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Abstract

A convergent iterative regularization procedure based on the square of a dual norm is
introduced for image restoration models with general (quadratic or non-quadratic) convex
fidelity terms. Iterative regularization methods have been previously employed for image
deblurring or denoising in the presence of Gaussian noise, which use L2 [38], [27], [39], and
L1 [15] data fidelity terms, with rigorous convergence results. Recently, Iusem-Resmerita
[16] proposed a proximal point method using inexact Bregman distance for minimizing a
convex function defined on a non-reflexive Banach space (e.g. BV (Ω)), which is the dual
of a separable Banach space. Based on this method, we investigate several approaches for
image restoration such as image deblurring in the presence of noise or image deblurring via
(cartoon+texture) decomposition. We show that the resulting algorithms approximate stably
a true image. For image denoising-deblurring we consider Gaussian, Laplace, and Poisson
noise models with the corresponding convex fidelity terms derived from the Bayesian approach.
We test the behavior of proposed algorithms on synthetic and real images in several numerical
experiments and compare the results with other state-of-the-art iterative procedures based on
the total variation penalization as well as the corresponding existing one-step gradient descent
implementations. The numerical experiments indicate that the iterative procedure yields high
quality reconstructions and superior results to those obtained by one-step gradient descent,
with faster computational time.

Key words: Proximal point method, iterative regularization, inexact Bregman distance, inverse problem,

image restoration, bounded variation.

1 Introduction

Proximal point methods have been employed to stabilize ill-posed problems in infinite dimensional
settings during the last decades, using L2 (quadratic) [27] and L1 data-fitting terms [15], respec-
tively. Recently, [16] proposed a proximal point method for minimizing a general convex function
defined on a non-reflexive Banach space which is the dual of a separable Banach space. Our aim
here is to propose, based on that method, several iterative approaches for image restoration.

In the work of Tadmor et al [38], an iterative procedure for computing hierarchical (BV,L2)
decompositions has been proposed for image denoising, and this was extended to image restoration
and segmentation in [39].

Osher et al [27] proposed another iterative procedure for approximating minimizers of quadratic
objective functions, with the aim of image denoising or deblurring, providing significant improve-
ments over the standard model introduced by Rudin, Osher, Fatemi (ROF) [34]. This turned out
to be equivalent to a proximal point algorithm on a nonreflexive Banach space as well as to an
augmented Lagrangian method for a convex minimization problem subject to linear constraints
(see Yin et al. [46]).
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In addition, He et al [15] extended the Bregman distance based iterative algorithm [27] to
L1 fidelity term by using a suitable sequence of penalty parameters. The authors of [15] also
proved the well-definedness and the convergence of the algorithm with L1 fidelity term, which
is an iterative version of L1-TV considered by Chan and Esedoglu [8], and presented denoising
results in the presence of Gaussian noise.

Benning and Burger [3] derived basic error estimates in the symmetric Bregman distance be-
tween the exact solution and the estimated solution satisfying an optimality condition, for general
convex variational regularization methods. Furthermore, they investigated specific error estimates
for several noise models in imaging such as Gaussian, Laplace, Poisson, and multiplicative with the
corresponding quadratic or nonquadratic convex fidelity terms that were derived in the framework
of MAP estimation.

Recently, Iusem and Resmerita [16] combine the idea of [27] with a surjectivity result, shown
in [14] and [23], in order to obtain a proximal point method for minimizing more general convex
functions, with interesting convergence properties. For the optimization case where the objective
function is not necessarily quadratic, they use a positive multiple of an inexact Bregman distance
associated with the square of the norm as the regularizing term; a solution is approached by a
sequence of approximate minimizers of an auxiliary problem. Regarding the condition of being the
dual of a Banach space, we recall that nonreflexive Banach spaces which are duals of other spaces
include the cases of l∞ and L∞(Ω), l1 and BV (Ω) (the space of functions of bounded variation)
which appear quite frequently in a large range of applications [25].

In Section 2, we first review the proximal point method proposed in [16]. In Section 3, we apply
the proximal point method presented in Section 2 to general ill-posed operator equations, that are
particularized in Section 4 to several image restoration problems. Thus, we show that the proximal
point method combined either with an a priori or with an a posteriori stopping rule provides stable
approximation of the true image. In the introduction of Section 4, we briefly mention preliminary
work and the related models in image processing that we consider in this paper. Furthermore, in
Section 4.1, we present several algorithms for image deblurring with Gaussian, Laplace, or Poisson
noise models with corresponding convex fidelity terms, and in Section 4.2 we extend the iterative
idea to image restoration via cartoon + texture model. Finally, in Section 5, several numerical
results are presented for each image restoration model. Comparisons with other methods of similar
spirit or one-step gradient descent models are also presented.

We mention that a very preliminary version of this work has been accepted for presentation
and conference proceedings publication in ECCV 2010 [18].

2 Preliminaries

We recall the proximal point method and convergence results of Iusem-Resmerita from [16].
Let X be a nonreflexive Banach space and X∗ its topological dual. For u∗ ∈ X∗ and u ∈ X,

we denote by 〈u∗, u〉 = u∗(u) the duality pairing. Denote by h(u) = 1
2‖u‖

2, for u ∈ X.
For ε > 0, the ε-subdifferential of h at a point u ∈ X is [12]

∂εh(u) = {u∗ ∈ X∗ : h(v)− h(u)− 〈u∗, v − u〉 ≥ −ε, ∀v ∈ X}.

The normalized ε-duality mapping of X, introduced by Gossez [14], extends the notion of
duality mapping as follows

Jε(u) = {u∗ ∈ X∗ : 〈u∗, u〉+ ε ≥ 1
2
‖u∗‖2 +

1
2
‖u‖2}. (1)

An equivalent definition for the ε-duality mapping is

Jε(u) = ∂ε

(
1
2
‖u‖2

)
.
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The inexact Bregman distances with respect to the convex function h and to an ε-subgradient
ξ of h were defined in [16] as follows:

Dε(v, u) = h(v)− h(u)− 〈ξ, v − u〉+ ε. (2)

Note that when h is Fréchet differentiable, in which case ξ = h′(u), we have D0(v, u) = D(v, u),
where D denotes the standard Bregman distance related to h (see, e.g., [4]). Also, Dε(v, u) ≥ 0
for any u, v ∈ X and

Dε(u, u) = ε > 0, ∀u ∈ X.

Given ε ≥ 0 and a function g : X → R ∪ {+∞}, we say that ū ∈ dom g = {u ∈ X : g(u) < ∞}
is an ε-minimizer of g when

g(ū) ≤ g(u) + ε (3)

for all u ∈ dom g.
Consider exogenous sequences {εk}, {λk} of positive numbers satisfying the following two

assumptions:

H1) The sequence {εk} is summable, i.e.,

∞∑
k=0

εk < ∞, (4)

H2) The sequence {λk} is bounded above.

The number εk is some sort of error bound for the inexact minimization performed at the k-th
iteration of the algorithm, while {λk} is the regularization parameter used in the same iteration.

The following proximal point algorithm is proposed in [16]:

Initialization
Take u0 ∈ dom g and ξ0 ∈ Jε0(u0).

Iterative step
Let k ∈ N. Assume that uk ∈ dom g and ξk ∈ Jεk

(uk) are given. We proceed to define uk+1,
ξk+1. Define Dεk(u, uk) = h(u)− h(uk)− 〈ξk, u− uk〉+ εk and ε̄k = λkεk+1.

