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Abstract. In this paper we develop an efficient forward solver for steady-state
or frequency-domain radiative transfer equation (RTE) on 2D and 3D struc-
tured and unstructured meshes with vacuum boundary condition or reflection
boundary condition. In our algorithm we use a direct angular discretization
and upwind type of spatial discretization that preserves properties of both
scattering and differential operators of RTE. To solve the large linear system
after discretization, we construct an efficient iterative scheme based on Gauss-
Seidel and proper angular dependent ordering. With this iterative scheme as
the relaxation we implement various multigrid methods in both angular and
physical space. Our algorithm can deal with different scattering regimes effi-
ciently. Although we emphasize applications in optical imaging, our method
may be applied to more general RTEs, e.g., other types of scattering function.
Efficiency and accuracy of our algorithm is demonstrated by comparison with
both analytical solutions and Monte Carlo solutions, and various numerical
tests in optical imaging.

1. Introduction

Many researchers have been studying the numerical solutions to the radiative

transport equation (RTE) or the within-group neutron transport equation [4, 13]

in the field of neutron transport [4], atmospheric radiative transfer [1], heat transfer

[16] and optical imaging [2, 17, 9]. In this paper, we mainly study the steady-state

RTE

(1.1)

ŝ · ∇Φ(~r, ŝ) + µtΦ(~r, ŝ) = µs

∮

Ŝn−1
f(ŝ, ŝ′)Φ(~r, ŝ′)dŝ′ + q, ~r ∈ Ω ⊂ <n, ŝ ∈ Ŝn−1

where the quantities in the equation are the photon flux Φ which depends on both

space ~r and angle ŝ, the light source q, the scattering function or the phase function

f , the absorption coefficient µa, the scattering coefficient µs, the transport coeffi-

cient µt = µa + µs, and Ŝn−1, the unit circle when n = 2 or the unit sphere when

n = 3.

Key words and phrases. radiative transfer equation (RTE), optical imaging, discrete ordinate
method, source iteration, Henyey-Greenstein function, anisotropic scattering, multigrid, forward
solver, discontinuous Galerkin method.
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To simplify the discussion, we shall first consider the following vacuum boundary

condition

(1.2) Φ(~r, ŝ) = 0, (~r, ŝ) ∈ ∂Ω× Ŝn−1, if ŝ · n̂ < 0

where n̂ is the outer normal to ∂Ω at ~r. The reflection boundary condition will be

addressed in Section 2.5.

The scattering function usually only depends on the angle θ between ŝ and ŝ′.

A popular model for the anisotropic scattering in optical imaging is the normalized

Henyey-Greenstein scattering function (H-G)

(1.3) f(θ) =

{
1−g2

2π(1+g2−2g cos θ) , n = 2
1−g2

4π(1+g2−2g cos θ)1.5 , n = 3
,

where g is the anisotropic factor that ranges from 0 to 1, indicating the strength

of forward-peaking scattering. The larger the value of g is, the stronger forward-

peaking the scattering is. Although we use this particular scattering function in

our numerical tests, our algorithm works for other scattering functions as well.

In general numerical methods for solving RTE can be classified into two types,

one is deterministic, i.e., based directly on the differential-integral equation; the

other one is based on probabilistic formulation of RTE such as Monte Carlo meth-

ods. In this paper we are proposing an efficient deterministic method to solve RTE.

We show some comparison of our method and Monte Carlo method in Section 3.7.

Disretization of RTE (1.1) involves discretization in both spatial and angular

spaces. Popular spatial discretizations include the diamond scheme and variant

versions of it [4, 11], the upwind scheme [2] and other finite difference schemes

(FD), the finite element method (FEM) [17, 20], the finite volume method (FVM)

[10], the Discontinuous Galerkin method (DG) [18, 7, 3]. The diamond scheme

and FD are suitable for structured grids while FEM, FVM and DG can be used

on unstructured grids. Also various angular discretizations exist: the Pn method

[13], the FEM [17, 20], the discrete ordinate method (DOM) [4, 16, 2] and others

[12, 15], and many of them use orthogonal bases to expand the integral term in

RTE and represent it by summation in orthogonal bases, such as the Legendre

polynomials, the spherical harmonics or the wavelets. However, these orthogonal

base expansion methods are not local in angular space and may not be efficient to

capture strong localized scattering between the radiances from neighboring angles
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such as in the presence of strong forward-peaking scattering. Moreover, general

boundary conditions on influx and outflux can be also difficult to cope with.

Among all the numerical schemes on structured grids, the DOM when combined

with FD or the diamond scheme, which is then solved by source-iteration (SI) [4],

is the most popular, because of its simplicity. However, there are two major issues:

(1) The conventional DOM presents difficulty dealing with strong forward-

peaking scattering as mentioned above.

(2) The SI converges slowly in the scattering-dominating optical-thick regime.

Acceleration techniques, such as diffusion synthetic acceleration and spatial

multigrid [14], may be used to accelerate iterative convergence.

The mathematical theory about the RTE (1.1) is quite clear [13, 4]. The solu-

tion has both maximum principle and energy estimate due to nice properties of the

transport operator and the integral operator. However, numerical computation is

the only way to give accurate quantitative information of the solution in practice

since there is no hope of analytical solution in general. The main challenge for solv-

ing RTE numerically is caused by its large dimension of independent variables. For

the steady state RTE, which is a boundary value problem, the scattering (integral

term) couples the solution at different location and different angle together. This

means that we have to solve a large and not too sparse (due to the integral term)

linear system after discretization. For this large linear system, iterative method is

usually the only choice. Hence a faster iterative strategy is of crucial importance.

On the other hand, RTE can behave quite differently in different regions if the

computation domain is large compared with the mean free path (1/µt), e.g., either

more transport-like near the source, or more diffusion-like after a significant num-

ber of scattering. More importantly, these regions of different behaviors can not

be clearly defined as a priori knowledge. This poses a major difficulty for design-

ing a fast iterative solver in the whole domain. For example, diffusion synthetic

acceleration method, which is based on diffusion approximation of RTE may not

be effective in transport region, especially when the scattering is very anisotropic

such as in forward-peaking case in optical imaging. In this paper, we would like to

address these issues by
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(1) introducing a direct angular discretization which preserves nice properties

of the integral operator, captures localized scattering and deals with general

boundary condition effectively,

(2) constructing an efficient iterative scheme (based on Gauss-Seidel iteration

and angular dependent ordering) with proper spatial discretization (upwind

type) and angular discretization which deals with transport effectively and

has nice smoothing property,

(3) applying multigrid methods (with the above iterative scheme as relaxation)

in both angular and physical space which can deal with diffusion effectively.

With all these ingredients, we can handle very general setup for RTE, e.g., struc-

tured or unstructured grids, geometry and boundary condition, and improve the

conventional SI by 20-30 times consistently in all regimes.

Next we will describe our method in detail. Here is the outline. We introduce

the angular discretization in Section 2.1. Then we present the efficient iterative

method in Section 2.2 and acceleration by multigrid in Section 2.3. We describe

our algorithm for unstructured meshes in Section 2.4 and treatment of reflection

boundary condition in Section 2.5. Finally we show both efficiency and accuracy

of our algorithm by extensive tests on analytical solutions as well as examples from

optical imaging in Section 3.

2. Numerical algorithm

2.1. Angular discretization.

2.1.1. Motivation. In the conventional discrete ordinate method, the integral term

in RTE is approximated by a finite summation of the weighted fluxes on the discrete

ordinates through Legendre or spherical harmonic expansion of the phase function

and the photon radiance. The weights come from the matching of the truncated

leading-order coefficients in the expansion. There are a few drawbacks for this

representation. Since the expansion is not local in angular space, this leads to

both inaccuracy and inefficiency when dealing with highly forward-peaking phase

function. Moreover, localized scattering interaction in angular space is not captured

well in this representation. It actually causes strong coupling of different terms in

the expansion which may make the linear system more difficult to solve. Moreover,
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due to oscillatory nature of the expansion, non-physical oscillations, such as ray

effects, may occur in the solution for forward peaking or strong transport regime

[4]. Also boundary condition prescribing flux condition in partial angular space is

difficult to implement. These difficulties are more eminent in optical imaging. since

the commonly used phase function is H-G and g is usually around 0.8-0.95, which

means highly forward-peaking.

To address the above issues, we triangulate the angular space (unit circle in 2D

and unit sphere in 3D) and use a finite element basis to represent the solution in

angular space piecewisely. So our representation in angular space is local.

Direction
M

4
+ 1

Direction 2

Direction M

Direction
M

2
+ 1

Direction 1

Figure 1. Angular discretization in 2D

2.1.2. 2D scheme. We divide the angular space [0, 2π) uniformly into M directions

Φm,m = 1, · · · , M with equal interval length 4θ as shown in Figure 1 and use the

piecewise linear approximation of the photon radiance,

(2.1) Φ(x, y, θ) ≈
M∑

m=1

Φm(x, y)Lm(θ)

where Lm(θ) is a piecewise linear function in θ and Lm(θm′) =
{

1, m = m′

0, otherwise
.

