
Multilevel bioluminescence tomography 
based on radiative transfer equation 

Part 1: l1 regularization 

Hao Gao and Hongkai Zhao
 

Department of Mathematics, University of California, Irvine, CA 92697, USA 
haog@uci.edu, zhao@math.uci.edu  

Abstract:  In this paper we study an l1-regularized multilevel approach for 
bioluminescence tomography based on radiative transfer equation with the 
emphasis on improving imaging resolution and reducing computational time. 
Simulations are performed to validate that our algorithms are potential for 
efficient high-resolution imaging. Besides, we study and compare 
reconstructions with boundary angular-averaged data, boundary angular-
resolved data and internal angular-averaged data respectively. 
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1. Introduction  
Bioluminescence tomography (BLT) [1-3] is an emerging molecular imaging modality, which 
can be used to monitor physiological and pathological activities at molecular levels, specially 
visualize primary tumor growth and tumor cell metastasis. In BLT [4-13], one tries to recover 
the location and intensity of isotropic bioluminescent sources from boundary measurements. 
However, it remains challenging in this area that it is highly desirable but extremely difficult 
to improve the image resolution as well as reconstruction stability and efficiency in 
biomedical and clinical practice. 
       Regarding the forward model of in vivo photon migration, radiative transfer equation 
(RTE) [14-17] is a well-accepted golden standard and needs to be appropriately discretized 
numerically to handle complex geometry [18]. In practice, due to its computational burden as 
a multi-dimensional problem involving both angular directions and spatial variables, the most 
popular forward model is diffusion approximation (DA) [19], a lower-order approximation of 
RTE. However, the validation of DA breaks down in small animal imaging, for example, in 
the region close to light sources or with relatively low scattering. Recently, we have 
developed a fast forward solver to reduce the computational complexity so that numerical 
RTE solver is accessible in practice. We will present numerical examples to show that BLT 
based on RTE can achieve satisfactory resolution, which is usually not the case for BLT based 
on DA. 

In this work, we assume that the optical property of the underlying medium is known. So 
BLT becomes a linear inverse source problem. In practice the main challenge is due to severe 
ill-posedness and large degrees of freedom for inverse problem. The ill-posedness may come 
from two sources: (1) insufficient measurements, such as angular-averaged data, that cause an 
underdetermined system; (2) ill-conditioning of the system matrix whose columns correspond 
to Green’s functions of RTE. The ill-posedness makes inversion or reconstruction sensitive to 
small perturbation in data, such as measurement error and noise. Moreover, the computation 
cost for computing the Green’s function for RTE increases dramatically and the inversion 
becomes even more ill-posed when degrees of freedom are increased. This type of problem is 
typical in many inverse problems. Construction of efficient, accurate and stable reconstruction 
algorithms is problem-dependent and challenging. 

In our application we will explore sparsity structure in the inverse problem. For many 
BLT applications, the bioluminescent source is sparsely distributed in space. We propose a 
multilevel imaging method to fully take advantage of the sparsity to improve both efficiency 
and stability. In this multilevel framework, we first reconstruct the sparse source efficiently on 
a coarse mesh with good localization, which provides a good initial guess as well as a small 
region of interest (ROI) for the fine reconstruction. And next reconstruction on fine mesh is 
carried out within the localized ROI with dramatically reduced degrees of freedom. Through 
such coarse-to-fine reconstructions, one can stably extract high-resolution images while 
substantially reducing the computational time. As another consequence, the amount of 
measurements can also be reduced by utilizing source sparsity in our multilevel reconstruction. 