Determine uk+1 ∈ dom g as an ε̄k −minimizer of the function gk(u) defined as

gk(u) = g(u) + λkDεk(u, uk), (5)

that is to say, in view of (3),

g(uk+1) + λkDεk(uk+1, uk) ≤ g(u) + λkDεk(u, uk) + ε̄k (6)

for all u ∈ dom g.
Let ηk+1 ∈ ∂g(uk+1) and ξk+1 ∈ Jεk+1(uk+1) such that

ηk+1 + λk(ξk+1 − ξk) = 0. (7)

The results of well-definedness and convergence of the algorithm are recalled below.

Proposition 2.1. Let X be a Banach space and g : X → R ∪ {+∞} be a proper, convex and
lower semicontinuous function. Then the sequence {uk} generated by the above algorithm is well
defined.

Proposition 2.2. Let X be a Banach space and g : X → R ∪ {+∞} a proper, convex and
lower semicontinuous function. Assume that z is a minimizer of g. Define βk = Dεk(z, uk),
γk = Dεk(uk+1, uk), with Dεk as in (2). If H1 and H2 hold, then the sequence {uk} generated by
the above algorithm has the following properties:
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i)
g(uk+1) ≤ g(uk) + λk(εk + εk+1), (8)

ii)

βk+1 − βk + γk +
g(uk+1)− g(z)

λk
≤ εk+1, (9)

iii) The sequence {βk} is bounded,

iv) The sequence {γk} is summable,

v) The sequence {g(uk)− g(z)} is summable.

Theorem 2.3. Let X be a Banach space which is the dual of a separable Banach space and
g : X → R ∪ {+∞} be a proper, convex and weakly∗ lower semicontinuous function. Assume that
g has minimizers. If H1 and H2 hold, then the sequence {uk} generated by the above algorithm is
bounded, limk→∞ g(uk) = minu∈X g(u), and all cluster points of {uk} in the weak∗ topology of X
are minimizers of g.

In the next section, we apply this general Iusem-Resmerita’s algorithm [16] to linear ill-posed
inverse problems.

3 Applications to ill-posed operator equations

Large classes of inverse problems can be formulated as operator equations

Ku = y.

Define the residual g(u) = S(y, Ku) for any u ∈ X, where S is a similarity measure (see, e.g.,
[30], [3]). The iterative method described in the previous section can be applied to this exact data
case setting and provides weakly∗ approximations for the solutions of the equation, provided that
at least a solution exists.

Usually, the above equations are ill-posed, in the sense that the operator K may not be
continuously invertible which means that small perturbations in the data y lead to high oscillations
in the solutions.

Consider that only noisy data yδ are given, such that

S(yδ, y) ≤ r(δ), δ > 0, (10)

where r = r(δ) is a function of δ with

lim
δ→0+

r(δ) = 0. (11)

Denote
gδ(u) = S(yδ,Ku).

In this section, we show that the iterative method presented in the previous section yields a
regularization method for such problems.

We will use the following

Assumptions (A)

• The operator K : X → Y is linear and bounded, and yields an ill-posed problem.

• X and Y are Banach spaces. In addition, X is the topological dual of a separable Banach
space.

• The similarity measure S is such that
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1. The function gδ(u) = S(yδ,Ku) is convex and weakly∗ lower semicontinuous.

2.
lim

δ→0+
gδ(uδ) = 0 ⇒ lim

δ→0+
Kuδ = y, (12)

whenever {uδ}δ>0 is a net in X, the last limit being understood with respect to the
norm of Y .

We consider only constant parameter λk = λ for any k ∈ N, where λ is a positive number.
Then, the algorithm described in the previous section reads as follows in the current setting:

Algorithm 3.1. Take u0 ∈ dom gδ and ξ0 ∈ Jε0(u0).

Iterative step
Let k ∈ N. Assume that uk ∈ dom gδ and ξk ∈ Jεk

(uk) are given. We proceed to define uk+1,
ξk+1. Define Dεk(u, uk) = h(u)− h(uk)− 〈ξk, u− uk〉+ εk and ε̄k = λεk+1.

Determine uk+1 ∈ dom gδ as an ε̄k −minimizer of the function gδ
k(u) defined as

gδ
k(u) = gδ(u) + λDεk(u, uk),

that is to say, in view of (3),

gδ(uk+1) + λDεk(uk+1, uk) ≤ gδ(u) + λDεk(u, uk) + ε̄k

for all u ∈ dom gδ.
Let ηk+1 ∈ ∂gδ(uk+1) and ξk+1 ∈ Jεk+1(uk+1) such that

ηk+1 + λ(ξk+1 − ξk) = 0.

A posteriori strategy. We choose the stopping index based on a discrepancy type principle,
similarly to the one in [27]:

k∗ = max{k ∈ N : gδ(uk) ≥ τr(δ)}, (13)

for some τ > 1.
We show below that the stopping index is finite and that Algorithm 3.1 together with the

stopping rule stably approximate solutions of the equation.

Proposition 3.2. Let ũ ∈ X verify Kũ = y, assume that inequality (10) is satisfied, assumptions
(A) hold and that the sequence {εk} is such that

∞∑
k=1

kεk < ∞. (14)

Moreover, let the stopping index k∗ be chosen according to (13). Then k∗ is finite, the se-
quence {‖uk∗(δ)‖}δ is bounded and hence, as δ → 0, there exists a weakly∗- convergent subsequence
{uk∗(δn)}n in X. If the following conditions hold, then the limit of each weakly∗ convergent subse-
quence is a solution of Ku = y:

i) {k∗(δ)}δ>0 is unbounded;
ii) Weak∗-convergence of {uk∗(δn)}n to some u ∈ X implies convergence of {Kuk∗(δn)}n to

Ku, as n →∞ with respect to the weak topology of Y .

Proof: First, we show that the stopping index k∗ is finite. Denote θ̄ =
∑∞

k=1 kεk. Finiteness
of θ̄ implies θ =

∑∞
k=0 εk < ∞. One can check that an inequality similar to (9) holds when g is

replaced by gδ (see the proof of Proposition 3.2 in [16]), for any k ∈ N, k ≥ 1:

Dεk(ũ, uk) + Dεk−1(uk, uk−1) +
gδ(uk)− gδ(ũ)

λ
≤ Dεk−1(ũ, uk−1) + εk.
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By summing up and using gδ(ũ) = S(yδ, y) and (10), it follows

Dεk(ũ, uk) +
k∑

j=1

Dεj−1(uj , uj−1) +
1
λ

k∑
j=1

gδ(uj) ≤
kr(δ)

λ
+ Dε0(ũ, u0) +

k∑
j=1

εj . (15)

Now (8) written for gδ implies

gδ(uk) ≤ gδ(uk−1) + λ(εk−1 + εk) ≤ gδ(uj) + λ(εk + εj) + 2λ

k−1∑
i=j+1

εi,

∀k ≥ 2, j ≤ k − 1.
By summing up the last inequalities upon j, one obtains

kgδ(uk) ≤
k∑

j=1

gδ(uj) + λ

k−1∑
j=1

εj + 2λ

k−1∑
j=2

(j − 1)εj + λ(k − 1)εk

≤
k∑

j=1

gδ(uj) + M̃,

where M̃ depends on λ, θ and θ̄.
We combine the last inequality with (15) and get, based on the nonnegativity of the inexact

Bregman distances Dεk(ũ, uk) and Dεj−1(uj , uj−1),

kgδ(uk) ≤ kr(δ) + M, (16)

where
M := λDε0(ũ, u0) + M̃.