With this discretization in angle, the RTE (1.1) is reduced to a set of partial
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differential equations in space:

(2.2)

cos θm
∂Φm

∂x
+ sin θm

∂Φm

∂y
+ µtΦm = µs

∮
f(θm − θ′)Φ(θ′)dθ′ + q, m = 1, · · · ,M

Next we shall approximate the integral on the right hand by a summation through

the following three steps. The first step is to approximate the phase function f by

piecewise linear interpolation, f̃ , on the same angular bases, i.e.,f̃(θm) = f(θm). In

the second step, we plug (2.1) in the integral and get

(2.3)
∮

f̃(θm − θ′)Φ(θ′)dθ′ =
M∑

m′=1

wmm′Φm′

where

(2.4) wmm′ =
∮

f̃(θm − θ′)Lm′(θ′)dθ′

Then we compute all wmm′ ’s for a fixed direction m. Suppose m = 1 and we know

f̃(θm, θm′) is symmetric with respect to m. (2.4) can be explicitly integrated to get

(2.5) w1i =





∆θ
3 (2f(θ1) + f(θ2)), i = 1

∆θ
6 (f(θi−1) + 4f(θi) + f(θi+1)), i = 2, · · · , M

2
∆θ
3 (2f(θM

2
) + f(θM

2 +1)), i = M
2 + 1

w1,M+2−i, i = M
2 + 2, · · · ,M

To be consistent with the fact that the integration of phase function is one, we

scale w1i by the same constant so that
∑M

i=1 w1i = 1. Since the angular mesh is

symmetric and the phase function only depends on angles in between, the last step

is to simply rotate the frame to align the direction m with direction 1 in order to

get wmm′ ’s for each m by shifting the w1m′ ’s. Finally, we have a set of coupled

transport equations for 2D RTE after angular discretization

(2.6) cos θm
∂Φm

∂x
+ sin θm

∂Φm

∂y
+ µtΦm = µs

M∑

m′=1

wmm′Φm′ + q, m = 1, · · · ,M

2.1.3. 3D scheme. For 3D unit sphere, we take eight triangular planes, each of

which is in a different quadrant. The mesh on each triangular plane is shown in

Figure 2 and then the mesh is projected onto the unit sphere as shown in Figure 2.

This triangulation has the following nice properties: first, it is simple; second, it is

quite uniform as we show below; third, it is easy to coarsen and refine for multigrid

method. Let M denote the number of intervals on each side of the triangular plane,

N denote the total number of vertices for the angular mesh. We have the following

relation N = 4M2 + 2. For example, M = 4 and N = 66 in Figure 2. Table 1
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Figure 2. The projection of triangulation of a unit sphere in 1st

quadrant down to a triangular plane when M = 4

Table 1. Quantities for angular meshes. Mn: the angular mesh
level with 2n intervals, n: the index n in Mn, Np: number of
vertices, Nt: number of elements, Ai: area of the ith element, Ā:
the average area, 4: standard deviation of element area, Amin:
the minimum area, Amax: the maximum area, and δ = 1−∑

i
Ai

4π .

n Np Nt Ā ∆ ∆/Ā Amin

Amax
δ

1 6 8 5.00e-1 0.00e0 0.000 1.000 6.82e-1
2 18 32 2.76e-1 4.48e-2 0.163 0.707 2.97e-1
3 66 128 8.95e-2 2.43e-2 0.272 0.367 8.82e-2
4 258 512 2.40e-2 7.49e-3 0.313 0.258 2.33e-2
5 1026 2048 6.10e-3 1.97e-3 0.323 0.221 5.92e-3
6 4098 8192 1.53e-3 4.99e-4 0.326 0.205 1.49e-3

shows quality of the mesh in term of area variation among elements. The area of

each element is computed as the area of the triangle after projection of the vertices

onto the unit sphere. We can see that the difference between the largest element

and the smallest element as well as the the deviation with respect to the average

become stabilized, as the mesh is further refined.

Given the above triangulation of the unit sphere, we can construct piecewise

linear or quadratic approximation of the phase function and piecewise linear finite

element basis in angular space for the photon flux. The standard assembly method

in FEM is used to compute wmm′ ’s defined as in (2.4), in which each curved element
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on sphere is approximated by a triangular element and f is approximated by f̃ .

Also we normalize the sum
∑

m′ wmm′ = 1 for all m.

For example, to compute wmm′ ’s for m = 10, we first rotate the direction m to the

z direction and let (x̂, ŷ, ẑ) be the coordinates after the rotation. Note that the value

of f only depends on ẑ since the phase function only depends on the angle between

two directions. In the case that two vertices in one element have the equal ẑ’s, the

values of f at two different ẑ’s are used to linearly interpolate f in this element;

otherwise, the values of f at three different ẑ’s are used to construct piecewise linear

(Figure 3) or quadratic approximation f̃ . Then the explicit integrations on each

element can be carried out and the weights result from assembly.

Remark If piecewise linear approximation is used for f in all elements, all the

weights wmm′ are positive. On the other hand, the sum is normalized to one

which preserves the basic property of the integral operator. With this angular dis-

cretization, we can capture the correct behavior in angular space up to the level

of resolution. For example, in the case of extreme forward peaking, even if the

mesh can not resolve the shape of the phase function well, we can still localize the

interaction in the angular space and preserve the positivity of the weights. Later

we will see that together with a proper spatial discretization for the transport oper-

ator, the fully discretized linear system preserves basic properties of the continuous

RTE. If piecewise quadratic approximation is used for f , we can not guarantee the

positivity of all weights. However we did not experience such a problem in our

numerical test. In terms of accuracy, piecewise linear approximation is almost as

good as quadratic one since the solution in angular space is approximated piecewise

linearly.

2.2. Improved Source-Iteration. The conventional source-iteration is

(2.7) cos θm
∂Φn+1

m

∂x
+ sin θm

∂Φn+1
m

∂y
+ µtΦn+1

m = µs

M∑

m′=1

wmm′Φn
m′ + q

in which the scattering term in the (n + 1)th iteration is completely from nth iter-

ation, i.e., scattering effect is lagged behind transport. The physical interpretation

of source iteration is that at (n + 1)th iteration, those photons that have scattering

events fewer than or equal to n are captured [4]. For each fixed direction, the above
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ẑ3

ẑ2

Figure 3. piecewise linear approximation: f̃(ẑ) is linear from ẑ1

to ẑ2 and linear from ẑ2 to ẑ3 in a triangle with ẑ1 > ẑ2 > ẑ3.

transport equation can be solved efficiently. However, conventional SI does not uti-

lize those available updated information in other directions effectively during the

computation along each direction. In the following we improve the conventional SI

method in several aspects and show improvement by numerical tests later.

2.2.1. Angular Gauss-Seidel method (Method 1). The first improvement is by using

angular Gauss-Seidel iteration as

(2.8)

cos θm
∂Φn+1

m

∂x
+sin θm

∂Φn+1
m

∂y
+µtΦn+1

m = µs

m−1∑

m′=1

wmm′Φn+1
m′ +µs

M∑

m′=m

wmm′Φn
m′+q.

Therefore, in the scattering term information from directions that have been up-

dated is used. Hence interactions among different directions are captured more

effectively which results in fewer number of iterations. Numerical simulations in

Section 3.2 show that the iteration number of this improvement reduces the number

of iterations to around one half to two thirds of that of conventional SI. On the

other hand, the computational cost of one iteration does not increase.

2.2.2. Combining the dominating scattering term (Method 2). In the forward-peaking

regime, after discretization of the scattering term, the most dominating scattering

weight for each direction m is wmm. We simply move it to the left-hand side to get
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a full angular Gauss-Seidel iteration:

(2.9)

cos θm
∂Φn+1

m

∂x
+sin θm

∂Φn+1
m

∂y
+(µt−µswmm)Φn+1

m = µs

m−1∑

m′=1

wmm′Φn+1
m′ +µs

M∑

m′=m+1

wmm′Φn
m′+q.

The third term on the left-hand side of (2.9) gives the correct decaying rate of the

radiance Φ along each transport direction. In SI, the original decaying factor µt

gives the false decaying rate, which causes a slow convergence rate. For example,

in the highly forward-peaking scattering regime, the ratio of two decaying rates is
µt−µswmm

µt
≈ 1−wmm, which can be quite different from 1 when µa ¿ µs. We show

that use of most updated information will accelerate convergence of the standard SI

method. Numerical tests in section 3.2 show that the iteration number of Method

2 uses fewer number of iterations than Method 1. In particular the number of

iterations is reduced more than half in strong forward-peaking scattering regime.

At the same time the computational time of one iteration does not increase.

Remark With normalization of the sum of wmm′ to be 1, µt − µswmm > 0.

2.2.3. Spatial upwind discretization and ordering. For a given θm, the transport

equation has a fixed direction of characteristics in space. On a rectangular grid,

simple upwind difference scheme can be used to follow the direction of character-

istics. As an example in 2D, if θm ∈ (0, π
2 ] and a simple upwind scheme, i.e.,

backward difference, is used for ∂
∂x and ∂

∂y , the fully discretized linear system for

the corresponding transport equation looks like

(2.10)

(a + b + µt − µswmm)φi,j,m − (aφi−1,j,m + bφi,j−1,m)− µs

∑

m′ 6=m

wmm′φi,j,m′ =qi,j,m

where

a =
cos θm

4x
≥ 0, b =

sin θm

4y
≥ 0, for 0 ≤ θm <

π

2

Note that

µt > µs = µs

∑

m′
wmm′

So with our angular discretization and proper upwind scheme for transport opera-

tor, the fully discretized linear system has the following nice property: the diagonal

element has the opposite sign to all off-diagonal elements in each row and its abso-

lute value is larger than the sum of absolute values of off-diagonal elements, i.e., we
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get a M-matrix system. This implies the system (1) is non-degenerate, (2) has a dis-

crete maximum principle, and (3) iterative methods will converge and use of most

updated information, e.g., Gauss-Seidel method, will accelerate the convergence.