The first crucial step in our multilevel approach is efficient and stable reconstruction on 
the coarse mesh with good localization property, which is equivalent to finding the sparse 
solution to the linear system defined on the coarse mesh. How to find the sparse solution 
efficiently, accurately and stably with as few measurements as possible is at the heart of 
compressive sensing methods. Compressive sensing has been studied for decades and recently 
has received a lot of attention due to theoretical justification and many practical 
implementations, see [20-25] and references therein. The key idea is that, given the sparsity of 
the signal, an efficient and stable algorithm through l1 regularization can be applied to recover 
or approximate the original signal with appropriate measurements that have cardinality 
comparable to the sparsity of the signal. In statistics community, a large body of recent work 
on least absolute shrinkage and selection operator (LASSO) is also on l1 regularization for 
sparse model selection, see [26, 27] and references therein. However, in order to recover the 
sparse signal accurately and stably, current theory requires some nice property of the 
underdetermined system or the measurement matrix. Essentially it requires near-orthogonality 
or incoherence among columns of the system matrix. For example, the commonly used 
restricted isometry property (RIP) requires well-conditioning for all submatrices of size 
comparable to the sparsity or near-orthogonality among columns. RIP is used for both 
recoverability and stability results in [22-25]. Although a non-RIP result is established in [28] 
by using characterization of null space of the measurement matrix, the stability results still 
depend on the conditioning of the system. In recent work on LASSO from [26], an 
irrepresentable condition is proposed for consistent model selection by LASSO with the right 
amount of l1 regularization. However, the irrepresentable condition is again related to angle 
condition between columns of the measurement matrix that are used in the true model and the 
rest of the columns that are irrelevant. These requirements can not be satisfied by our problem 
as well as most inverse problems due to the ill-posedness. In this work we show that by 
combining l1 regularization with the multilevel approach we can still take advantage of the 
sparsity and improve computation efficiency, stability and reconstruction results while 
requiring fewer measurements. 

The inverse source problem for RTE has been studied in several papers in mathematics 
and engineering communities [29-38]. Here we approach this inverse source problem directly 
by taking advantage of the source sparsity with both l1 regularization and multilevel 
reconstruction. As we finish up this paper, we recognize a similar l1-regularized strategy for 
BLT was studied recently in [39], in which BLT based on DA with regularization by 
differentiable approximation of l1 norm instead of l1 norm was studied due to the difficulty of 
dealing with non-differentiable l1 norm. Also adaptive mesh rather than multi-level mesh has 
been studied in the context of adaptive finite element method for BLT [57]. However, our l1-
regularized multilevel approach is entirely different although we both use “multilevel”. 

Here is the outline of this paper. In section 2, we shall first introduce notations and 
discretization methods for RTE forward solver, formulate BLT as a linear inverse source 
problem, describe l1 regularization strategy, and then summarize our algorithms in the 
multilevel framework; in section 3, we shall validate our algorithms with simulations; in 
section 4, we shall conclude and comment on our future work. 

2. Methods 

2.1. Forward problem 
In this paper, we model light propagation by RTE with the vacuum boundary condition 
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where the quantities in the equation are the photon fluxΨ which depends on both space r
r
and 

angle ŝ , the bioluminescent source q , the Henyey-Greenstein scattering function f with 



anisotropic factor g , the absorption coefficient aµ , the scattering coefficient sµ , the outer 

normal n̂  at boundary∂Ω  of domainΩ  and the angular space
1ˆ −nS , i.e., the unit circle in 2D 

or the unit sphere in 3D. The methods and algorithms in this paper can be extended easily to 
RTE with reflection boundary condition. We shall only describe RTE with vacuum boundary 
condition for the presentation purpose. 

An efficient solver of (1) was proposed in [18] with angular discretization by finite 
element method and spatial discretization by piecewise-linear Discontinuous Galerkin method. 
We design multigrid methods in both angular and spatial space with improved source iteration 
as relaxations to achieve fast convergence in various regimes. We shall briefly introduce 
notations and formulate forward problem as follow. 

Suppose RTE is discretized with aN angular directions, and let 

: { , 1, , }i sT i Nτ= = L be a triangulation of the domain with the dimension dn , 
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isotropic, i.e., 
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Then we discretize (1) into the following matrix form 
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with the angular weight mmw ′ and[ ]
i
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τ
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r
. For details, we refer readers to [18]. 

Note that in practice we do not explicitly form matrices in (2) since our method is local in the 

sense that (2) can be solved by iteratively inverting 1dn + by 1dn + matrices with correct 

ordering of elements. Here we write RTE in the matrix form (2) for the convenience to 
introduce our reconstruction algorithms. 