Inequality (16) written for k = k∗ together with (13) yield

τr(δ) ≤ gδ(uk∗) ≤ r(δ) +
M

k∗
. (17)

This implies

k∗ ≤
M

(τ − 1)r(δ)
, (18)

which means that the stopping index k∗ is finite.
Since

∑k
j=1 Dεj−1(uj , uj−1) + 1

λ

∑k
j=1 gδ(uj) ≥ 0, it follows from (15) that

Dεk∗ (ũ, uk∗) ≤
r(δ)k∗

λ
+ Dε0(ũ, u0) + θ ≤ M

λ(τ − 1)
+ Dε0(ũ, u0) + θ. (19)

Therefore, the sequence {Dεk∗(δ)(ũ, uk∗(δ))}δ>0 is bounded. By proceeding similarly as in [16],
one concludes that the sequence {uk∗(δ)}δ>0 is also bounded. We show this below, for the sake of
completeness:

δ ≥ Dεk∗(δ)(ũ, uk∗(δ)) =
‖ũ‖2

2
−
‖uk∗(δ)‖2

2
−

〈
ξk∗(δ), ũ− uk∗(δ)

〉
+εk∗(δ) ≥

‖ũ‖2

2
−

〈
ξk∗(δ), ũ

〉
+
‖ξk∗(δ)‖2

2
,

using (1) in the last inequality. Thus,

‖ξk∗(δ)‖2

2
≤

〈
ξk∗(δ), ũ

〉
+ δ ≤ ‖ξk∗(δ)‖ ‖ũ‖+ δ, (20)

6



which shows that the sequence {ξk∗(δ)} is bounded. Using now (1) and (20), one obtains that
{uk∗(δ)}δ>0 is also bounded, as

‖uk∗(δ)‖2

2
≤

〈
ξk∗(δ), uk∗(δ)

〉
+ εk∗(δ) ≤ ‖ξk∗(δ)‖ ‖uk∗(δ)‖+ θ.

Taking into account that X is provided with a weak∗ topology (see Assumption (A)), this
implies that {uk∗(δ)}δ>0 has a weakly∗-convergent subsequence, denoted the same, to some u ∈ X.

If {k∗(δ)}δ>0 is unbounded, then {gδ(uk∗(δ))}δ>0 converges to zero as δ → 0, due to (17). That
is, Kuk∗(δ) → y, as δ → 0 (see (12)). Now hypothesis ii) implies that Kuk∗(δ) → Kũ weakly, as
δ → 0 and thus, Kũ = y.

A priori strategy. One could stop Algorithm 3.1 by using a stopping index which depends
on the noise level only, by contrast to the previously chosen k∗ which depends also on the noisy
data yδ. More precisely, one chooses

k(δ) ∼ 1
r(δ)

. (21)

One can show that the sequence {uk(δ)}δ>0 converges weakly∗ to solutions of the equation
as δ → 0. Indeed, inequality (19) written for k(δ) instead of k∗ implies that the sequence
{Dεk(δ)(ũ, uk(δ))}δ>0 is bounded and, as above, the sequence {uk(δ)}δ>0 is bounded. Hence, a
subsequence of it, denoted also by {uk(δ)}δ>0 converges weakly∗ to some u ∈ X. Now (16) to-
gether with (21) show that {gδ(uk(δ))}δ>0 converges to zero as δ → 0. The rest of the proof is
similar to the one given above. Thus, the following proposition holds true:

Proposition 3.3. Let ũ ∈ X verify Kũ = y, assume that inequality (10) is satisfied, assumptions
(A) hold and that the sequence {εk} obeys (14). Moreover, let the stopping index k(δ) be chosen
according to (21). Then the sequence {‖uk(δ)‖}δ is bounded and hence, as δ → 0, there exists a
weakly∗- convergent subsequence {uk(δn)}n in X. If the following condition holds, then the limit
of each weak∗ convergent subsequence is a solution of Ku = y: Weak∗-convergence of {uk(δn)}n

to some u ∈ X implies convergence of {Kuk(δn)}n to Ku, as n → ∞ with respect to the weak
topology of Y .

4 Several proximal point based approaches for image restora-
tion

We present a few image restoration settings which fit the theoretical framework investigated in
the previous section. First, we briefly mention prior relevant work. Also, note that we use simpler
notations f , g, and gk instead of yδ, gδ, and gδ

k respectively used in the previous section. All image
functions are defined on an open and bounded domain Ω of RN and take real values.

In Tadmor et al [38], [39] an iterative procedure for computing hierarchical (BV,L2) decompo-
sitions has been proposed for image restoration. For image deblurring in the presence of Gaussian
noise, assuming the degradation model f = Ku + n, the iterative method from [39] computes a
sequence uk, such that each uk+1 is the minimizer of λ02k‖vk − Kuk+1‖22 +

∫
Ω
|Duk+1|, where

v−1 = f , k = 0, 1, ... and vk = Kuk+1 + vk+1. The partial sum
∑k

j=0 uj is a denoised-deblurred
version of f , and converges to f as k →∞.

Osher et al [27] proposed an iterative algorithm with quadratic fidelity term S and a convex
regularization functional h (e.g. TV-regularizer h(u) = |u|BV (Ω) =

∫
Ω
|Du|dx ≈

∫
Ω
|∇u|dx):

starting with u0 and ξ0, uk+1 ∈ BV (Ω) is a minimizer of the functional gk defined on BV (Ω)

gk(u) = S(f,Ku) + λD(u, uk) =
1
2
‖f −Ku‖22 + λ[h(u)− h(uk)− 〈ξk, u− uk〉], (22)

with ξk+1 = ξk + 1
λK∗(f −Kuk+1) ∈ ∂h(uk+1), and a parameter λ > 0. They proved the well-

definedness and the convergence of iterates uk, and presented some applications to denoising or
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deblurring in the presence of Gaussian noise, giving significant improvements over standard ROF
model [34], [35] which is

u = arg min
u

{
1
2
‖f −Ku‖22 + λ|u|BV (Ω)

}
. (23)

The reader is referred also to [6] where convergence rates for method (22) are established.
He et al [15] generalized the regularization procedure [27] for image denoising models with

non-quadratic convex fidelity terms, by using the varying parameter λ
2k with λ > 0 instead of a

fixed parameter λ > 0, inspired by [36] and [38]: starting with u0 and ξ0, uk+1 ∈ BV (Ω) is a
minimizer of the functional gk defined on BV (Ω),

gk(u) = S(f, u) +
λ

2k
D(u, uk) = S(f, u) +

λ

2k
[h(u)− h(uk)− 〈ξk, u− uk〉], (24)

where ξk+1 = ξk− 2k

λ ∂uS(f, uk+1), and S(f, u) = s(f−u) with s being a nonnegative, convex, and
positively homogeneous functional, which is continuous with respect to weak∗ convergence in BV .
For example, s(f − u) = 1

2‖f − u‖22 or s(f − u) = ‖f − u‖1. The authors in [15] proved the well-
definedness and the convergence of the iterative algorithm with L1 fidelity term (as an iterative
version of the L1-TV model considered by Chan and Esedoglu [8]), and presented denoising results
in the presence of Gaussian noise.

Le et al [9] proposed a total variation model for denoising in the presence of Poisson noise:

min
u

{∫
Ω

(u− f logu)dx + λ|u|BV (Ω)

}
, (25)

while Benning and Burger in a recent, parallel work [3] with ours, investigated a more general
fidelity term. In particular, they consider a fidelity term that we will also use here,

S(f,Ku) =
∫

Ω

[
f log

(
f

Ku

)
− f + Ku

]
dx.