One can accelerate the convergence further by taking advantage of the hyperbolic

nature of transport equation and use of upwind scheme through a proper angular

dependent ordering of the spatial nodes according to the transport direction. For

rectangular grids, the ordering is very simple. For example, in 2D, if θm ∈ (0, π
2 ],

we sweep through the spatial index in the order of i = 1, · · · , Nx, j = 1, · · · , Ny,

where Nx, Ny are the dimensions in x, y directions respectively, and we have the

following update formula

(2.11)

φn
i,j,m =

aφn
i−1,j,m + bφn

i,j−1,m + µsij
(
∑m−1

m′=1 wmm′φn
i,j,m′ +

∑M
m′=m+1 wmm′φn−1

i,j,m′) + qi,j,m

a + b + µtij − µsij wmm
.

Note that with this spatial ordering, when we update φn
i,j,m, both φn

i−1,j,m and

φn
i,j−1,m have already been updated. Hence the information propagates correctly

along the transport path. For simple transport equation, i.e., without the scatter-

ing term, the ordering will transform the linear system into a triangular system

and one sweep will solve it. If θm ∈ (π
2 , π] then the spatial ordering should be

i = Nx, · · · , 1, j = 1, · · · , Ny instead. In 2D there are four different orderings

corresponding to four quadrants in which the direction (cos θm, sin θm) belongs to.

For 3D rectangular grids there are 8 orderings corresponding to 8 quadrants. We

call this scheme (2.11) improved source-iteration (ISI) to distinguish it from the

standard SI.

In Section 2.4 we will discuss in details about discontinuous Galerkin discretiza-

tion and ordering for unstructured grids.

Remark In the above we show that Gauss-Seidel iteration with proper ordering

can capture transport part of RTE effectively. For example, ISI alone can deal

with forward peaking very efficiently. Moreover, due to our angular and spatial dis-

cretization, the iteration is a smoothing process in both space and angles. However,

non-transport component of the solution or long range interaction due to multiple

scattering is not captured effectively by the iterative method. Also it is known that

the low frequency component of the solution converges slowly for iterative method

in the case of isotropic scattering [4]. So multigrid strategy with the above ISI as
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the relaxation should be a good combination.

2.3. Multigrid. In scattering-dominating and optical-thick regime, the photon

trajectory is scattered many times and therefore the photon distribution becomes

diffusive after multiple scattering. The photon flux is spreading out in both space

and angle. We propose to use the above improved SI method as an efficient re-

laxation technique and combine with multigrid strategy [19] in spatial and angular

space. We point out that our angular discretization can capture short range and

long range interaction in angular space effectively. By alternating relaxations on

coarse and fine mesh, multigrid strategy can effectively accelerate the RTE solver.

In this section, we consider various multigrid methods on structured mesh. The

goal is to demonstrate that multigrid methods, including angular multigrid (AMG),

spatial multigrid (SMG), and angular and spatial multigrid (MG), indeed accelerate

the RTE solver dramatically in the scattering-dominating and optical-thick regime.

Numerical simulations show that multigrid methods accelerate ISI consistently in

various regimes. We leave descriptions of more complicated multigrid algorithm for

unstructured mesh to Section 2.4.

Our multigrid methods differ from those in the literature [14] in many ways, such

as discretization, relaxation technique, interpolation and restriction operators, and

multigrid implementation for both angular and spatial variables.

In the following we describe the AMG, SMG and MG sequentially.

2.3.1. Angular Multigrid (AMG). In [8], angular multigrid was studied with re-

spect to spectral expansion of the angular space. Here we consider AMG based

on multilevel angular mesh directly. First we restrict our discussion in two dimen-

sions. With a fixed spatial mesh we define a sequence of meshes in angular space,

Ωna , which divides the unit circle in a total number of intervals 2na as described

in Section 2.1. na denotes the level for angular mesh which is ranging between the

coarsest level na0 and the finest level naf We further define angular interpolation

operator Ina+1
na

from Ωna to Ωna+1

(2.12) Ina+1
na

Φ2m = Φm, Ina+1
na

Φ2m+1 =
Φm + Φm+1

2
,



A FAST FORWARD SOLVER OF RADIATIVE TRANSFER EQUATION 13

and angular restriction operator Ina
na+1 from Ωna+1 to Ωna

(2.13) Ina
na+1Φm = Φ2m or Ina

na+1Φm =
1
4
Φ2m−1 +

1
2
Φ2m +

1
4
Φ2m+1.

ΦΩ3

ΦΩ2
ΦΩ2

ΦΩ1

ΦΩ3

Figure 4. V-cycle on three layered meshes

We use the improved source iteration (ISI) (2.11) as the relaxation scheme in the

V-cycle (Figure 4) AMG algorithm with an initial guess [Φ0]na , which is usually a

zero function:

[Φ]na = AMGCY CLE(n1, n2, Ωna , [Q]na , na, [Φ0]na)

Step 1: relax [Φ]na for n1 times

Step 2: If na 6= na0

Compute the residual [d]na

[d]na−1 = Ina−1
na

[d]na

[Φ]na−1 = AMGCY CLE(n1, n2, Ωna−1, [d]na−1, na−1, 0)

[Φ]na = [Φ]na + Ina
na−1[Φ]na−1

Step 3: relax [Φ]na for n2 times

Note that direct inversion of matrix is not used, even on the coarsest mesh. Our

numerical experience shows that the convergence rate with direct inversion does

not help the convergence, not even to say that it is more expensive.

Similarly, we define a sequence of 3D angular meshes on unit sphere using the

proposed triangulation in Section 2.1: Mna , na0 ≤ na ≤ naf . Again we define the



14 HAO GAO AND HONGKAI ZHAO

angular interpolation operator In+1
n from Mn to Mn+1 by (Figure 5)

(2.14)
In+1
n Φi = Φi′ , i = 1, 2, 3,

In+1
n Φ4 = Φ1′+Φ2′

2 , In+1
n Φ5 = Φ1′+Φ3′

2 , In+1
n Φ6 = Φ2′+Φ3′

2 .

1

4

3

5

6

1
′

2
′

3
′

Figure 5. Vertices of t in Mn+1 and t′ in Mn

The angular restriction operator In
n+1 from Mn+1 to Mn is defined by

(2.15) In
n+1Φi′ = Φi, i = 1, 2, 3.

2.3.2. Spatial Multigrid (SMG). SMG algorithm for rectangular grid is really sim-

ple, and similar in 2D and 3D. Here we just specify the 2D spatial interpolation and

restriction operators. Define a sequence of 2D meshes: Ωns = (2nsx , 2nsy , Nŝ), nsx0 ≤
nsx ≤ nsxf , nsy0 ≤ nsy ≤ nsyf . On these rectangular meshes we use the simplest

piecewise constant DG approximation which is equivalent to first-order finite vol-

ume method with upwind scheme. Then, the spatial interpolation operator Ins+1
ns

from Ωns to Ωns+1 is

(2.16) Ins+1
ns

Φ2i−1,2j−1 = Ins+1
ns

Φ2i−1,2j = Ins+1
ns

Φ2i,2j−1 = Ins+1
ns

Φ2i,2j = Φi,j

and spatial restriction operator Ins
ns+1 from Ωns+1 to Ωns is

(2.17) Ins
ns+1Φi,j =

Φ2i−1,2j−1 + Φ2i−1,2j + Φ2i,2j−1 + Φ2i,2j

4
.

2.3.3. Multigrid in space and angle (MG). Now we apply multigrid in both spatial

and angular space. First, we define a sequence of meshes:

Ωna,ns = (2nsx , 2nsy , 2na), na0 ≤ na ≤ naf , nsx0 ≤ nsx ≤ nsxf , nsy0 ≤ nsy ≤ nsyf ,
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with ns = (nsx, nsy).

There are at least four ways to combine AMG and SMG into a full multigrid

algorithm (Figure 6).

Φ2,2

Φ1,2

Φ0,2

Φ0,1

Φ0,0

Φ2,2

Φ2,1

Φ2,0

Φ1,0

Φ0,0

Φ2,2

Φ1,1

Φ0,0

Φ2,2

Φ1,2

Φ1,1

Φ0,1

Φ0,0

MG3MG1 MG2 MG4

Figure 6. Multigrid methods

The first one, MG1, is to relax and interpolate solutions on two consecutive

meshes Ωna,ns and Ωna+1,ns+1, i.e., the simultaneous angular and spatial multi-

grid. The second one, MG2, is to first apply AMG from Ωnaf ,nsf
to Ωna0,nsf

, and

then apply SMG from Ωna0,nsf
to Ωna0,ns0 . The third one, MG3, is to first apply

SMG and then apply AMG. The fourth one, MG4, is to apply SMG and AMG

alternatively. We show performance of different choices in Section 3.

2.4. Algorithms on unstructured meshes. After angular discretization of the

steady state RTE (1.1), we get a system of coupled linear transport equations

(2.18) ŝm · ∇Φm + µtΦm = µs

M∑

m′=1

wmm′Φm′ + q, 1 ≤ m ≤ M,

where ŝm := (s1, s2) = (cos θm, sin θm) in 2D and ŝm := (s1, s2, s3) = (sin θm cosφm, sin θm sin φm, cos θm)

in 3D. DG method is a natural choice for transport equation on unstructured mesh

which has many desirable properties including upwind nature and possible high

order accuracy. For simplicity we start with piecewise constant DG.

