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Abstract. We introduce a multi-level decomposition scheme for solving basis

pursuit problems in a Fourier basis. The iterates generated by this scheme are
equivalent to the coordinate-descent (CD) method for basis pursuit. However,

unlike standard CD methods, the new algorithm computes each iterate using

only O(n log n) operations. Using four different test problems, the CD algo-
rithm is compared to two other common algorithms for basis pursuit. For the

problems considered here, runtimes for the CD algorithm are approximately

5-10 times faster than conventional methods.

1. Introduction

In this manuscript, we consider a fast multi-level decomposition method for re-
constructing sparse signals from samples taken in the Fourier domain. In particular,
we wish to solve problems of the form

(1) min
u∈RN

N−1∑
i=0

φ(ui) +
N−1∑
i=0

µ

2
(RiFNui − si)2

where {Ri} is some sequence on real numbers, si is the observed data, φ is some
regularizing function, and FN represents the discrete Fourier transform operator
defined on vectors of size N. This energy can be written more compactly using
vector norm notation as

(2) min
u∈RN

Φ(u) +
µ

2
‖RFNu− s‖2

where R denotes the diagonal matrix having the sequence {Ri} as its diagonal
entries, and ‖ · ‖ denotes the discrete 2-norm.

Problems of this form arise frequently in compressed sensing(CS), where we wish
to reconstruct u from a small subset of its Fourier coefficients [6, 7, 8, 13, 33, 40]. If
the kth Fourier coefficient is known, we take sk to be the coefficient, and Rk = 1. If
the kth mode is unknown, we take sk = Rk = 0. Problems of this form also arise in
signal processing [10], analog-to-digital conversion [41, 21] and statistical regression
[37].

Another class of problems that can be represented in the form (2) are sparse
deconvolution problems. Sparse deconvolution problem have the form

(3) min
u
|u|+ µ

2
‖Ku− s‖2

where K is a convolution matrix. These problems arise, for example, in heat-
source identification, seismology, and medical imaging applications [25, 27, 28, 29,
34, 19, 16]. Problems of the form (3) can be written in the form (4) by noting that
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K = F∗NRFN for some diagonal matrix R. Because of the unitary nature of the
Fourier transform, we have

‖Ku− s‖2 = ‖F∗NRFNu− s‖2 = ‖RFNu−FNs‖2

where the rightmost form of this energy is the same as that appearing in (4).
Many different choices of φ have been suggested in order to enforce sparsity of the

recovered signal. One of the most common choices is the L1 regularizer φ(ui) = |ui|.
This regularizer has the advantage of being (weakly) convex, making it possible to
efficiently compute a global minimizer.

Another technique for enforcing sparsity is to force the recovered signal to take
on only positive values. This leads to the “non-negative least squares” technique.
Non-negative least squares corresponds to problems of the form (2) where we choose

φ+(u) =

{
0 if u ≥ 0
∞ if u < 0

The uniqueness and compressed sensing properties of non-negative least squares
are studied in [5, 14].

Problems of the form (2) are traditionally solved using techniques of the gradient-
descent type. This is because fast algorithms can be used to evaluate the Fourier
transform of u. In this manuscript, we propose to solve problems of the form (2)
using a multi-level decomposition scheme which is equivalent to coordinate descent.
The organization of this paper is as follows: We first review some common tech-
niques for basis-pursuit problems including the coordinate descent method. We
then show how the coordinate descent method can be efficiently applied to prob-
lems involving the Fourier transform. We also describe how the coordinate descent
method can incorporate inequality constraints (such as non-negativity) which would
be difficult to incorporate into gradient based methods. Finally, we show numerical
results demonstrating the efficiency of coordinate descent based methods for these
problems.

2. Background

In this section we review commonly used methods for finding sparse solutions to
systems of equations. These algorithms apply to problems of the form

(4) min
u∈RN

Φ(u) +
µ

2
‖Au− s‖2

where A : RN → RM is an arbitrary linear operator.