Kim and Vese [20] proposed an image decomposition and restoration model in the presence
of blur and noise using the Sobolev spaces W s,p(Ω) for s ∈ R, 1 ≤ p ≤ ∞, by considering the
following degradation model

f = K(u + v) + r

where u is the cartoon part, v = ∆q for some q ∈ W−α+2,p is the texture part, and r is a small
residual noise. They recovered the deblurred image u + v = u + ∆q by minimizing the functional

min
u,q

{
µ

∫
Ω

(f −K(u + ∆q))2dx + |u|BV (Ω) + λ‖q‖W s,p

}
(26)

where µ, λ > 0, s ≥ 0, s = −α + 2, α > 0 and ‖ · ‖W s,p is a norm on W s,p [20].
We set below the general iterative algorithm for image deblurring in the presence of noise,

and we consider the Gaussian, Laplace, or Poisson noise models with the corresponding (convex)
fidelity terms. We also extend the iterative idea to the image deblurring model via decomposition
[20] by considering the Sobolev space H−1(Ω) for v, which is a dual space. Improved restoration
results with faster convergence are obtained.

4.1 Image deblurring in the presence of noise

Let X, Y be Banach spaces, X ⊂ Y , where X is the dual of a separable Banach space. We
consider degradation models of the form

f = F(Ku, n)
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where f ∈ Y is the observed noisy data, K : Y → Y is the convolution operator with a blurring
kernel K (i.e. Ku := K ∗ u), u ∈ X is the ideal image we want to recover, and n is noise of some
known probability distribution function; we notice that the data f is expressed as a function of
Ku and n (in a linear or nonlinear way).

Here, we present three noise models in infinite dimension prompted by the corresponding finite
dimensional models based on the conditional probability p(f |u): the Gaussian model, the Laplace
model, the Poisson model. In finite dimensional spaces, the conditional probability p(f |u) of the
data f with given image u is the component of the Bayesian model that is influenced by the type
of distribution of the noise (and hence the noisy data f).

Assuming X = BV (Ω) and Y = Lp(Ω) with p = 1 or 2, we define

h(u) =
1
2
‖u‖2BV =

1
2

(∫
Ω

|u|dx +
∫

Ω

|Du|dx

)2

.

In addition, we consider convex functions of the form g(u) = S(f,Ku) for any u ∈ X, where
S is convex with respect to u for a fixed f . Then, we propose the following general iterative
algorithm to recover u:

Algorithm 4.1. Let u0 = 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0.

• Given (uk, ξk), define ε̄k = λεk+1, and compute uk+1 as an ε̄k−minimizer of the functional
below

gk(u) = S(f,Ku) + λ[h(u)− h(uk)− 〈ξk, u− uk〉+ εk].

• Determine
ηk+1 ∈ ∂uS(f,Kuk+1), ξk+1 ∈ Jεk+1(uk+1)

such that
ηk+1 + λ(ξk+1 − ξk) = 0.

Remark 4.1. We refer to [1, Section 3.4.1] for the relation between Gateaux differentiability and
ε̄k − minimizers. If u is an ε̄k − minimizer of the Gateaux-differentiable function gk(u), then
we must have ‖∂gk(u)‖ ≤ ε̄k (note that this is a necessary condition). In practice, we obtain
uk+1 ∈ X as an ε̄k − minimizer of gk(u) by solving the usual Euler-Lagrange equation for gk

given by

0 = ∂gk(ũ) = ∂uS(f,Kũ) + λ∂h(ũ), (27)

because gk(ũ) = infu∈X gk(u) ≤ gk(u) + ε̄k for any u ∈ dom(gk) (any 0 − minimizer is also
an ε̄k − minimizer). We use time-dependent gradient descent to approximate the solution ũ by
solving

∂ũ

∂t
= −∂gk(ũ) (28)

to steady state. We have also computed uk+1 as the solution ũ of one of the two possible equations,

∂ũ

∂t
= −∂gk(ũ)± ε̄k. (29)

Similar numerical results are obtained if we use (28) or (29).

Remark 4.2. For the numerical calculations, we assume that we work, in practice, with functions
u ∈ W 1,1(Ω) ⊂ BV (Ω). Also, we make the functional h(u) differentiable by substituting it with

h(u) ≈ 1
2

( ∫
Ω

√
ε2 + u2dx +

∫
Ω

√
ε2 + |∇u|2dx

)2

for a small number ε > 0. The subgradient in
this case becomes

∂h(u) ≈
(∫

Ω

√
ε2 + u2 +

√
ε2 + |∇u|2dx

) [
u√

ε2 + u2
−∇ · ∇u√

ε2 + |∇u|2

]
.
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Remark 4.3. We can start with u0 = 0, ξ0 = 0, ε0 = 0 (except for the Poisson noise mode,
where we need u0 > 0). Although our theory considers positive parameters εk in order to ensure
existence of the iterates uk, one could still initialize the algorithm with u0 = 0, ξ0 = 0, ε0 = 0 in
many situations, including the particular ones investigated below. In such cases, existence of u1

and ξ1 is not based on the surjectivity result employed in [16], but rather on direct analysis of the
function S(f,Ku) + λh(u) to be minimized.

4.1.1 Gaussian noise

If the degradation model is f = Ku + n ∈ Y = L2(Ω) with Gaussian distributed noise and with
the expectation Ku, the conditional probability p(f |Ku) is described by

p(f |Ku) ∼ e−
‖f−Ku‖22

2δ2 ,

where δ2 is the variance of the noise n. Maximizing p(f |Ku) with respect to u, is equivalent to
minimizing −ln p(f |Ku), thus we obtain a convex fidelity term to be minimized for u ∈ BV (Ω),

S(f,Ku) =
1
2
‖f −Ku‖22.

The function g(u) = S(f,Ku) satisfies the conditions enforced in Assumptions (A) in dimension
one and two. Moreover, let r(δ) = δ2/2 = 1

2‖f −Ku∗‖22 with true image u∗ - see (10).
Since such a quadratic S is Gâteaux-differentiable, its subgradient is given by

∂uS(f,Ku) = K∗(Ku− f)

which leads to
ξk+1 = ξk −

1
λ

K∗(Kuk+1 − f).

Numerical Algorithm We have the following numerical algorithm:

I. Let u0 = 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f −Kuk+1‖2 ≤ δ:

• u = uk+1: ∂u
∂t = K∗(f −Ku)− λ[∂h(u)− ξk].

• ξk+1: ξk+1 = ξk + 1
λK∗(f −Kuk+1).

In addition, following [27], we let ξk = K∗vk

λ so that we have

vk+1 = vk + (f −Kuk+1).

With v0 = 0, since λξ0 = 0 = K∗0 = K∗v0, we may conclude inductively that λξk ∈ R(K∗),
and hence there exists vk ∈ Y ∗ = L2(Ω) such that λξk = K∗vk. Hence, we can have the following
alternative numerical algorithm:

II. Let u0 = 0, v0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f −Kuk+1‖2 ≤ δ:

• u = uk+1: ∂u
∂t = K∗(f + vk −Ku)− λ∂h(u).

• vk+1: vk+1 = vk + (f −Kuk+1).