2.4.1. Spatial discretization: piecewise constant DG. Let T := {τi, i = 1, · · · , N} be

a triangulation of the domain Ω, which is a triangular mesh in 2D or a tetrahedral
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mesh in 3D, and {ϕi = 1τi , i = 1, · · · , N} be the bases. Then Φm ≈ ∑N
i=1 φi,mϕi,

µt ≈
∑N

i=1 µtiϕi and µs ≈
∑N

i=1 µsiϕi. In the following presentation, we shall

suppress the mesh index i and angle index m to simplify the notations. First we

integrate (2.18) against a test function ϕi on every τi to get

(2.19)
∫

τi

ŝ · ∇Φϕd~x +
∫

τi

µtΦϕd~x =
∫

τi

(µs

M∑

m′=1

wmm′Φm′)ϕd~x +
∫

τi

qd~x

Then, applying Green’s formula and splitting the flux through boundary, we have

(2.20)

−
∫

τi

Φ(ŝ·∇ϕ)d~x+
∫

Γ+
Φϕŝ·n̂d~S+

∫

τi

µtΦϕd~x =
∫

Γ−
Φ̂ϕ(−ŝ·n̂)d~S+

∫

τi

µs

M∑

m′=1

wmm′Φm′ϕd~x+
∫

τi

qϕd~x,

where Γ+(Γ−) denotes edges (in 2D) or faces (in 3D) of the element τi such that

ŝ · n̂ ≥ 0(< 0) and Φ̂ is the upwind numerical flux. Finally, we have the following

for piecewise constant DG

(2.21)

φ

∫

Γ+
ŝ · n̂d~S + µtφ

∫

τi

d~x = φ̂

∫

Γ−
(−ŝ · n̂)d~S + µs

M∑

m′=1

wmm′φm′

∫

τi

d~x +
∫

τi

qd~x,

where φ̂ is the value from the upwind neighboring element. So the corresponding

explicit updating formula during an iteration is

(2.22)

φn
i,m =

∑ni

k=1 φ̂k,m

∫
Γ−(−ŝ · n̂)d~S + µs(

∑m−1
m′=1 wmm′φn

i,m′ +
∑M

m′=m+1 wmm′φn−1
i,m′ )Ai +

∫
τi

qd~x
∑no

k=1

∫
Γ+(ŝ · n̂)d~S + (µt − µswmm)Ai

In 2D, Ai is the area of triangular element τi, ni is the number of edges of τi with

incoming flux, i.e., ŝ · n̂ < 0, and no for that with ŝ · n̂ > 0. On each edge Γ with

two vertices (x1, y1) and (x2, y2),
∫
Γ
(ŝ · n̂)d~S = cos θ · (y2 − y1) + sin θ · (x1 − x2).

In 3D, Ai is the volume of tetrahedral element τi, ni denotes the number of

the faces of τi with incoming flux, i.e., ŝ · n̂ < 0, and no for that with ŝ · n̂ > 0.

On each face τ with three counterclockwise oriented vertices (xi, yi, zi), i = 1, 2, 3,
∫
Γ
(ŝ · n̂)d~S = (~a×~b) · ŝ, with ~a = (x1 − x2, y1 − y2, z1 − z2) and ~b = (x1 − x3, y1 −

y3, z1 − z3).

Now we need to find the upwinding numerical flux φ̂. In order to determine

where the upwind flux comes from, we need an assumption on spatial mesh, that

is one edge or face is shared by at most two elements. For example, if Γ is shared

by two triangles τ1 and τ2 in 2D, we know that the upwind flux comes from the

other triangle τ2 if it is incoming flux through Γ of τ1 due to the assumption. In
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implementation, the information for φ̂ is saved in the memory before running the

RTE solver to save the computation time.

Another important issue is the ordering of the elements during the Gauss-Seidel

iteration (2.22). A proper ordering of the elements, i.e., sweeping of all elements

following the transport direction ŝ, will provide update in each cell using the most

updated and correct information along characteristics. In this way information will

propagate through all elements in very few iterations. For rectangular grid the

ordering with respect to ŝ is very simple and one sweep is enough for a fixed ŝ (see

Section 2.2.3). For unstructured mesh, the ordering is more complicated and varies

with each ŝ. We will discuss it in more details in Section 2.4.3.

2.4.2. Spatial discretization: piecewise linear DG. Denote ϕij , i = 1, . . . , N, j = 1, . . . , nd

to be the basis for linear functions in element i, in which nd = 3 for 2D triangu-

lar elements and nd = 4 for 3D tetrahedral elements. In particular we use the

nodal basis, i.e, ϕij(k) = δjk, where j, k = 1, . . . , nd is the index for nodes in

an element. Then for each angular direction ŝm, Φm ≈ ∑N
i=1

∑nd

j=1 φij,mϕij , and

µt ≈
∑N

i=1

∑nd

j=1 µtij ϕij and µs ≈
∑N

i=1

∑nd

j=1 µsij ϕij . In the following presenta-

tion, we shall suppress i,m to simplify notations whenever needed. Similarly, we

integrate (2.18) against test function ϕij on every element τi to get

(2.23)
− ∫

τi
Φ(ŝ · ∇ϕj)d~x + ŝ · n̂ ∫

Γ+ Φϕjd~S +
∫

τi
(µt − µswmm)Φϕjd~x

= (−ŝ · n̂)
∫
Γ− Φ̂ϕjd~S +

∫
τi

(µs

∑
m′ 6=m wmm′Φm′)ϕjd~x +

∫
τi

qϕjd~x,

j = 1, 2, 3.

The corresponding formula can be written in a linear system

(2.24) (A + B+ + C)φn
m = B−φ̂ + D + Q

During the Guass-Seidel iterations a nd×nd linear system (2.24) is solved for each

element.

What is left is to specify the matrices in (2.24), which are computed through

a linear transformation (Figure 7), for example, (x, y) = F (x̂, ŷ) on the triangular

element in 2D as
[

x
y

]
= J

[
x̂
ŷ

]
+

[
x1

y1

]
with J =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
. In

the following, we list the results without deriving it.

In 2D,

φn
m =




φn
m,1

φn
m,2

φn
m,3


 , A = [−

∫
ϕi(ŝ · ∇ϕj)d~x] =

1
6




a + b a + b a + b
−a −a −a
−b −b −b



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1
2

3

3

21

ŷ

x̂

y

x

(x, y) = F (x̂, ŷ)

Figure 7. Linear transform in 2D

with a = s1(y3 − y1) + s2(x1 − x3) and b = s1(y1 − y2) + s2(x2 − x1),

C = [−
∫

(µt−µswmm′)ϕiϕj)d~x] =
|J |
120




2(3c1 + c2 + c3) 2c1 + 2c2 + c3 2c1 + c2 + 2c3

2c1 + 2c2 + c3 2(c1 + 3c2 + c3) c1 + 2c2 + 2c3

2c1 + c2 + 2c3 (c1 + 2c2 + 2c3) 2(c1 + c2 + 3c3)




with ci = µti −µsiwmm and |J | representing the absolute value of the determinant

of J , and

D = [
∫

(µs

∑

m′ 6=m

wmm′φm′,i)ϕiϕjd~x] =
|J |
120




2d1(3c1 + c2 + c3) + d2(2c1 + 2c2 + c3) + d3(2c1 + c2 + 2c3)
d1(c1 + 2c2 + c3) + 2d2(c1 + 3c2 + c3) + d3(c1 + 2c2 + 2c3)
d1(2c1 + c2 + 2c3) + d2(c1 + 2c2 + 2c3) + 2d3(c1 + c2 + 3c3)




with ci = µsi and di =
∑m−1

m′=1 wmm′φn
m′,i +

∑M
m′=m+1 wmm′φn−1

m′,i.

If the light source is a point source at (xq, yq) with unit intensity, Q =




1− x̂q − ŷq

x̂q

ŷq




with a scaling factor, where (x̂q, ŷq) = F−1(xq, yq).

Now we specify B+ and B−φ̂. First let us define the following three matrices as

the contribution from each edge,

B1 =
|a + b|

6




0 0 0
0 2 1
0 1 2


 , B2 =

|a|
6




2 0 1
0 0 0
1 0 2


 , B3 =

|b|
6




2 1 0
1 2 0
0 0 0


 ,

where B1 is for edge 23, B2 is for edge 13, and B3 is for edge 12 Then, B+ and B−

are determined by the sign of ŝ · n̂. For example, if we know in a triangle τ that

ŝ · n̂13 > 0, ŝ · n̂12 > 0 and ŝ · n̂23 < 0, then B+ = B2 + B3 and B−φ̂ = B1




0
φ̂2

φ̂3


,

where φ̂2, φ̂3 comes from adjacent triangle sharing the edge 23.
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In 3D, we have the following compact formulas.

[A]ij =
1
24

3∑

k=1

(2δi1 − 1)max(δi1, δi,k+1)ak with
[

a1 a2 a3

]T = |J |J−1ŝT .

[C]ij =
|J |
720

(1 + δij)(δici + δjcj +
4∑

k=1

ck) with ci = µti
− µsi

wmm.

[D]j =
4∑

k=1

Cjkdk with ci = µsi
, di =

m−1∑

m′=1

wmm′φn
m′,i +

M∑

m′=m+1

wmm′φn−1
m′,i.