Last, we use column vectors{ , 1, , }jP j M= L of the same structure asΦ to denote 

measure operators for reconstruction. In this paper, we shall use three kinds of measurements, 

i.e., boundary angular-resolved measurement Ψ , boundary angular-averaged 

measurement
ˆ ˆ 0

ˆ ˆ ˆ
s n

s n ds
⋅ >

⋅ Ψ∫ and internal angular-averaged measurement ˆdsΨ∫ . Each type 

of measurement can be numerically represented by the vector product
TP Φ , where

T
denotes 

transpose. 

2.2. RTE-based BLT 
In this section, we describe RTE-based BLT through Green’s functions. 

Since the light source is assumed to be isotropic, let ˆ( , ; )G r s r′
r r

be the Green’s function 

of RTE (1) for point source in space, then the solution of RTE 



is ˆ ˆ( , ) ( , ; ) ( )r s G r s r q r dr′ ′ ′Ψ = ∫
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. Thus, for boundary angular-resolved data, at ˆ( , )j jr s
r

for 

each measurement, we have 
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Mathematically, we need enough angular-resolved data in (3) to mach the dimension of 
unknowns. However, what is usually available in practice are boundary angular-averaged data, 
for which we have 
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Due to dimension mismatch between unknowns and measurements in (4), no unique 
inversion can be defined mathematically. Numerically, insufficient data lead to a 
underdetermined linear system, especially on the fine mesh. In this work we apply the 
proposed multilevel reconstruction algorithm to both cases of (3) and (4) and show that 
computation efficiency, image resolution and reconstruction stability can be achieved when 
the source is sparse. In particular by exploring sparsity with multilevel approach one can 
alleviate the ill-posedness, improve the efficiency and reduce the amount of measurements. 

Now we denote measurements by X , Green’s functions byG and write (3) and (4) in the 

following matrix form for BLT 

GQ X= .     (5) 

In particular, the i th column of G corresponds to measurements from the unit source sitting 

on i th element and the j th row of G corresponds to adjoint solutions of RTE from j th 
measurement operator.  

The main difficulty to invert the linear system (5) with boundary data is due to its ill-

posedness. First (5) is underdetermined with insufficient data, i.e., 
sM N<< , especially in 

fine reconstructions with limited angular-averaged data. Second, matrix G is ill-conditioned, 

i.e., columns of G for adjacent sources are almost parallel since adjacent sources, especially 

those in depth, produce the similar measurements at the boundary. This can also be seen 

through resolution analysis [32, 40]. Moreover, G is even more ill-conditioned on finer mesh. 

As a result, in BLT, the reconstructed image is usually blurred with low resolution, and 
hence does not provide good localization of the source; lots of measurements are essential for 
a stable reconstruction, which requires costly experiments and intensive computation; the 
reconstruction is usually sensitive to noise. 

To deal with the ill-posedness, proper regularization is crucial, but subtle for inverse 
problem. A good choice of regularization should take into account a priori knowledge of the 
inverse problem. Based on sparsity assumption in our case, we choose l1 regularization and 
combine with a multilevel approach to explore source sparsity. For comparison reason we first 
present the conventional l2 regularization. 

Before doing that, since the analytic Green’s function is only available for some simple 
geometry and it has to be computed numerically in most cases, first we shall start from (2) and 
derive discrete version of (5) in the next subsection. 

2.3. Computation of numerical Jacobian 

Let { , 1, , }m m

jx j MΧ = = L be the measured data for reconstruction and 

{ , 1, , }jx j MΧ = = L be the corresponding measurements from our forward solver, i.e., 

( )T

j jx P Q= Φ . Since the solution Φ linearly depends on Q , we have 
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called Jacobian or sensitivity matrix. Next we shall compute Jacobian.  

Differentiating both sides of (2) with respect to iq , we have 
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that is sparse with onlyM nonzero entries. 

 

Now we have two methods to compute ijJ . The first method is the direct method by (6), 

for which we compute
1

i

D
F

q

− ∂

∂
, i.e., solve the forward problem sN times. The second method 

is the adjoint method by 

1( )T T
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∂ ∂
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where 
1( )T

j jF P−Ψ = , i.e., the adjoint solution of RTE with jP as the source. Thus for 

adjoint method by (7), we need to compute M forward problems. 