10



Table 1: Corresponding Values (u∗: original image)

Gaussian noise, Shape image, δ = ‖f −Ku∗‖2 = 15, λ = 0.1 (Fig. 1)

(1) ‖f −Kuk+1‖2, (2) ‖u∗ − uk+1‖2, (3) gk(uk+1), (4) gk(uk) + ε̄k, ε̄k = λ · 20
2k+1

k + 1 1 2 3 4 5 6

εk+1 = 0

(1) 28.9304 16.3110 14.9658 14.3968 13.9388 13.5462
(2) 38.4751 27.4330 21.8608 19.9682 19.4057 19.5140

(3)/103 2.7519 0.1441 0.0759 0.0854 0.0826 0.0771
(4)/103 27.4454 0.4185 0.1330 0.1120 0.1036 0.0971

εk+1 = + 20
2k+1

(1) 28.2685 16.3597 14.9721 14.3981 13.9391 13.5465
(2) 37.9876 27.4497 21.8568 19.9700 19.4047 19.5141

(3)/103 2.7523 0.1612 0.0776 0.0858 0.0827 0.0771
(4)/103 27.4464 0.4011 0.1346 0.1125 0.1038 0.0972

Laplace noise, Rectangles image, δ = ‖f −Ku∗‖1 = 10, λ = 0.05 (Fig. 5)

(1) ‖f −Kuk+1‖1, (2)-(4) are given above, ε̄k = λ · 10
2k+1

k + 1 1 2 3 4 5

εk+1 = − 10
2k+1

(1) 19.2793 10.3728 9.9617 9.9699 9.9550
(2) 34.2209 6.2486 2.4155 2.1612 2.3347
(3) 23.9261 11.4119 9.5010 9.7609 9.9989
(4) 31.1721 19.6543 10.5603 10.0555 10.0168

εk+1 = 0

(1) 15.9363 10.2188 9.9628 9.9585 9.9544
(2) 25.8151 5.3234 2.4314 2.1524 2.4106
(3) 23.7543 11.7663 9.6135 9.7623 9.9969
(4) 30.9221 16.1863 10.3438 10.0253 9.9998

εk+1 = + 10
2k+1

(1) 13.3385 10.1475 9.9690 9.9498 9.9340
(2) 18.0126 4.8230 2.5858 2.4072 2.5466
(3) 24.2908 11.4858 9.6829 10.0388 9.9914
(4) 31.1721 13.7135 10.3350 10.0627 9.9967

Poisson noise, Simple image, δ = S(f, Ku∗) = 0.5020, λ = 0.005 (Fig. 8)

(1)
∫
Ω

[f log
(

f
Kuk+1

)
− f + Kuk+1]dx, (2)-(4) are given above, ε̄k = λ · 10

2k+1

k + 1 1 2 3 4 5 6

εk+1 = − 10
2k+1

(1) 2.2478 0.5592 0.4953 0.4919 0.4898 0.4878
(2) 18.0863 5.3421 3.7770 3.7674 3.8510 3.9571
(3) 8.2437 0.6579 0.4975 0.4968 0.4920 0.4881
(4) 79.7468 2.2853 0.5780 0.5047 0.4966 0.4921

εk+1 = 0

(1) 2.0330 0.5737 0.4974 0.4908 0.4886 0.4868
(2) 17.1028 5.5338 3.8835 3.7856 3.8462 3.9366
(3) 8.2443 0.8847 0.5324 0.4996 0.4913 0.4878
(4) 79.7468 2.0705 0.5925 0.5068 0.4955 0.4909

εk+1 = + 10
2k+1

(1) 1.8291 0.5929 0.5031 0.4920 0.4888 0.4869
(2) 16.1027 5.8568 4.0336 3.8203 3.8542 3.9384
(3) 8.2575 1.0563 0.5662 0.5059 0.4931 0.4881
(4) 79.7468 1.8666 0.6117 0.5125 0.4967 0.4911
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Table 2: Stopping criteria and Comparisons

Model r(δ) Comparison with

Gaussian δ2

2 = 1
2‖f −Ku∗‖22

iterative algorithm using TV (22)
or RO (23)

Laplace δ = ‖f −Ku∗‖1 one-step L1-TV model
Poisson δ =

∫
Ω

[f log
(

f
Ku∗

)
− f + Ku∗]dx one-step S(f,Ku)+TV (25)

Decomposition no stopping criteria S(f,Ku, Kv) + λ
2 ‖u‖

2
BV + µ

2 ‖v‖
2
H−1(without noise)

(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f −K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Figure 1: Gaussian noise model using our iterative method. 2nd and 3rd row: recovered images uk and

the corresponding residuals f −K ∗ uk. Data: Gaussian blur kernel K with standard deviation σb = 0.7,

and Gaussian noise with δ = 15. Parameters: λ = 0.1. ‖f −K ∗ u3‖2 = 14.9658. u3 is the best recovered

image (RMSE=21.8608).

Figure 2: Results of the iterative algorithm (22) proposed by Osher et al with the same data from Fig.

1. The best recovered image u3 (‖f − K ∗ u3‖2 = 14.7594, RMSE=21.0500), residual f − K ∗ u3, and

energies ‖f −K ∗ uk‖2, ‖u∗ − uk‖2 vs k.
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(a) f = K ∗ u∗ + n (b) ROF model (c) ‖f −K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u6 (c) u7 (d) u8 (e) u9

Figure 3: A priori strategy k(δ) ∼ 1/r(δ), and comparison with RO model (RMSE=16.5007). Data:

same blur kernel K and parameter λ = 0.1 as in Fig. 1, but different Gaussian noise level with δ = 7.5.

u8 is the best recovered image (RMSE=13.5407).

(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f −K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Figure 4: Gaussian noise model. Data: Gaussian blur kernel K with standard deviation σb = 1, and

Gaussian noise with δ = 10. Parameters: λ = 0.1. u3 is the best recovered image (RMSE=12.2217).

4.1.2 Laplace noise

If the degradation model is f = Ku + n ∈ Y = L1(Ω) with n being a Laplace distributed random
variable with mean zero and variance 2δ2, we have

p(f |Ku) ∼ e−
‖f−Ku‖1

δ .
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Then, similarly, we minimize with respect to u the quantity −ln p(f |Ku), thus we are led to
consider the convex fidelity term

S(f,Ku) =
∫

Ω

|f −Ku|dx.

Moreover, let r(δ) = δ = ‖f −Ku∗‖1 with true image u∗. Again, the function g(u) = S(f,Ku)
satisfies the conditions in Assumptions (A) in dimension one and two.

Unless Ku ≡ f , one can think of ∂uS(f,Ku) = K∗sign(Ku − f) almost everywhere, and
moreover we have

ξk+1 = ξk −
1
λ

K∗sign(Kuk+1 − f) a.e.

Numerical algorithm We have the following numerical algorithm:

I. Let u0 = 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f −Kuk+1‖1 ≤ δ:

• u = uk+1: ∂u
∂t = K∗sign(f −Ku)− λ[∂h(u)− ξk].

• ξk+1: ξk+1 = ξk + 1
λK∗sign(f −Kuk+1).

Now again letting ξk = K∗vk

λ , we can have

vk+1 = vk + sign(f −Kuk+1) a.e.

With v0 = 0, since λξ0 = 0 = K∗0 = K∗v0, we may conclude inductively that λξk ∈ R(K∗),
and hence there exists vk ∈ Y ∗ = L∞(Ω) such that λξk = K∗vk. Hence, we have the alternative
numerical algorithm:

II. Let u0 = 0, v0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f −Kuk+1‖1 ≤ δ:

• u = uk+1: ∂u
∂t = K∗[sign(f −Ku) + vk]− λ∂h(u).

• vk+1: vk+1 = vk + sign(f −Kuk+1).

4.1.3 Poisson noise

We consider the degradation model f = P (Ku) ∈ Y = L1(Ω) perturbed with Poisson noise P
and positive almost everywhere, where the operator K has positive values. Then the conditional
probability p(f |Ku) is modeled in discrete terms as (where i corresponds to a pixel),

p(f |Ku) =
m∏

i=1

(Ku)fi

i

fi!
e−(Ku)i .