FPC. A very common approach to solving problems of the form (4) is to use a
gradient-descent-based method such as Fixed-Point Continuation (FPC) [20]. This
technique is based on the concept of forward-backward splitting. Algorithms of this
form were originally proposed for differentiable problems by Lions and Mercier [23]
and Passty [31], and later studied extensively by others [9, 26, 45]. Rigorous results
for L1-regularized problems were first proposed by Hale, Yin, and Zheng in [20].
Techniques for accelerating this simple iteration scheme have also been proposed
and analyzed in [3, 1], although these variants will not be considered here.

Like other forward-backward splitting techniques, FPC is a two stage algorithm
that operates on some initial guess uk. During the first stage, we obtain ūk using
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a gradient descent step on the differentiable term in (4).

ūk = uk − tAT (Auk − s).

During the second stage, we update the value of ūk by solving the “proximal”
problem

uk+1 = argmin Φ(u) +
µ

2t
‖u− ūk‖

The overall algorithm can be written

Algorithm 1 Fixed-Point Continuation (FPC)

1: Intialize: u0 ∈ RN
2: for k = 0, 1, · · · do
3: ūk = uk − tAT (Auk − s)
4: uk+1 = argmin Φ(u) + µ

2t‖u− ūk‖
5: end for

For the problems considered here, the minimization in step 4 of the above algo-
rithm has a simple closed form solution. For L1 regularized problems, we take

uk+1 = argmin |u|+ µ

2t
‖u− ūk‖ =

u

|u|
max{u− t

µ
, 0}.

In the case of non-negative least squares, we take

uk+1 = argmin Φ+ +
µ

2t
‖u− ūk‖ = max{u, 0}.

Note that the FPC algorithm (1) only requires that we be able to evaluate
the linear operator A and its adjoint. In case the operator A involves a Fourier
transform, step 3 of the FPC algorithm can be evaluated quickly using the fast
Fourier transform (FFT). This makes FPC advantageous for problems involving
the Fourier transform (and other fast transforms). Another advantage of the FPC
method is its extremely simple implementation.

Orthogonal Matching Pursuit. One way to enforce sparsity is to explicitly
penalize non-zero entries using a penalty of the form

Φ0(u) = ‖u‖0,

where the “L0 norm” counts the number of non-zero entries of u. Because such
a regularizer is non-convex, the resulting minimization problem is not in general
computationally tractable. However, it is possible to attempt to solve the problem
using heuristic methods, such as orthogonal matching pursuit (OMP) [24, 35, 36,
42].

OMP is a greedy algorithm in which elements are added to the support of u
one at a time until a suitable approximation to the sparse signal is reached. The
algorithm is initialized with support(u0) = ∅. Then, a single element is added to
the support of u1 in order to minimize the resulting residual error, ‖s−Au1‖22. On
each successive iteration, the support of the signal is expanded by one element, so
that |support(uk)| = k. This is formalized in algorithm (2). Note that we have used
ai to denote the ith column of A.
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Algorithm 2 Orthogonal Matching Pursuit (OMP)

1: Intialize: u0 = 0
2: Sk = support(uk) = ∅
3: for k = 0, 1, · · · do
4: rk = s−Auk
5: for i = 1, 2, · · · , N do
6: εi = minz∈R ‖rk − aiz‖
7: end for
8: Choose i∗ such that ∀i, εi∗ ≤ εi
9: Sk+1 = Sk ∪ {i∗}

10: uk+1 = argminsupport(u)∈Sk+1 ‖s−Au‖2
11: end for

The outer loop in algorithm (2) is usually terminated when ‖s−Auk‖ falls below
a preset tolerance. Although the L0 penalized problem is non-convex, it has been
shown that, in the context of compressed sensing problems with sufficiently sparse
signals, this algorithm will find a global minimum with reasonably high probability
[24, 42]. For such problems it has also been shown that the solutions to the L0
penalized problem and the L1 penalized problem will coincide with reasonably high
probability. For this reason, the OMP algorithm can be considered as a substitute
for (or at least an approximation to) the L1 regularized problem.