[Bijk]mn =
1
24
|(~lij ×~lik) · ŝ|max(δim, δjm, δkm)(1 + δmn)

with ~lik := (xj −xi, yj − yi, zj − zi), in which the index sets (i, j, k) have the values

(1,2,3), (1,2,4), (1,3,4) and (2,3,4). Here B+ and B− are assembled from Bijk

according to the sign of ŝ · n̂.

2.4.3. Spatial ordering for each directional sweeping. A proper ordering of the el-

ements is crucial for fast convergence of ISI. By following the transport direction

information will propagate through all elements in very few iterations. For rect-

angular grid the ordering is very simple. A group of direction ŝ shares the same

ordering. Moreover one sweep is enough for a fixed ŝ (see Section 2.2.3).

For unstructured mesh, the ordering is not as straightforward as for rectangular

grid. First, the ordering varies with each ŝ. Second, even for a fixed direction

and a fixed mesh there is no ordering that can follow the direction perfectly in

general. We use the following simple method to determine the sweeping ordering

for each direction. For example, in 2D, let us consider a fixed triangulation T with

the transport direction ŝ (Figure 8). First we rotate the coordinate to align the

direction x with ŝ axis to get x′ and then order the spatial grids according to the

x′ coordinates in the rotated frame. In another word, the ordering is following the

planar wavefront that is propagating with direction ŝ. In this way, when one element

is being updated those elements that are in the upwinding direction are more likely

to have been updated already and therefore the most updated information is used.

3D case can be done similarly. In implementation, the ordering for each direction

is stored before iteratively solving RTE since they are unchanged once the angular

and spatial meshes are specified.
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ŝ

x

y

x
′

y
′

Figure 8. Alignment of the direction ŝ with x axis

2.4.4. Spatial interpolation and projection operators in multigrid. Multigrid meth-

ods for unstructured grids are also more complicated than those for rectangular

grids. In the following we define the spatial interpolation and projection operators

for both piecewise constant DG and piecewise linear DG. Although we restrict our

discussion in 2D for simplicity, the procedure can be carried over to 3D similarly.

First let us define a sequence of 2D spatial multigrid meshes Ωns = (Tns , Nŝ), ns0 ≤ ns ≤ nsf ,

in which Tn+1 is a refined spatial triangulation from Tn. Next we define the spatial

mapping Pn→n+1 from Tn to Tn+1 by Pn→n+1(τi) = τj for τj ⊆ τi with τi ∈ Tn

and τj ∈ Tn+1, which is stored in the memory before solving RTE. For piecewise

constant DG, according to the above spatial mapping, we define the corresponding

spatial interpolation operator In+1
n from Tn to Tn+1 as In+1

n (Φτj ) = Φτi and spatial

restriction operator In
n+1 from Tn+1 to Tn as In

n+1(Φτi) =
∑Ni

j=1

Aτj

Aτi
Φτj , in which A

represents area and Ni is the number of elements in Tn+1 contained in the element

τi in Tn.

Next, we consider the spatial interpolation and projection operators for 2D piece-

wise linear DG. Similarly, we first save the spatial mapping between the coarse mesh

and the fine one. Then the spatial interpolation operator In+1
n from Tn to Tn+1 is

defined to be linear interpolation by

(2.25) In+1
n (φi,j) =

3∑

k=1

wij,kφk,
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where φi,j is the value at jth node of ith element on the fine mesh, φk is the value

at kth node of the interpolated function on the coarse mesh and wij,k is the value

of the linear nodal basis ϕk at the vertex (i, j).

On the other hand, the spatial restriction operator In
n+1 from Tn+1 to Tn can be

computed through standard L2 projection technique by requiring

(2.26)
∫

τi

In
n+1(f)ϕkd~x =

∑

τj⊆τi

∫

τj

fϕkd~x, k = 1, 2, 3

in which f is a piecewise linear function on the fine mesh τj ⊆ τi with τi ∈ Tn and

τj ∈ Tn+1, and ϕk is the nodal basis on the coarse mesh τi.

Then we have

(2.27)




φ1

φ2

φ3


 =

Ni∑

j=1

Aτj

Aτi

T j




φj,1

φj,2

φj,3




with

(2.28) T j =




1− T j
21 − T j

31 1− T j
22 − T j

32 1− T j
23 − T j

33

2x̂1 + x̂2 + x̂3 − 1 x̂1 + 2x̂2 + x̂3 − 1 x̂1 + x̂2 + 2x̂3 − 1
2ŷ1 + ŷ2 + ŷ3 − 1 ŷ1 + 2ŷ2 + ŷ3 − 1 ŷ1 + ŷ2 + 2ŷ3 − 1




where, φk is the value on kth node on a fixed element on the coarse mesh; φj,k is the

value on kth node of jth element on the fine mesh contained in this fixed element

which contains Ni elements of the fine mesh; (x̂k, ŷk) are the new coordinates of

kth node of jth element in the fixed element after transform (Figure 7) and A is

for the area.

Similarly in 3D, we have

(2.29)




φ1

φ2

φ3

φ4


 =

Ni∑

j=1

Vτj

Vτi

T j




φj,1

φj,2

φj,3

φj,4




with

(2.30)

T j =




1− T j
21 − T j

31 − T j
41 1− T j

22 − T j
32 − T j

42 1− T j
23 − T j

33 − T j
43 1− T j

24 − T j
34 − T j

44

2x̂1 + x̂2 + x̂3 + x̂4 − 1 x̂1 + 2x̂2 + x̂3 + x̂4 − 1 x̂1 + x̂2 + 2x̂3 + x̂4 − 1 x̂1 + x̂2 + x̂3 + 2x̂4 − 1
2ŷ1 + ŷ2 + ŷ3 + ŷ4 − 1 ŷ1 + 2ŷ2 + ŷ3 + ŷ4 − 1 ŷ1 + ŷ2 + 2ŷ3 + ŷ4 − 1 ŷ1 + ŷ2 + ŷ3 + 2ŷ4 − 1
2ẑ1 + ẑ2 + ẑ3 + ẑ4 − 1 ẑ1 + 2ẑ2 + ẑ3 + ẑ4 − 1 ẑ1 + ẑ2 + 2ẑ3 + ẑ4 − 1 ẑ1 + ẑ2 + ẑ3 + 2ẑ4 − 1


 ,

where V is for the volume.

With the spatial interpolation and projection operators defined above, we can

implement various multigrid methods on unstructured grids to accelerate the RTE
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solver. The numerical tests in Section 3 show that the multigrid methods accelerate

ISI up to ten times.

2.5. Boundary mismatch of refraction index. Based on our angular discretiza-

tion method, boundary condition can be treated easily. However, the implementa-

tion of boundary condition for finite difference scheme and DG method is a little

different. For finite difference scheme, the boundary condition is enforced for point

value while for DG boundary condition is enforced weakly by upwind flux through

cell boundary. For example, the vacuum boundary condition for finite difference

scheme on a rectangular grid in 2D is: at a grid point (xi, yj) ∈ ∂Ω on the boundary,

we have

(2.31) Φi,j,m = 0

for ŝm · n̂ ≤ 0, and

(2.32)

Φi,j,m =
aΦi−1,j,m + bΦi,j−1,m + µs(

∑m−1
m′=1 wmm′Φi,j,m′ +

∑M
m′=m+1 wmm′Φi,j,m′) + qi,j,m

a + b + µt − µswmm
,

for ŝm · n̂ > 0, assuming that θm ∈ (0, π
2 ). On the right hand side, fluxes

Φi−1,j,m, Φi,j−1,m come from interior neighbors and Φi,j,m′ = 0 for ŝm′ · n̂ ≤ 0.

For piecewise constant DG discretization, at a boundary cell τk, we impose the

influx through the cell boundary, which is also the domain boundary, φ̂k,m = 0 in

(2.22) for ŝm · n̂ ≤ 0. Similar flux condition is imposed for piecewise linear DG.

In the presence of boundary mismatch of the refraction index, one needs to

consider reflection and refraction at the boundary (Figure 9). The relation between

an outgoing flux φ0 along direction ŝ0, the reflected flux φ1 along direction ŝ1 and

the refracted flux φ2along direction ŝ2, follows the Fresnel formula [6].

In the implementation (Figure 10), we reverse the above relation: given a di-

rection at the boundary ŝ0, we trace back from ŝ0 and find direction ŝ1, which is

reflected into ŝ0, and direction ŝ2, which is refracted into ŝ0, by Snell’s law [6].

Then we can compute the flux contribution from φ1 (photon flux) and φ2 (light

source) to φ0 according to Fresnel formula as follow.

Let r be the reflection energy rate, then

(2.33) r =





(ni−no

ni+no
)2, if θi = 0

1, if ni

no
sinθi ≥ 1

1
2 ([ tan(θi−θr)

tan(θi+θr) ]
2 + [ sin(θi−θr)

sin(θi+θr) ]
2), otherwise
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φ1
φ0

φ2

tissue

air

Figure 9. Reflection and refraction of an outgoing flux φ0

φ1
φ0

φ2

tissue

air

Figure 10. tracing back for the contribution from φ1 and φ2 to φ0

where ni for the refraction index of inside medium (tissue), no for that of outside

medium (vacuum or air), θi for incident angle,and θr for refracted angle.
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Then we have φ0 = r1φ
1 + (1 − r2)φ2 for the case with boundary mismatch of

refraction index, in which r1 represents the reflection energy rate for φ1 and r2 for

φ2. Note φ2 is nonzero only in the presence of light source.