Thus, we are led to consider the convex fidelity term

S(f,Ku) =
∫

Ω

[
f log

(
f

Ku

)
− f + Ku

]
dx,

as a natural extension to deblurring of model [9]. Note that g(u) = S(f,Ku) = KL(f,Ku) (where
KL is the Kullback-Leibler divergence) might not be finite at any u ∈ BV (Ω), so its domain is
possibly smaller than BV (Ω), by contrast to the Gaussian and Laplace noise cases. Therefore, care
must be taken when analyzing this case. Moreover, let r(δ) = δ =

∫
Ω

[
f log

(
f

Ku∗

)
− f + Ku∗

]
dx

with true image u∗. The function g(u) = KL(f,Ku) is convex and weakly∗ lower semicontinuous.
The latter property is true since the function g is lower semicontinuous with respect to the L1-
norm (see, e.g., [31]) and since weak∗ convergence in BV (Ω) implies strong convergence in L1(Ω).
In fact, assumption (A) is satisfied for this particular function g - see for instance the proof of
Proposition 5.2 in [31].
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(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f −K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Figure 5: Laplace noise model. Data: Gaussian blur kernel K with with standard deviation σb = 3, and

Laplace noise with δ = 10. Parameters: λ = 0.05. ‖f −K ∗ u3‖1 = 9.9629. u3 is the best recovered image

(RMSE=2.4417).

If K is the identity operator, the function u 7→ ḡ(u) =
∫
Ω

[
f(x) log( f(x)

u(x) ) − f(x) + u(x)
]
dx

is finite when u ∈ L1(Ω), u > 0 a.e. and the integral is finite, and ḡ(u) = +∞ otherwise. The
function has subgradients at any u > 0 a.e. such that f/u ∈ L∞(Ω). Moreover, such subgradient
is unique and given by ξ = 1− f

u - see, for instance, [2], Proposition 2.7, page 117.
In the case when K is not the identity operator, we assume that K satisfies Range(K) ⊂ E,

where E = {v : 0 < essinf(v) ≤ esssup(v) < ∞} (that is, the values of K are pointwise bounded
a.e. and pointwise bounded away from zero a.e.). Then we can use the following proposition,
according to [47]:

Proposition 4.4. Let f ∈ L∞(Ω), f > 0 a.e. and such that
∫
Ω

f(x) log f(x) dx < ∞. Then,

∂uS(f,Ku) =
{

K∗
(

1− f

Ku

)}
,

whenever Ku ∈ L∞(Ω) and essinf(Ku) > 0, that is, whenever 0 < b1 < Ku ≤ b2 < ∞ a.e. for
some positive numbers b1, b2.

In what follows, it is additionally assumed that f ∈ L∞(Ω), f > 0 a.e. and such that∫
Ω

f(x) log f(x) dx < ∞. Thus Kuk+1 is pointwise bounded a.e. and pointwise bounded away
from zero a.e. for any k. Consequently, the iterative formula becomes

ξk+1 = ξk −
1
λ

K∗
(

1− f

Kuk+1

)
.

Numerical algorithm We have the following numerical algorithm:
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(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f −K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Figure 6: Laplace noise model. Data: Gaussian blur kernel K with σb = 2, and Laplace noise with

δ = 15. Parameters: λ = 0.02. ‖f−K ∗u3‖1 = 14.9234. u3 is the best recovered image (RMSE=17.3498).

(a) u3: 2.4417 (b) L1-TV: 7.8411 (c) u3: 17.3498 (d) L1-TV: 17.8202

Figure 7: Comparison with one-step denoising-deblurring L1-TV. (a), (c): our iterative method. (b), (d):

one-step L1-TV (‖f −K ∗ u‖1: (b) 9.8649 , (d) 14.9650 ). Recovered images u and RMSE values.

I. Let u0 > 0 with Ku0 ∈ L∞(Ω) and essinf(Ku0) > 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z,
k ≥ 0:

• u = uk+1: ∂u
∂t = K∗

(
f

Ku − 1
)
− λ[∂h(u)− ξk].

• ξk+1: ξk+1 = ξk + 1
λK∗

(
f

Kuk+1
− 1

)
.

Now letting ξk = K∗vk

λ , we can have

vk+1 = vk +
(

f

Kuk+1
− 1

)
.

With v0 = 0, since cξ0 = 0 = K∗0 = K∗v0, we may conclude inductively that λξk ∈ R(K∗),
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and hence there exists vk ∈ Y ∗ = L∞(Ω) such that λξk = K∗vk

λ . Hence, we have the alternative
numerical algorithm:

II. Let u0 > 0 with Ku0 ∈ L∞(Ω) and essinf(Ku0) > 0, v0 = 0, ε0 = 0 and iterate for k ∈ Z,
k ≥ 0:

• u = uk: ∂u
∂t = K∗

(
[ f
Ku + vk−1]− 1

)
− λ∂h(u).

• vk+1: vk+1 = vk +
(

f
Kuk+1

− 1
)
.

(a) original u∗ (b) f = P (K ∗ u∗) (c) S(f, K ∗ uk) vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

u∗ blurry K ∗ u∗ data f (a) u1

(b) u2 (c) u3 (d) u4 (e) u5

Figure 8: Poisson noise model. Data: Gaussian blur kernel K with σb = 3. Parameters: λ = 0.005.

S(f, K ∗ u3) = 0.4974 < δ = S(f, K ∗ u∗) = 0.5020. u3 is the best recovered image (RMSE= 3.8835)
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Recovered u3 using our iterative algorithm: RMSE=3.8835

Recovered u using the one-step model: RMSE=5.2019

Figure 9: Comparison with the one-step model (25) proposed by Le et al. Recovered images u (1st

column), corresponding residuals f − K ∗ u (2nd), and recovered signals (3rd): S(f, K ∗ u) = 0.4948,

RMSE=5.2019.

4.2 Image restoration using cartoon+texture decomposition

Let X = X1 × X2 with X1 ⊂ Y , X2 ⊂ Y , where X1 and X2 are Banach spaces as well as the
duals of two separable Banach spaces and Y is a Banach space. Thus, X is also a Banach space as
well as the dual of a separable Banach space, according to [42, p. 259]. We consider the standard
linear degradation model

f = Aũ + n

where f ∈ Y is the observed data, A : X → Y is a linear, compact operator defined by A(u, v) =
Ku + Kv for a convolution operator K : Y → Y (Ku := K ∗u). Here, we want to recover a sharp
image ũ, and moreover we decompose ũ into the cartoon and texture parts, which will be denoted
by u ∈ X1 and v ∈ X2.

Hence, we consider the minimization of the convex function

g(u, v) = S(f,Ku, Kv) =
∫

Ω

(f −K ∗ (u + v))2dx

with two variables u and v.
Based on the functional (26) from [20], we assume that X1 = BV (Ω), X2 = H−1(Ω) (more

precisely X2 = H−1(Ω) ∩ L2(Ω)), Y = L2(Ω) and

h(u, v) =
1
2
‖(u, v)‖2 = λh1(u) + µh2(v),

where λ and µ are positive parameters, and

h1(u) =
1
2
‖u‖2BV =

1
2

(∫
Ω

|u|dx +
∫

Ω

|Du|
)2

,

h2(v) =
1
2
‖v‖2H−1 =

1
2

(∫
Ω

|∆−1v|2 + |∇∆−1v|2dx

)
.
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(a) original u∗ (b) f = P (K ∗ u∗) (c) S(f, K ∗ uk) vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

(a) u3 (RMSE=14.2145), f −K ∗ u3 (b) one-step model (RMSE=14.6837)

Figure 10: Poisson noise model. Data: Gaussian blur K with σb = 3. Parameters: λ = 0.002. S(f, K ∗
u3) = 0.4978 < δ = S(f, K ∗ u∗) = 0.5082. u3 is the best recovered image (RMSE=14.2145). Bottom

row: (a) recovered image u3 using our iterative method, (b) recovered image u using one-step model (25),

S(f, K ∗ u) = 0.4966, RMSE=14.6837.