Coordinate Descent. Fixed Point Continuation is a gradient descent based mini-
mization technique. For general basis pursuit problems (e.g. problems not involving
the Fourier transform or other fast transforms), faster methods are available. For
unconstrained problems, coordinate descent (CD) is frequently the most efficient
approach. These techniques work by minimizing (2) with respect to each individual
element ui in sequence.

Algorithm 3 Coordinate Descent (CD)

1: Intialize: u0 ∈ RN
2: for k = 0, 1, · · · do
3: for i = 1, 2, · · · , N do
4: uki ← argminui Φ(u) + µ

2 ‖Au− s‖
5: end for
6: end for

Methods of this type were proposed very early by Fu [18], and were later pop-
ularized by Daubechies et al. [12]. Variants of this algorithm have been studied
extensively for various applications including the elastic net [48, 46], non-negative
least squares [4], grouped regression [47], and many other applications [22, 44, 43].
Variants of this algorithm have also been proposed for TV regularized problems
(also called the “fused lasso”) by Tibshirani and others [38, 39, 2, 30]. A detailed
review of many of these techniques can be found in [17].

Not only does CD have a faster convergence rate than FPC, but for dense A the
cost of a CD iteration is lower then the cost of an FPC iteration. These two factors
make CD a superior solver when speed is the primary consideration.
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Unfortunately, CD is generally not available for basis pursuit problems involving
the Fourier transform. The reason for this is that CD iterations require O(n2)
computations. FPC, on the other hand, require only matrix multiplications, which
can be accomplished in O(N logN) operations using the Fast Fourier Transform.

In this manuscript, we introduce an algorithm that efficiently performs CD iter-
ations on problems of the form (2) without using any explicit Fourier transforms.
After introducing the algorithm, we will present numerical results demonstrating
that this approach outperforms conventional methods by a considerable margin for
a wide variety of applications.

3. The Cooley-Tukey FFT

One of the most efficient schemes for computing the FFT is the Cooley-Tukey
factorization [11, 15, 32]. Although this type of procedure can be performed on
vectors of arbitrary composite size, we will assume for simplicity that the signal
length is a power of 2. In this case, we get a radix 2 decimation-in-time algorithm
in which the Fourier transform of a length N signal is represented as a linear
combination of smaller Fourier transforms of size n = N/2.

If we let ωN = e
−2πi
N denote the Nth root of unity and FN denote the FFT of

size N , then this decomposition can be written in summation form as

FNu(k) =
N−1∑
m=0

umω
mk =

n−1∑
m=0

u2mω
(2m)k
N +

n−1∑
m=0

u2m+1ω
(2m+1)(k)
N

= Fnue(k) + e−
2πi
N kFnuo(k)

where ue represents the even-indexed components of the u, and u0 represents the
odd-indexed components of u. To be more precise

ue(m) = u(2m) and uo(m) = u(2m+ 1).

This structure of this algorithm is more intuitive when it is written as a matrix
factorization. We write

(5) Fnu =
(
In DN

In −DN

)(
Fnue
Fnuo

)
.

In the above factorization, DN represents the diagonal matrix of “twiddle factors,”

DN,ii = e−
2πi
N k

Using the Cooley-Tukey concept, we have written the Fourier matrix as a prod-
uct of a block diagonal “butterfly matrix,” and a set of smaller Fourier matrices.
Because of the block-diagonal structure of the butterfly matrix, multiplication by
this matrix can be performed in O(N) operations. The Fourier transforms of the
smaller matrices are performed by recursively applying the Cooley-Tukey formula.
A simple induction argument shows that the total cost of computing the N -point
FFT using this scheme is O(N logN)

4. CD Minimization for Problems Involving the Fourier Transform

In this section, we discuss how to perform fast CD minimization for the basis
pursuit problem (2). We will assume for simplicity that the signal length is a power
of 2. Our method will work by subdividing this problem into two smaller problems,
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solving these small problems, and then recombining the solutions. In this sense,
the method is a divide-and-conquer algorithm much like the FFT itself.

We begin by re-writing the energy En in terms of the even and odd-indexed
components of u. The element-wise decoupled L1 regularizing term can be easily
decomposed this way. When we perform this decomposition, the energy (2) becomes

(6) EN (u) = EN (ue, uo) = |ue|+ |uo|+
µ

2
F (ue, uo)

where

(7) F (ue, uo) = ‖RFNu− s‖2.