Since ŝ1 and ŝ2 may not coincide with the underlying discrete angular nodes,

we use a linear interpolation of fluxes from neighboring angles to approximate φ1

and φ2 if necessary. In such a way, we establish a relationship among fluxes in

different directions at the boundary. Again for finite difference scheme, at a grid

point (xi, yj) ∈ ∂Ω on the boundary, for ŝm · n̂ ≤ 0,

(2.34) Φi,j,m = rm1Φi,j,m1 + (1− rm2)Φi,j,m2 ,

where Φi,j,m1 , Φi,j,m2 are the corresponding traced-back reflected flux and refracted

light source which may be linearly interpolated from neighboring fluxes on angular

grids. This relation will replace (2.31) for vacuum boundary condition.

For piecewise constant DG discretization, at a boundary cell τk, the mismatch

boundary condition is imposed through the influx at the cell boundary, which is also

the domain boundary, φ̂k,m = rm1φk,m1 + (1 − rm2)φk,m2 in (2.22) for ŝm · n̂ ≤ 0,

where φk,m1 is the corresponding traced-back reflected flux in the cell τk and φk,m2

is the corresponding traced-back refracted flux, e.g., a light source from exterior.

Again these fluxes may be linearly interpolated from neighboring fluxes on angular

grids. Similar flux condition is imposed for piecewise linear DG.

We see that the implementation difference between vacuum and non-vacuum

boundary condition lies in the fact that the boundary fluxes for directions with

ŝ · n̂ < 0 are not zero and are coupled with outgoing fluxes through the boundary

condition.

Remark In another word, the boundary condition provides a scattering relation

among fluxes from different directions at boundary. More importantly, the above

discretization at boundary will not destruct a M matrix system. It is also important

that we use the trace back formulation and put ŝ0 on the grid point of angular

discretization. Otherwise if we put ŝ1 orŝ2 on the grid point, it is not clear how to

split the contribution from φ1 and φ2 to φ0 since the reflection or refraction obeys

Fresnel formula (2.33), which is nonlinear.

The coding includes two steps. First, for each ŝ0 on the existing angular grids, we

compute reflection direction ŝ1 and refraction direction ŝ2, and the corresponding
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Table 2. The analytical solutions with a = b = µa/3 for 2D and
a = b = c = µa/6 for 3D.

Analytical solutions
Case 1 Φ = e−ax−by, f : H-G function with g = 0.9

q = (µa − a cos θ − b sin θ)e−ax−by

Case 2 Φ = e−ax−by(1 + c1 cos θ), f(ŝ, ŝ′) = 1
2π (1 + ŝ·ŝ′

2 )
q = [(µa − a cos θ − b sin θ)(1 + c1 cos θ) + µsc1

3 cos θ
4 ]e−ax−by,c1 = µa

µa+6µs

Case 3 Φ = e−ax−by−cz, f : H-G function with g = 0.0
q = (µa − a sin θ cos ϕ− b sin θ sin ϕ− c cos θ)e−ax−by−cz

Case 4 Φ = e−ax−by−cz(1 + c1 cos θ), f(ŝ, ŝ′) = 3
16π (1 + ŝ · ŝ′)2

q = [(µa − a sin θ cosϕ− b sin θ sinϕ− c cos θ)(1 + c1 cos θ) + µsc1
cos θ

2 ]e−ax−by−cz,c1 = µa

6µs

reflection ratio, then we interpolate them linearly onto the existing angular grids.

For each reflected or refracted direction, at most two directions on the existing

grids contribute to it in 2D, while three directions do in 3D, based on our angular

discretization. The weights and the directions for each φ0 are stored in the memory

before running the relaxation. Second, during the relaxation iteration, we trace

back, that is, for each direction at boundary, we sum up the weighted contributions

from the reflected fluxes and the refracted fluxes (e.g., boundary sources).

3. Simulations

In this section we present extensive numerical tests for our algorithm. Accuracy

is tested on our piecewise linear DG method using analytic solution. The effects of

several improvements, such as improved source iteration (ISI) and various multigrid

methods are demonstrated. Tests in various scattering regimes, for heterogeneous

media and in frequency domains show efficiency of our algorithms. Comparison

with Monte Carlo Simulation is also provided.

3.1. Verification of accuracy. The analytical solutions in Table 2, on a homoge-

neous square or cube of side length 20mm with µa = 0.01mm−1 and µs = 1mm−1,

are used to verify the accuracy of RTE solver.

The following quantities are used to measure the difference between the analytical

solution Φ and numerical solution Φ̃: L
(1)
∞ = max~x,ŝ|Φ−Φ̃

Φ |, L
(1)
2 =

√∫
(Φ− Φ̃)2dŝd~x,

L
(2)
∞ = max~x|Ψ−Ψ̃

Ψ |, L
(2)
2 =

√∫
(Ψ− Ψ̃)2d~x, with photon density Ψ =

∫
Φdŝ.

The numerical simulations in Table 3 and 4 show that the numerical solution to

RTE with piecewise linear DG has second order accuracy as expected.
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Table 3. Verification of 2nd order accuracy of 2D RTE with piece-
wise linear DG on the mesh with five refinements, including: 13
nodes and 16 triangles, 41 nodes and 64 triangles, 145 nodes and
256 triangles, 545 nodes and 1024 triangles and 2113 nodes and
4096 triangles respectively.

(na, ns) L
(1)
∞ L

(2)
∞ L

(1)
2 L

(2)
2

case 1 (2,1) 3.5e-3 2.1e-3 3.1e-2 7.1e-2
(3,2) 1.0e-3 5.3e-4 1.0e-2 1.9e-2
(4,3) 3.0e-4 1.3e-4 3.0e-3 4.8e-3
(5,4) 1.0e-4 2.8e-5 8.6e-4 1.3e-3
(6,5) 4.0e-5 7.3e-6 2.6e-4 3.4e-4

case 2 (2,1) 3.7e-3 2.8e-3 3.9e-2 9.5e-2
(3,2) 9.7e-4 6.9e-4 1.0e-2 2.3e-2
(4,3) 2.4e-4 1.7e-4 2.6e-3 5.7e-3
(5,4) 8.3e-5 4.0e-5 7.3e-4 1.5e-3
(6,5) 3.4e-5 1.0e-5 2.2e-4 3.9e-4

Table 4. Verification of 2nd order accuracy of 3D RTE with piece-
wise linear DG on the mesh with three refinements, including: 172
nodes and 612 triangles, 1068 nodes and 4896 triangles, and 7483
nodes and 39168 triangles respectively.

(na, ns) L
(1)
∞ L

(2)
∞ L

(1)
2 L

(2)
2

Case 3 (2,1) 1.3e-3 9.9e-4 5.4e-2 1.8e-1
(3,2) 3.9e-4 2.1e-4 1.4e-2 4.2e-2
(4,3) 1.1e-4 5.4e-3 3.8e-3 1.1e-2

Case 4 (2,1) 1.2e-3 8.7e-4 6.9e-2 1.9e-1
(3,2) 3.9e-4 1.9e-4 1.8e-2 4.5e-2
(4,3) 1.3e-4 4.8e-5 4.9e-3 1.2e-2

3.2. Comparison of ISI and SI on structured grids. In this study, each side

of the square or cubic domain has (N − 1) mean free paths (1/µt). In Table 5

and 6, we vary parameters in the first four columns while fixing others. Upwind

finite difference is used to discretize the spatial variables in this study. For all

tests in 3D shown in Table 6, we use the residual error from 100 standard SI as

the stopping criterion. From Table 5 and 6, we conclude that the improvement

of Method 1, which utilizes updated information from other directions, degrades

as the value of g increases since the coupling among fluxes in different direction

becomes less. However, Method 2 performs better as the value of g increases since

the dominant scattering term is properly involved. Without extra computational
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Table 5. the number of iterations for 2D problems: the spatial
mesh is N ×N and the angular mesh has M angles.

g µs − µa N M SI Method1 Method 2
0.7 1-0.01 101 36 484 278 207
0.9 1-0.01 101 60 389 246 144
0.95 1-0.01 101 72 314 218 98
0.7 10-0.01 101 36 1267 727 540
0.9 10-0.01 101 60 1437 908 529
0.95 10-0.01 101 72 1460 1013 447

Table 6. the number of iterations for 3D problems: the spatial
mesh is N × N × N and the angular mesh has na refinements as
in Table 1.

g µs − µa N na SI Method1 Method 2
0.7 1-0.01 101 4 100 58 42
0.9 1-0.01 101 4 100 76 24
0.95 1-0.01 101 4 100 80 21
0.0 5-0.01 101 4 100 50 49
0.7 5-0.01 101 4 100 58 41
0.9 5-0.01 101 4 100 76 23

cost, we can reduce the number of iterations by ISI to one third (1/3) of that by

SI in the regime with highly forward-peaking scattering.

3.3. Comparison of multigrid methods and ISI on structured grids. The

2D simulations in this study are on a homogeneous square domain with side length

L and corners (0, 0), (0, L), (L, 0) and (L,L) with a isotropic point source at

(0.1L, 0.1L) with unit strength. naf = 6, nsf = 7, na0 = 2, ns0 = 1 and each

side L has length of 64 mean free paths.

3D numerical tests have the similar settings on a cubic domain with side length

of 32 mean free paths and a isotropic source at (0.1L, 0.1L, 0.1L) with naf = 4,

nsf = 5. na0 = 1, ns0 = 1 in Table 10-12.