Furthermore, we can define the inexact Bregman distance with respect to h and ξk ∈ ∂εk
h(uk, vk)

as before:

Dk(u, uk, v, vk) = h(u, v)− h(uk, vk)− 〈ξk, (u, v)− (uk, vk)〉+ εk

= λ[h1(u)− h1(uk)− 〈ξu
k , u− uk〉+ εk,1]

+ µ[h2(v)− h2(vk)− 〈ξv
k , v − vk〉+ εk,2],

for some εk,1, εk,2 > 0 such that λεk,1 + µεk,2 = εk.
The last equality in the chain holds because

Jek
(uk, vk) = ∪εk,1+εk,2=εk

∂εk,1(λh1)(uk)× ∂εk,2(µh2)(vk)
= ∪εk,1+εk,2=εk

λ∂εk,1/λh1(uk)× µ∂εk,2/µh2(vk)
= ∪εk,1+εk,1=εk

λJεk,1/λ(uk)× µJεk,2/µh2(vk)

and thus,
ξk ∈ Jek

(uk, vk) ↔ ξk = (λξu
k , µξv

k),

with ξu
k ∈ Jεk,1(uk) and ξv

k ∈ Jεk,2(vk), λεk,1 + µεk,2 = εk.
Then, given (uk, vk, ξu

k , ξv
k), the ε̄k = εk+1 = λεk+1,1 + µεk+1,2 −minimizer (uk+1, vk+1) can
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be obtained by minimizing the function below

gk(u, v) = S(f,Ku, Kv) + Dk(u, uk, v, vk)
= S(f,Ku, Kv) + λ[h2(u)− h2(uk)− 〈ξu

k , u− uk〉+ εk,1]
+µ[h2(v)− h2(vk)− 〈ξv

k , v − vk〉+ εk,2] (30)

with ξu
k ∈ ∂εk,1h1(uk), ξv

k ∈ ∂εk,2h2(vk).
From (30), ε̄k −minimizer (uk+1, vk+1) satisfies

0 = ηu
k+1 + λ[ξu

k+1 − ξu
k ], ζu

k+1 ∈ ∂uS(f,Kuk+1,Kvk+1), ξu
k+1 ∈ ∂εk+1,1h1(uk+1),

0 = ηv
k+1 + µ[ξv

k+1 − ξv
k ], ηv

k+1 ∈ ∂vS(f,Kuk+1,Kvk+1), ξv
k+1 ∈ ∂εk+1,2h2(vk+1),

which can be rewritten as

ξu
k+1 = ξu

k −
1
λ

ηu
k+1, ξv

k+1 = ξv
k −

1
µ

ηv
k+1.

Algorithm 4.2. Let u0 = v0 = 0, ξu
0 = ξv

0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0:

• Given (uk, vk, ξu
k , ξv

k), define ε̄k = λεk+1,1 + µεk+1,2, and compute (uk+1, vk+1) as an ε̄k −
minimizer of the function below

gk(u, v) = S(f,Ku, Kv) + Dk(u, uk, v, vk)
= S(f,Ku, Kv) + λ[h1(u)− h1(uk)− 〈ξu

k , u− uk〉+ εk,1]
+µ[h2(v)− h2(vk)− 〈ξv

k , v − vk〉+ εk,2].

• Update

ξu
k+1 = ξu

k −
1
λ

ηu
k+1, ξv

k+1 = ξv
k −

1
µ

ηv
k+1.

Numerical algorithm For v ∈ H−1(Ω) ∩ L2(Ω), we can define a new variable p = ∆−1v ∈ {p ∈
H1(Ω) :

∫
Ω

p = 0} due to the fact that for a bounded domain Ω, ∆ : {p ∈ H1(Ω) :
∫
Ω

p = 0} → {v ∈
H−1(Ω) :

∫
Ω

v = 0} is an isomorphism (one to one and onto) with Neumann boundary condition.
Since S(f,Ku, Kv) = S(f,Ku, K(∆p)) and h2(v) = 1

2‖v‖
2
H−1 = 1

2

(∫
Ω
|∆−1v|2 + |∇∆−1v|2dx

)
=

1
2

∫
Ω

p2 + |∇p|2dx = h′2(p), then we have

ξp
k+1 = ξp

k −
1
µ

∂pS(f,Kuk+1,K(∆pk+1))

= ξp
k −

1
µ

∆∗K∗(K(uk+1 + ∆pk+1)− f).

Moreover, since we have ∂uS(f,Ku, K(∆p)) = K∗(K(u + ∆p)− f), similarly we can let

ξu
k+1 =

K∗wk+1

λ
, ξp

k+1 =
∆∗K∗zk+1

µ
,

which leads to

wk+1 = wk − (K(uk+1 + ∆pk+1)− f), zk+1 = zk − (K(uk+1 + ∆pk+1)− f).

With w0 = z0 = 0, since λξu
0 = 0 = K∗0 = K∗w0 and µξp

0 = 0 = ∆∗K∗0 = ∆∗K∗z0,
we may conclude inductively that λξu

k ∈ R(K∗) and µξp
k ∈ R(∆∗K∗), and hence there exist

wk, zk ∈ Y ∗ = L2(Ω) such that λξu
k = K∗wk and µξp

k = ∆∗K∗zk. Hence, we have the following
numerical algorithm.

Let u0 = v0 = 0, w0 = 0 and iterate for k ∈ Z, k ≥ 0:
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Table 3: Restoration via Decomposition: Iterative vs One-step method

Image Method λ Time (or iteration ] ) RMSE SNR

Group

Iterative 0.001 307 sec (k=12) 3.3347 20.2292
One-step 1976 sec (iter=15000) 3.8023 19.0818
Iterative 0.0005 519 sec (k=12) 3.0358 21.0584
One-step 1979 sec (iter=15000) 3.5909 19.5764

Barbara

Iterative 0.001 744 sec (k=12) 5.7470 19.8125
One-step 2109 sec (iter=15000) 6.6679 18.3643
Iterative 0.0002 832 sec (k=6) 5.7408 19.8324
One-step 2157 sec (iter=15000) 6.4039 18.7123

• Given (uk, pk, wk), ε̄k −minimizer (uk+1, pk+1) is obtained by evolving the following equa-
tions:

∂u

∂t
= K∗(f + wk −K(u + ∆p))− λ∂h1(u)

∂p

∂t
= ∆K∗(f + wk −K(u + ∆p))− µ∂h2(p)

• Update
wk+1 = wk + (f −K(uk+1 + ∆pk+1))

where ∂h2(p) = p−∆p.

5 Numerical results

We assume that |Ω| = 1 and the function r(δ) = S(f,Ku∗) with true (or exact) image u∗ is
known. However, the estimation for the noise level r(δ) is possible from a data f , which is briefly
mentioned in [27] for the Gaussian noise model. We could also estimate r(δ) by restricting the
image to a square region which is uniform and contains no edges, taking the mean value (M) of
the region (assuming Ku∗ = M), and computing the fidelity term r(δ) = S(f,Ku∗) for each noise
model.

First, we mention that, based on the property ‖∂gk(u)‖ ≤ ε̄k for an ε̄k −minimizer u, with a
fixed ε̄k > 0 and λ, we obtain three different ε̄k−minimizers uk+1 by solving one of the following
three equations:

∂u

∂t
= ∂gk(u)± ε̄k, or

∂u

∂t
= ∂gk(u).