To proceed with CD minimization, we must find a mechanism to decouple the
even- and odd-indexed components of u in the energy (7). This is provided by the
following theorem.

Theorem. The energy (7) can be written in the following two equivalent forms

(8) Form 1: F (ue, uo) = ‖R0Fue − se‖2 + Ce

(9) Form 2: F (ue, uo) = ‖R0Fuo − so‖2 + Co

where

R0 = (R∗1R1 +R∗2R2)1/2

se = R∗1R
−1
d s1 +R∗2R

−1
d s2 + (R∗2R2 −R∗1R1)R−1

d DNFN/2uo
so = D∗NR

∗
1R
−1
d s1 −D∗NR∗2R−1

d s2 + (R∗2R2 −R∗1R1)R−1
d D∗NFN/2ue

and Ce does not depend on ue, while Co does not depend on uo. We also have that
Rd is the diagonal matrix

(Rd)ii =
{

(R0)ii if (R0)ii 6= 0
1 otherwise

Proof. To show that (8) is equivalent to (7), we will show that both (8) and (7)
have the same subgradient with respect to ue. Using the Cooley-Tukey factorization
(5), we can expand the energy (7) in terms of ue and uo. We get

(10) F (ue, uo) =
∥∥∥∥( R1 0

0 R2

)(
In DN

In −DN

)(
Fnue
Fnuo

)
−
(
s1
s2

)∥∥∥∥2

.

Equation (10) can be written

F (ue, uo) = ‖R1FN/2ue+R1DNFN/2uo−s1‖2 +‖R2FN/2ue−R2DNFN/2uo−s2‖2

We then differentiate with respect to ue, and rearrange the result:

∂eF = F∗nR∗1(R1Fnue +R1DNFnuo − s1)(11)
+F∗nR∗2(R2Fnue −R2DNFnuo − s1)(12)

= F∗n(R∗1R1 +R∗2R2)Fnue + (F∗nR∗1R1DNFn −F∗nR∗2R2DNFn)uo(13)
−F∗nR∗1s1 −F∗nR∗2s2(14)

We next differentiate (8), which gives us

∂eF = F∗nR∗0R0Fnue −FnR∗0R−1
d (R∗1R1 −R∗2R2)DNFnuo(15)

−F∗nR∗0R−1
d R∗1s1 −F∗nR∗0R−1

d R∗2s2(16)
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Now, note that (R0)ii = 0⇔ (R1)ii = (R2)ii = 0. From this, and the definition
of R0 we get the following identities

R∗0R0 = R∗1R1 +R∗2R2 R∗0R
−1
d R1 = R1 R∗0R

−1
d R2 = R2.

When these identities are applied to (15-16), we see that it is equivalent to (13-14).
The proof of (9) follows from a similar argument. �

We now describe how the two forms of (10) can be used to perform element-wise
minimization. Suppose we first want to perform element-wise minimization on the
even-indexed elements of u. During this minimization step, the elements of uo are
fixed. The minimization problem we wish to solve can thus be written

arg min
ue∈Rn

E(u) = arg min
ue∈Rn

|ue|+ |uo|+
µ

2
F (ue, uo) = arg min

ue∈Rn
|ue|+

µ

2
F (ue, uo)

Because uo is held constant, we choose to expand the energy F in the form (8)
above. This gives us the equivalent problem

arg min
ue∈Rn

|ue|+
µ

2
‖R0Fue − se‖2.

Performing element-wise minimization of the energy (2) on the even index elements
of u is thus equivalent to performing element-wise minimization on (4). Note that
the constant factor Ce has been omitted here because it depends only on the con-
stant vector uo, and thus has no effect of the solution of (4).

Similarly, to perform element-wise minimization of the odd-indexed components
of u, we need only perform a minimization sweep on the following problem of size
n = N/2:

arg min
uu∈Rn

|uu|+
µ

2
‖R0Fuo − so‖2.

