patches can be naturally extended to a relation

on patch sequences with the same properties (Proposition 2.1).
• Merging patches from a remote user produces a sensible patch sequence

(Proposition 3.2).
Finally, we have used our theory to gain new insight into two important parts

of patch theory. We have given a concise statement of the permutivity property,
which helps derive the sensibility of merges between more than two parties. We
have also given new justification for and understanding of conflictor patches, which
are used to resolve conflicting changes from different sources. We hope that our
work will help strengthen the theoretical foundations of a future version of Darcs.

Acknowledgements

The author was supported in part by NSF Grant Number DMS-0502315. Clint
Givens gave helpful suggestions on the presentation of this paper.

References

[1] Camp home page. http://projects.haskell.org/camp.

[2] Jason Dagit. Type-correct changes — a safe approach to version control implementation.

Master’s thesis, Oregon State University, March 2009.
[3] Darcs home page. http://darcs.net.

[4] C Ellis and S Gibbs. Concurrency control in groupware systems. SIGMOD ’89: Proceedings
of the 1989 ACM SIGMOD international conference on Management of data, Jun 1989.

[5] Ganesh Sittampalam et al. Some properties of darcs patch theory. Available from http://

urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf, November 2005.
[6] Abdessamad Imine, Michal Rusinowitch, Grald Oster, and Pascal Molli. Formal design and

verification of operational transformation algorithms for copies convergence. Theoretical Com-

puter Science, 351(2):167–183, 2006.
[7] Inverse semigroups. Available from http://en.wikipedia.org/wiki/Inverse_semigroup,

April 2009.

[8] Mark V. Lawson. Inverse Semigroups. World Scientific, New Jersey, 1998.
[9] Rui Li and Du Li. A new operational transformation framework for real-time group editors.

Parallel and Distributed Systems, IEEE Transactions on, 18(3):307–319, 2007.
[10] Andreas Löh, Wouter Swierstra, and Daan Leijen. A principled approach to version control.

In FASE, 2007. Available from http://www.cs.nott.ac.uk/~wss/Publications/fase07.pdf.

[11] Ian Lynagh. Camp patch theory. Available from http://projects.haskell.org/camp/files/

theory.pdf, April 2009.

[12] Simon Marlow. Guidelines for using darcs with ghc. Available from http://hackage.haskell.

org/trac/ghc/wiki/WorkingConventions/Darcs#Conflicts, 2009.
[13] David A. Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency, low-

bandwidth windowing in the jupiter collaboration system. In UIST ’95: Proceedings of the

8th annual ACM symposium on User interface and software technology, pages 111–120, New
York, NY, USA, 1995. ACM.

[14] Perforce home page. http://www.perforce.com/.

[15] Atul Prakash and Michael J. Knister. Undoing actions in collaborative work: Framework and
experience. Technical report, Department of Electrical Engineering and Computer Science,

University of Michigan, 1994.

[16] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. An integrating, transfor-
mation-oriented approach to concurrency control and undo in group editors. CSCW ’96:

http://projects.haskell.org/camp
http://darcs.net
http://urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf
http://urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf
http://en.wikipedia.org/wiki/Inverse_semigroup
http://www.cs.nott.ac.uk/~ wss/Publications/fase07.pdf
http://projects.haskell.org/camp/files/theory.pdf
http://projects.haskell.org/camp/files/theory.pdf
http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions/Darcs#Conflicts
http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions/Darcs#Conflicts
http://www.perforce.com/


A FORMALIZATION OF DARCS PATCH THEORY USING INVERSE SEMIGROUPS 15

Proceedings of the 1996 ACM conference on Computer supported cooperative work, Nov

1996.

[17] A. W. Roscoe. Consistency in distributed databases: A group-like algebra and its applications.
Technical Report PRG87, Oxford University Computing Laboratory, 1990.

[18] David Roundy. Implementing the darcs patch formalism. Available from http://web.

archive.org/web/*/http://darcs.net/fosdem_talk/talk.pdf, 2006.
[19] David Roundy. Theory of patches. Available from http://darcs.net/manual/node9.html,

April 2009.

[20] Subversion home page. http://subversion.tigris.org/.
[21] Chengzheng Sun and David Chen. Consistency maintenance in real-time collaborative graph-

ics editing systems. ACM Transactions on Computer-Human Interaction, 9:1–41, 2002.

[22] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving con-
vergence, causality preservation, and intention preservation in real-time cooperative editing

systems. Transactions on Computer-Human Interaction (TOCHI), 5(1), Mar 1998.
[23] Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maher Suleiman. Copies convergence in a

distributed real-time collaborative environment. CSCW ’00: Proceedings of the 2000 ACM

conference on Computer supported cooperative work, Dec 2000.

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555
E-mail address: jjacobson@math.ucla.edu

http://web.archive.org/web/*/http://darcs.net/fosdem_talk/talk.pdf
http://web.archive.org/web/*/http://darcs.net/fosdem_talk/talk.pdf
http://darcs.net/manual/node9.html
http://subversion.tigris.org/

	1. Patch theory
	1.1. Version control systems
	1.2. Modelling patches
	1.3. Patch systems

	2. Commutation
	2.1. Description
	2.2. Commutation of sequences

	3. Merging
	4. Permutivity
	5. Managing conflicts
	5.1. Conflictors in Darcs
	5.2. Conflictor effects
	5.3. Inverse conflictors
	5.4. Issues with conflictors 

	6. Related work and conclusions
	6.1. Previous Darcs formalizations
	6.2. Alternate systems
	6.3. Conclusion

	Acknowledgements
	References