We compare the fidelity and error values of each ε̄k − minimizer, and compute gk(uk+1) and
gk(uk) + ε̄k in order to show that gk(uk+1) ≤ gk(uk) + ε̄k. All these ε̄k − mimimizers provide
similar fidelity and error values, justifying our simple algorithm to obtain an ε̄k −minimizer by
solving the usual Euler-Lagrange equation: 0 = ∂gk(u) (as shown in Table 4.1).

Now, we consider the results of deblurring in the presence of noise (as explained in Table 4.1).
As k increases, the image uk recovers more details and fine scales, and eventually gets noise back.
Thus, in practice, the residual g(uk) = S(f,Kuk) keeps decreasing, while ‖u∗ − uk‖2 (Root Mean
Square Error or RMSE) has a minimum value at some k′. But, note that k′ does not correspond to
the optimal k∗ = min{k : g(uk) = S(f,Kuk) ≤ r(δ)} (i.e. usually k′ > k∗), which is not surprising:
in the presence of blur and noise, uk′ can have lower RMSE since uk′ might get sharper than uk∗

even though uk′ gets noisier than uk∗ . However, the visual quality is also the best at the optimal
k∗. For example, in Fig. 1 with Gaussian noise, u3 (k∗ = 3) recovers the details well enough
leading to the best visual quality, while ‖u∗ − uk‖2 has a minimum at k′ = 4 where uk starts to
become noisier. Thus the optimal k∗ is a reasonable choice for the proposed noise models.

In Figures 1-4, we test the Gaussian noise model using L2 fidelity term, and moreover we
compare our result with the iterative algorithm (22) proposed by Osher et al. In Figures 1 and
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original u∗ blurry data f = K ∗ u∗

(a) u1 + v1 (b) cartoon u1 (c) texture v1 = ∆p1

(a) u2 + v2 (b) cartoon u2 (c) texture v2 = ∆p2

(a) u12 + v12 (b) cartoon u12 (c) texture v12 = ∆p12

‖f −K ∗ (uk + vk)‖2 ‖u∗ − (uk + vk)‖2 SNR(uk + vk)

Figure 11: Restoration via decomposition using our iterative method. 2nd to 4th row: (a) recovered

image ũk = uk + vk, (b) cartoon part uk, (c) texture part vk for k = 1, 2, 12. Parameters: λ = 0.001,

µ = 0.00005.
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Figure 12: Comparison with one-step model. Top row: ũ12 = u12 + v12, u12, v12 using our iterative

algorithm, RMSE=3.0358, SNR=21.0584, Time=519 sec. Bottom row: one-step model, RMSE=3.5909,

SNR=19.5764, Time=1979 sec (‖f−K(u+v)‖2= 0.1602 (2000th) 0.1452 (5000th) 0.1393 (10000th) 0.1371

(15000th)). Parameters: λ = 0.0005, µ = 0.00005.
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original image u∗ blurry data f = K ∗ u∗

one-step: u + v (a) iterative: u1 + v1 (b) u2 + v2

(c) u12 + v12 (d) cartoon u12 (e) texture v12 = ∆p12

Figure 13: Restoration via decomposition using iterative algorithm. Data: Gaussian blur K with σb = 1.5.

Second row: recovered image ũ = u + v (RMSE=6.6679, SNR=18.3643, Time=2109 sec) using one-step

proposed model, and (a)-(c) ũk = uk + vk for k = 1, 2, 12 using iterative algorithm. (c) RMSE=5.7470,

SNR=19.8125, Time=744 sec. Parameters: λ = 0.001, µ = 0.00005.
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4, we test our iterative algorithm. For both examples, u3 recovers texture parts or details better
than the previous iterates, and it is well denoised while the next iterate u4 becomes noisier. In
Figures 1 and 2, we observe that our iterative algorithm and Osher et al’s model (22) provide
similar numerical results (with similar best recovered images and similar behavior). Fig. 3 verifies
the a-priori property for the stopping index (21); with smaller noise δ = 7.5, the stopping index
k∗ = 8 is twice larger than the one (k∗ = 3) with δ = 15. Moreover, Fig. 3 shows that our iterative
scheme provides superior result to the RO model [35] by recovering details or texture parts better.

In Figures 5-7, we show the recovered images uk in the presence of Laplace noise with L1 fidelity
term, and we compare our results with one-step L1-TV deblurring-denoising model. In Figures 5
and 6, uk restores fine scales and becomes sharper until the optimal k∗ = 3, 2 respectively, and
uk∗ gives cleaner (less noisier) images than uk for k > k∗. In Fig. 7, we observe that our iterative
method gives better visual quality images (cleaner and sharper images), and smaller RMSE than
by the one-step L1-TV deblurring-denoising model.

For the Poisson noise model, in Figures 8-10, we obtain the same results as for the previous
noise models: the best recovered images (u3 in both Figures 8 and 10) provide sharper and cleaner
images than any other iterates. In Figures 9 and 10, comparing our results with one-step model
(25) proposed by Le et al, we also observe that the proposed iterative method gives much sharper
and cleaner images.

In Figures 11-13, we apply the iterative algorithm to image deblurring via (cartoon + texture)
decomposition with blurry data (as explained in Table 4.2). In this case, we do not have any
stopping criteria either for the inner iteration to obtain (uk+1, vk+1) of gk(u, v) or for the outer
iteration to choose the optimal ũk∗ = uk∗ + vk∗ : the energy functional gk(u, v) keeps decreasing
(see [20]). Thus, to obtain each (uk+1, vk+1) of gk(u, v), we stop at some (m-th) iterations (e.g.
m = 2000 for (u1, v1), m = 1000 for (u2, v2), and so on). For the outer iteration, we plot the
graphs of energies ‖f − K(uk + vk)‖2, ‖u − (uk + vk))‖2, SNR(uk + vk) vs k, all of which keep
decreasing or increasing as k increases (see Fig. 11). In addition, Fig. 11 shows the iterates
ũk = uk + vk with corresponding cartoon part uk and texture part vk = ∆pk for k = 1, 2, 12. As
k increases, especially the texture part vk = ∆pk gets sharper, resulting in sharper image ũk. In
Figures 12 and 13, we compare our results with the one-step model (modified version of [20], by
replacing the term |u|BV (Ω) by h1(u) defined in our algorithm) using the same parameters λ, µ
and time steps. Since the iterative algorithm adds residual (vk = f−K(uk +∆pk)) to data f after
some iterations, it enforces faster convergence of (uk, vk) than by the one-step model: indeed, in
Table 4.2, with the same parameters, we see that the iterative method provides better restored
images in much shorter time.

6 Conclusion

In this paper, we introduced a general iterative regularization method based on the square of the
norm for image restoration models with general convex fidelity terms. We applied the proximal
point method [16] using inexact Bregman distance to several ill-posed problems in image processing
such as image deblurring in the presence of noise or image deblurring via (cartoon + texture)
decomposition. The numerical experiments indicate that for deblurring in the presence of noise,
the iterative procedure yields high quality reconstructions and superior results than by one-step
gradient-descent models. For image deblurring via decomposition, the iterative algorithm enforces
faster convergence of iterates ũk, thus it produces better restored images in a significantly shorter
amount of time than by the one-step gradient descent model. Note that we have considered here
the full norms in defining the regularization h(u); since in most cases we work with quotient spaces
(for example, u ∈ BV (Ω) such that

∫
Ω

=
∫
Ω

f), we could have also considered the square of the
semi-norm (which becomes a norm on the quotient space). Such simplification and modification
would lead to even faster implementations.
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