The minimization of the small (size n = N/2) problem is performed recursively
using the same decomposition that we used for problems of size N . On each stage
of the recursion, the problem size gets reduced by a factor of 2. The recursion
terminates when the problem size has been reduced to 1, and we must solve the
resulting problem analytically. The length 1 problem has the form

(17) arg min
u∈R
|u|+ µ

2
‖RF1u− s‖2

If we note that F1 = I1, we can see that this problem is easily solvable for many
choices of φ. In particular, we have

(18) arg min
u∈R
|u|+ µ

2
‖Ru− s‖2 =

x

|x|
max{|x| − 1

µ|R|2
, 0}.

5. Implementation of the Element-Wise method

Following the arguments above, element-wise minimization on (2) can thus be
achieved by the following recursive algorithm:
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Algorithm 4 : cdfft(v,R, s, µ,N) (slow version)

1: if N = 1 then
2: return shrink(s, 1/µ|R|2)
3: end if
4: for m = 0 to N/2− 1 do
5: ue(m) = u(2m), and uo(m) = u(2m+ 1)
6: end for
7: Let se = R∗1R

−1
d s1 +R∗2R

−1
d s2 + (R∗2R2 −R∗1R1)R−1

d DNFN/2uo
8: Recursive call: ue = cdfft(ue, R0, se,mu,N/2)
9: so = D∗NR

∗
1R
−1
d s1 −D∗NR∗2R

−1
d s2 + (R∗2R2 −R∗1R1)R−1

d D∗NFN/2ue
10: Recursive call: uo = cdfft(uo, R0, so,mu,N/2)
11: for m = 0 to N/2− 1 do
12: u(2m) = ue(m), and u(2m+ 1) = uo(m)
13: end for
14: return u

This algorithm is slow, however, because it requires the computation of FFT’s at
each level (an FFT is involved in the definition of se and so). A close analysis of (4)
shows that these FFT’s can be eliminated by operating on the Fourier transform
of u rather than u itself.

In order to do this, we make the substitution v = Fnu. Our goal is to re-write
algorithm (4) in terms of the variable v so that all computations can be done in the
Fourier domain. For this purpose, we decompose v into its upper and lower halves

v =
(
v1
v2

)

Now, using the Cooley-Tukey factorization (5), it is trivial to derive the following
identities:

ve = Fnue =
1
2

(v1 + v2)

vo = Fnuo =
1
2
D∗N (v1 − v2)

v =
(
ve +DNvo
ve −DNvo

)

Using these identities, we can re-write the above algorithm so that we only
operate in the Fourier domain:
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Algorithm 5 : cdfft(v,R, s, µ,N)

1: if N = 1 then
2: return shrink(s, 1/µ|R|2)
3: end if
4: ve = 1

2 (v1 + v2)
5: vo = 1

2D
∗
N (v1 − v2)

6: se = R∗1R
−1
d s1 +R∗2R

−1
d s2 + (R∗2R2 −R∗1R1)R−1

d DNvo
7: Recursive call: ve = cdfft(ve, R0, se,mu,N/2)
8: so = D∗NR

∗
1R
−1
d s1 −D∗NR∗2R

−1
d s2 + (R∗2R2 −R∗1R1)R−1

d D∗Nve
9: Recursive call: vo = cdfft(vo, R0, so,mu,N/2)

10: v =
(
ve +DNvo
ve −DNvo

)
11: return v

The above algorithm requires no explicit FFT’s, and runs in O(n logN) opera-
tions. Almost all of the computation takes place in steps 7 and 9, where we build
the vectors se and so. Note that, while these formulas look bulky, they actually
represent only a small amount of computation. Each of se and so are formed using
a simple linear combination of 3 vectors, and the coefficients of this linear combi-
nation are precomputed only once.

6. Numerical Experiments

To demonstrate the performance of the CD algorithm, and compare it to FPC
and OMP, we use four simple test problems: two problems from compressed sensing,
and two deconvolution problems. These problems are summarized in table 1.