In Table 7-12, the computational time t, the residual ‖d‖1 :=
∫ |d(ŝ, ~r)|dŝd~r as

the stopping criterion, the iteration number N and the average convergence factor

ρ according to ρn = ‖dn‖1/‖dn−1‖1 are compared; µa, µs has the unit mm−1.

The conclusion is that multigrid methods can accelerate ISI significantly in all

scattering regimes. Our algorithms are very effective for high forward peaking

cases. The number of multigrid iterations increases (slowly) when scattering be-

comes stronger.
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Table 7. The cases with g = 0.9

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 54 85 68 55 68 79 334

‖d‖ 1.1e-7 5.3e-7 1.0e-6 4.3e-8 9.1e-7 2.2e-6 6.1e-7
N 6 7 6 5 6 7 280
ρ 0.031 0.060 0.039 0.011 0.039 0.072 0.934

(10,0.01) t 63 108 115 68 126 137 577
‖d‖ 1.5e-6 6.6e-6 1.5e-6 4.3e-7 8.3e-6 1.0e-5 3.5e-6
N 7 9 10 6 11 12 480
ρ 0.036 0.088 0.096 0.016 0.14 0.17 0.955

(1,0) t 53 96 91 55 103 114 483
‖d‖ 5.0e-7 1.1e-6 3.2e-6 4.2e-7 1.0e-5 8.5e-6 3.7e-6
N 6 8 8 5 9 10 400
ρ 0.040 0.092 0.10 0.018 0.15 0.18 0.958

Table 8. The cases with g = 0.7

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 44 85 97 66 81 125 502

‖d‖ 9.0e-7 1.4e-5 2.0e-5 8.4e-7 7.0e-6 2.4e-5 1.0e-5
N 6 9 9 6 7 11 420
ρ 0.038 0.16 0.16 0.037 0.084 0.24 0.963

(10,0.01) t 132 169 262 132 235 331 1298
‖d‖ 1.1e-5 1.7e-5 2.4e-5 1.9e-5 1.5e-5 3.3e-5 1.9e-5
N 15 14 23 12 20 29 1080
ρ 0.25 0.22 0.41 0.18 0.35 0.50 0.982

(1,0) t 115 132 216 121 197 273 1102
‖d‖ 1.4e-5 2.5e-5 3.8e-5 7.7e-6 2.4e-5 5.4e-5 2.5e-5
N 13 11 19 11 17 24 920
ρ 0.29 0.23 0.45 0.22 0.40 0.54 0.984

Table 9. The cases with g = 0.0

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 92 73 137 95 151 145 623

‖d‖ 9.9e-6 5.0e-7 2.5e-5 5.8e-6 2.0e-5 2.8e-5 1.3e-5
N 12 7 14 10 15 15 580
ρ 0.24 0.057 0.31 0.17 0.34 0.34 0.975

(10,0.01) t 367 261 506 331 612 611 2422
‖d‖ 7.2e-5 4.7e-5 7.1e-5 4.4e-5 7.3e-5 7.0e-5 6.1e-5
N 48 25 52 35 61 63 2260
ρ 0.67 0.46 0.69 0.57 0.73 0.74 0.992

(1,0) t 368 261 498 321 614 600 2470
‖d‖ 6.6e-5 5.8e-5 7.6e-5 6.5e-5 6.9e-5 7.7e-5 6.6e-5
N 48 25 51 34 61 62 2240
ρ 0.74 0.56 0.75 0.65 0.79 0.79 0.994



A FAST FORWARD SOLVER OF RADIATIVE TRANSFER EQUATION 29

Table 10. The 3D cases with g = 0.9

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 266 289 289 288 281 292 930

‖d‖ 2.2e-4 5.8e-5 4.6e-5 3.5e-5 1.6e-4 1.2e-4 6.4e-5
N 4 4 4 4 4 4 90
ρ 0.022 0.012 0.012 0.012 0.017 0.025 0.850

(1,0) t 333 289 288 288 357 292 1029
‖d‖ 1.6e-5 3.6e-4 2.0e-4 1.0e-4 1.7e-5 8.2e-4 1.5e-4
N 5 4 4 4 5 4 100
ρ 0.025 0.020 0.018 0.016 0.020 0.044 0.872

Table 11. The 3D cases with g = 0.7

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 272 360 290 288 352 453 1641

‖d‖ 4.3e-4 9.2e-5 5.0e-4 1.4e-4 4.2e-4 1.4e-3 2.8e-4
N 4 5 4 4 5 6 160
ρ 0.029 0.055 0.029 0.028 0.073 0.18 0.926

(1,0) t 272 362 290 288 423 656 2042
‖d‖ 7.2e-4 2.3e-4 9.7e-4 2.9e-4 9.6e-5 1.3e-3 6.9e-4
N 4 5 4 4 6 9 200
ρ 0.036 0.065 0.037 0.034 0.085 0.31 0.944

Table 12. The 3D cases with g = 0.0

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 475 289 453 369 564 666 2257

‖d‖ 3.7e-3 3.8e-4 3.3e-3 1.3e-3 1.1e-3 2.0e-3 9.4e-4
N 7 4 7 5 8 9 220
ρ 0.29 0.03 0.27 0.14 0.27 0.36 0.953

(1,0) t 813 445 795 590 846 1035 3390
‖d‖ 4.5e-3 2.1e-3 4.1e-3 2.2e-3 3.5e-3 4.3e-3 2.9e-3
N 12 6 11 8 12 14 330
ρ 0.49 0.21 0.45 0.31 0.46 0.54 0.972

3.4. Performance of multigrid acceleration in heterogeneous media on

structured grids. The simulations are on a square domain with side length L =

20mm and corners (0, 0), (0, L), (L, 0) and (L,L) with a square inclusion centered at

(0.5L, 0.5L) with side length l. MG2 is used with the following parameters: na0 = 3,

ns0 = 3, naf = 6, nsf = 7, g = 0.7 and µa = 0.01mm−1 with a isotropic point

source at (0.1L, 0.1L) with unit strength. µ1
s and µ2

s denote scattering coefficients

for the background and the inclusion separately, which have the unit mm−1. In
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Table 13. convergence factor ρ for homogenous media

µ1
s 1 2 5 10

ρ 0.032 0.052 0.37 0.69

Table 14. convergence factor ρ for the inclusion with l = 5mm

(µ1
s, µ

2
s) (1,2) (1,5) (1,10) (2,5) (2,10) (5,10)

ρ 0.040 0.044 0.097 0.055 0.18 0.45

Table 15. convergence factor ρ for the inclusion with l = 10mm

(µ1
s, µ

2
s) (1,2) (1,5) (1,10) (2,5) (2,10) (5,10)

ρ 0.052 0.088 0.46 0.15 0.49 0.58

Table 16. convergence factor ρ for the inclusion with random
scattering coefficients with l = 10mm

(µ1
s, δµs) (1,1) (1,4) (1,9) (2,3) (2,8) (5,5)
ρ 0.053 0.080 0.42 0.16 0.47 0.58

Table 16, the random scattering coefficients δµs are added to the background µ1
s in

the inclusion, which is uniformly distributed between 0 and ∆µs.

The conclusion from Table 13-16 is that the acceleration of ISI by multigrid

methods does not degrade in heterogeneous media or the convergence factor ρ for

heterogeneous media is in between of those for the corresponding homogeneous

media.

3.5. Comparison of multigrid methods and ISI on unstructured grids.

The 2D simulations with piecewise linear DG are performed on a circular domain

centered at (0, 0) with radius 20mm and an isotropic source at (−8mm, 0). Both of

the angular mesh and the spatial mesh (Table 17) has six refinements with na0 = 2,

ns0 = 1, naf = 6 and nsf = 6 in multigrid acceleration.

The 3D simulations with piecewise linear DG are performed on a cylinder (Figure

11) centered at (0, 0, 40mm) with radius 10mm, height 80mm and an isotropic

source at (−5mm, 0, 40mm). The angular mesh has three refinements with na0 = 1

and naf = 3, and the spatial mesh (Table 20) has four refinements ns0 = 1 and

nsf = 4 in multigrid acceleration. Table 21 and 22 show the comparison results, in

which the consideration of boundary mismatch of refraction index is in the second

simulation as a typical setting in optical imaging.
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Table 17. 2D spatial mesh with np vertices and nt elements

ns 1 2 3 4 5 6
np 9 25 81 289 1089 4225
nt 8 32 128 512 2048 8192

Table 18. The 2D cases with g = 0.0 for piecewise linear DG

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 165 123 176 139 321 245 1340

‖d‖ 8.7e-4 1.2e-4 7.8e-5 6.3e-5 1.6e-3 1.2e-3 7.6e-4
N 9 5 7 6 13 12 460
ρ 0.20 0.037 0.11 0.060 0.35 0.31 0.971

(1,0) t 385 295 310 303 742 553 2934
‖d‖ 3.8e-3 2.9e-3 3.5e-3 2.6e-3 4.5e-3 4.4e-3 3.5e-3
N 21 12 13 13 30 27 1010
ρ 0.54 0.34 0.38 0.36 0.65 0.63 0.988

Table 19. The 2D cases with g = 0.9 for piecewise linear DG

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 91 98 95 93 123 82 438

‖d‖ 8.5e-6 3.6e-4 2.1e-4 1.0e-4 4.8e-6 7.8e-5 5.0e-5
N 5 4 4 4 5 4 150
ρ 0.021 0.020 0.018 0.016 0.020 0.015 0.897

(10,0.01) t 639 494 492 489 1184 1563 7710
‖d‖ 5.2e-3 4.5e-3 8.0e-3 3.8e-3 7.2e-3 8.5e-3 5.7e-3
N 35 20 20 21 48 76 2640
ρ 0.70 0.50 0.52 0.54 0.78 0.85 0.996

Table 20. 3D spatial mesh for piecewise linear DG with np ver-
tices and nt elements

ns 1 2 3 4
np 353 1008 2944 8685
nt 1146 4355 13600 43086

The conclusion from Table 18-22 is similar to those on structured grids.