The first two test problems are conventional compressed sensing problems. We
wish to recover a sparse signal from a subset of its Fourier modes. For each trial, a
sparse signal of length 256 is generated by randomly choosing 5 non-zero elements
of unit intensity. Problem CS1 is to recovery the signal using only 32 of its 256
Fourier coefficients, chosen at random. Problem CS2 recovers the signal using 128
randomly chosen Fourier coefficents. For both problems, we enforce sparsity using
an L1-regularized problem of the form (4), with µ = 20. The FPC and CD iterations
were stopped when the condition ‖uk+1−uk‖ < 10−8 was met. The OMP algorithm
was terminated with the criteria ‖Auk − s‖ < 0.1.

The second test problem we consider is a sparse deconvolution problem. In this
case, the vector u∗ represents the summation of 5 delta-function “sources” with
unknown locations. The locations of these sources is chosen at random on each
trial. The observed data, s, represents the summation of these delta functions
after blurring with a Gaussian kernel. The goal of this problem is to “reverse the
heat equation,” and find the location of the unknown sources. This deconvolution
problem is regularized with an L1 penalty to ensure sparse results. Problem D1 is
a deconvolution problem with a Gaussian kernel of variance 10 pixels. Problem D2
is blurred with a kernel of variance 0.5. Both the FPC and CD algorithms were
terminated when the condition ‖uk+1 − uk‖ < 10−4 was met.

Results averaged over 100 trials are reported in table 2. In addition to reporting
the number of iterations and total runtime (in milliseconds) for each algorithm, the
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Table 1. Four Numerical Test Problems

Problem Name Type Measurement
CS1 Compressed Sensing 32/256 Fourier Coefficients
CS2 Compressed Sensing 128/256 Fourier Coefficients
D1 Deconvolution Gaussian Blur, σ2 = 10
D2 Deconvolution Gaussian Blur, σ2 = 0.5

table also identifies the number of wrong atoms (i.e. non-zero elements) detected.
The OMP method is not well suited for deconvolution problems, and it was found
to generate excessively large numbers of wrong atoms for these problems. For this
reason, we do not report OMP results for problems D1 and D2.

Table 2. Results

Problem Algorithm Iterations Runtime (ms) Wrong Atoms
OMP 5.46 6.7 0.67

CS1 FPC 167 19.0 0.53
CD 17.6 1.2 0.53

OMP 4.96 5.5 0
CS2 FPC 20.5 2.4 0

CD 8.53 0.60 0
OMP * * *

D1 FPC 3217 251.7 0.85
CD 942 55.3 0.85

OMP * * *
D2 FPC 26.4 2.2 0

CD 2.15 0.18 0

From the results in table 2, it is clear that one advantage of the coordinate descent
(CD) method is speed. For the test problems considered here, it was observed that
the CD method was approximately one order of magnitude faster than the OMP
and FPC methods. Furthermore, for the ill-conditioned problem CS1, the L1-
regularized methods tend to identify fewer wrong atoms then the L0 regularized
OMP method. Another significant advantage of the CD method is that, unlike the
FPC algorithm, it does not require the user to choose a time step and it has no
stability restriction.

One notably disadvantage of the CD scheme is that its implementation is rel-
atively complex when compared to FPC. The FPC method is extremely easy to
implement in Matlab, and its implementation can take advantage of extremely well-
optimized implementations of the fast Fourier transform, such as FFTW. In order
to compete with such efficient codes, the CD algorithm described above must be
implemented in a low-level language such as C/C++.

7. Conclusion

We introduce a multi-level decomposition scheme for solving basis pursuit prob-
lems in a Fourier basis. The iterates generated by this scheme are equivalent to
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Figure 1. Convergence Curves for the four problems considered.
Curves show log(error) vs. iteration number for the FPC and CD
algorithms. Error is defined in the L2 sense, i.e. error = ‖uk−u∗‖.
The CD algorithm is depicted by the solid blue line. The dotted
green line represents the FPC algorithm.
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the coordinate-descent (CD) method for basis pursuit. Using four different test
problems, the CD algorithm is compared to two other common algorithms for ba-
sis pursuit. For the problems considered here, runtimes for the CD algorithm are
approximately 5-10 times faster than conventional methods.
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