3.6. Comparison of multigrid methods and ISI for frequency-domain

RTE on 2D unstructured grids. The following simulations for frequency-domain

RTE [10] are performed on a circular domain centered at (0, 0) with radius 20mm

and an isotropic source at (−8mm, 0). Both of the angular mesh and the spatial

mesh (Table 23) has five refinements with na0 = 2, ns0 = 1, naf = 5 and nsf = 5 in
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Table 21. The 3D cases with g = 0.0 for piecewise linear
DG:(1, 0.01)∗ is with reflection boundary condition for ni = 1.5
and no = 1.0.

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(1,0.01) t 1168 862 1201 861 1676 1697 4613

‖d‖ 1.7e-4 7.0e-5 1.2e-4 1.3e-4 3.5e-4 2.7e-4 1.3e-4
N 9 6 7 6 12 10 260
ρ 0.28 0.13 0.18 0.14 0.41 0.33 0.961

(1, 0.01)∗ t 1259 1102 1340 1116 1950 1867 5424
‖d‖ 3.8e-4 7.7e-5 9.3e-5 4.9e-5 3.6e-4 3.7e-4 1.9e-4
N 10 8 8 8 14 11 290
ρ 0.34 0.21 0.22 0.20 0.46 0.38 0.965

Table 22. The 3D cases with g = 0.9 for piecewise linear
DG:(10, 0.01)∗ is with reflection boundary condition for ni = 1.5
and no = 1.0.

(µs, µa) MG1 MG2 MG3 MG4 AMG SMG ISI
(10,0.01) t 4115 8753 4305 2987 6085 6811 17105

‖d‖ 5.8e-4 9.6e-4 4.8e-4 6.3e-4 7.2e-4 6.5e-4 5.9e-4
N 30 59 24 20 41 38 910
ρ 0.70 0.84 0.64 0.59 0.78 0.76 0.990

(10, 0.01)∗ t 4950 8638 5051 3604 7415 7891 20318
‖d‖ 6.9e-4 9.3e-4 5.5e-4 4.8e-4 7.3e-4 8.1e-4 6.7e-4
N 36 58 28 24 50 44 1080
ρ 0.75 0.84 0.68 0.64 0.81 0.79 0.992

Table 23. 2D spatial mesh with np vertices and nt elements

ns 1 2 3 4 5
np 9 25 81 289 1089
nt 8 32 128 512 2048

multigrid acceleration. The conclusion from Table 24 and 25 is that the multigrid

acceleration of ISI is not affected by modulation frequency within the normal range.

3.7. Comparison of RTE solver and Monte Carlo simulation in 2D. The

following simulations are performed on a square domain centered at (10mm, 10mm)

with side length 20mm and an isotropic source at (6mm, 3mm) with homogeneous

background µa = 0.01mm−1, µs = 1mm−1, and no = 1.0. In our RTE solver, MG4

with piecewise linear DG is used with na0 = 2, naf = 5, ns0 = 1 and nsf = 3 (Table

26) on a desktop with Intel CPU E6850 (3.00GHz). Monte Carlo simulation (MC)

is performed by Tracepro [5] with five million photons on Dell X64 workstation
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Table 24. The 2D cases with g = 0.0, µa = 0.01mm−1, µs =
1mm−1, with piecewise linear DG

ω MG1 MG2 MG3 MG4 AMG SMG ISI
0 t 16 11 18 12 24 22 60

‖d‖ 1.7e-5 2.1e-6 9.0e-6 6.6e-6 4.2e-5 2.4e-5 1.5e-5
N 11 6 10 7 13 14 420
ρ 0.31 0.08 0.26 0.14 0.40 0.41 0.969

1e7 t 16 11 18 13 24 22 60
‖d‖ 1.7e-5 2.2e-6 9.0e-6 6.6e-6 4.2e-5 2.4e-5 1.5e-5
N 11 6 10 7 13 14 420
ρ 0.31 0.08 0.26 0.14 0.40 0.41 0.969

1e8 t 16 11 18 13 24 22 60
‖d‖ 1.7e-5 2.8e-6 9.8e-6 6.8e-6 4.2e-5 2.4e-5 1.5e-5
N 11 6 10 7 13 14 420
ρ 0.31 0.09 0.26 0.14 0.40 0.41 0.953

1e9 t 16 17 17 15 26 21 59
‖d‖ 2.7e-5 9.3e-6 1.7e-5 6.0e-6 2.1e-5 3.7e-5 1.6e-5
N 11 9 9 7 14 13 410
ρ 0.32 0.22 0.24 0.18 0.40 0.39 0.935

1e10 t 7 9 9 9 13 8 28
‖d‖ 5.4e-7 1.1e-7 1.1e-7 5.8e-7 4.4e-6 8.4e-7 5.8e-7
N 5 5 5 5 7 5 200
ρ 0.04 0.03 0.03 0.04 0.13 0.04 0.765

Table 25. The 2D cases with g = 0.9, µa = 0.01mm−1, µs =
10mm−1, with piecewise linear DG

ω MG1 MG2 MG3 MG4 AMG SMG ISI
0 t 55 36 68 42 90 111 292

‖d‖ 6.1e-5 4.7e-5 6.9e-5 4.1e-5 7.6e-5 7.5e-5 5.5e-5
N 39 20 38 24 50 72 2120
ρ 0.74 0.55 0.73 0.60 0.79 0.85 0.994

1e7 t 57 38 70 44 93 113 304
‖d‖ 6.1e-5 4.7e-5 6.8e5 4.1e-5 7.6e-5 7.5e-5 5.5e-5
N 39 20 38 24 50 72 2120
ρ 0.74 0.55 0.73 0.60 0.79 0.85 0.994

1e8 t 56 38 70 44 93 113 303
‖d‖ 6.2e-5 4.8e-5 6.9e-5 4.2e-5 7.6e-5 7.5e-5 5.5e-5
N 39 20 38 24 50 72 2120
ρ 0.74 0.55 0.73 0.60 0.79 0.85 0.993

1e9 t 58 43 72 45 95 113 299
‖d‖ 7.1e-5 5.8e-5 6.9e-5 5.6e-5 7.3e-5 8.4e-5 5.5e-5
N 40 23 38 25 51 71 2090
ρ 0.75 0.60 0.73 0.62 0.80 0.85 0.999
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Figure 11. Plot of natural logarithm of 3D flux with x = −5mm
for Case (10, 0.01)∗ in Table 22

Table 26. 2D spatial mesh with np vertices and nt elements

ns 1 2 3
np 27 89 321
nt 36 144 576

with a 2.80GHz CPU. In Figure 12 and 13, The boundary measure Φ from RTE

and MC are plotted with Φ =
∫

ŝ·n̂>0
ŝ · n̂φ(~r, ŝ)dŝ.

From Table 27, we conclude that, with either vacuum or reflection boundary condi-

tion, our RTE solver is much faster than MC, ranging from hundreds to thousands

time, besides providing much smoother solution.

4. summary

In this paper, we present a efficient numerical algorithm for steady-state or

frequency-domain radiative transport equation. The discretization is based on a

direct triangulation in angular space and discontinuous Galerkin method in space.
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Figure 12. Plot of natural logarithm of normalized Φ for g = 0.0:
RTE denotes the curve from our RTE solver with n=1,RTE2 with
n=1.5; MC denotes the curve from MC with n=1, MC2 with n=1.5.

20 40 60 80 100

PLOT FOR X=0

RTE
MC
RTE2
MC2

0 20 40 60 80 100
−6.5

−6

−5.5

−5

−4.5

−4

−3.5
PLOT FOR Y=0

RTE
MC
RTE2
MC2

20 40 60 80 100

PLOT FOR X=20

RTE
MC
RTE2
MC2

0 20 40 60 80 100
−6

−5.5

−5

−4.5

−4
PLOT FOR Y=20

RTE
MC
RTE2
MC2

Figure 13. Plot of natural logarithm of normalized Φ for g = 0.9:
RTE denotes the curve from our RTE solver with n=1,RTE2 with
n=1.5; MC denotes the curve from MC with n=1, MC2 with n=1.5.

Table 27. Comparison of computation time (in seconds) of RTE
and MC: g: anisotropic factor in H-G; ni: refraction index of the
square.

g ni MC RTE
0.0 1.0 700 1
0.0 1.5 1976 1
0.9 1.0 265 0.6
0.9 1.5 1484 0.8
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Improved source iteration combined with multigrid method in both angle and space

can dramatically improve the speed of convergence over standard source iteration

method consistently in all scattering regimes. Our method works for general mesh

in 2D and 3D and can treat various boundary conditions. Extensive numerical

tests and comparison with Monte Carlo simulation demonstrate both accuracy and

efficiency of our method.
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