In the conventional setting for BLT with boundary angular-averaged data, M is usually 

much smaller than sN  and the adjoint method is preferred in this case. However, there are two 

cases that sN is smaller or much smaller thanM . First is when a large amount of data is 

available, such as boundary angular-resolved data or internal data. Second occurs in our 
multilevel approach for sparse source reconstruction since multilevel method allows us to 
reduce the number of unknowns dramatically on the fine mesh through good localization by 
coarse reconstruction so that the direct method may be favorable, and thus greatly reduces the 
number of forward problem computation 

Regarding the computational time, the most time-consuming part is to compute the 

Jacobian J . However, it can be done in parallel, which we will implement in the future. On 

the other hand, it is obvious that the computation cost of (6) is proportional to the number of 
measurements. So it is highly desirable to have an accurate and stable reconstruction with as 
few measurements as possible. 

2.4. l2 regularization 
The popular way for BLT is to formulate it as a least-square minimization problem with an 
extra l2 regularization term, i.e., 

2 2

2 2 2
|| || || ||min

m

Q

JQ X Qλ− + ,     (8) 

where
2λ is the parameter to balance the data fitting and l2 regularization. 

In general, a good choice of
2λ is not known as a priori. Therefore, we choose a nonlinear 

optimization method through Levenberg-Marquardt method [41-42] to automatically adjust 

2λ adaptively, in which (8) is reduced to a few iterations 



1 1

2,( ) ( ( ))k k T T k m
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Note that l2 regularization is embedded in the algorithm with self-adjusted 2,kλ [43]. 

Although (8) is relatively easy to solve, it does not take advantage of sparsity of source 
distribution. As a matter of fact the reconstructed image from BLT is usually blurred with low 
resolution, and does not localize well for sparse source. With insufficient data and noise, the 
method becomes more problematic, which we will see in simulations. 

2.5. l1 regularization 
When the source in BLT is sparse, l1 regularization is a natural and viable choice for finding a 
good approximate sparse solution. More importantly, finding a good sparse solution on a 
coarse mesh means good localization which is crucial in identifying the region of interest on 
finer mesh in our multilevel approach. Although the beautiful compressive sensing theory, 
which says that with both l1 regularization and appropriate measurements whose cardinality is 
comparable to the sparsity of the unknown one can stably recover the sparse signal, does not 
apply to our inverse problem due to severe ill-conditioning of the system matrix, we 
demonstrate that by combining l1 regularization with the multilevel approach we can still take 
advantage of the sparsity and improve computation efficiency, stability and reconstruction 
results while requiring fewer measurements. 

Therefore, we regularize l1 norm instead of l2 norm as follow 
2
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JQ X Qλ− + ,    (10) 

where ∑
=

=
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i

ii qAQ
1

1 ||:|||| is a spatially weighted l1 norm with area/volume iA  and takes 

into account of mesh nonuniformity. 
The simulations in next sections show the improvement of l1 regularization (10) over l2 

regularization (8) especially in terms of localization and stability when the source is sparse 
and the amount of measurements is small. 

The numerical algorithm for problem (10) is not as easy as for problem (8) since l1 norm 
is non-differentiable. Since the main purpose of this paper is not about efficient solver of (10), 
we use a standard interior-point method [44-46] for minimizing (10) and point out that there 
are many recent works [47-52] in developing efficient algorithms for (10). All these methods 
can be directly used in our algorithms to improve the optimization efficiency further. Based 
on the interior-point method we choose for (10), around eighty to ninety percents of the 

computational time are spent on computing Jacobian J . 

In this paper, we solve the convex optimization problem (10) by the barrier method [44]. 
We shall briefly formulate the method as follow.  

First, we replace the l1 norm by inequality constraints as 

∑
=

+−
sN

i

ii

m

uQ
uAXJQ

1

2

2
,

||||min λ ,    (11) 

with constraints , 1, ,i i i su q u i N− ≤ ≤ = L , and then add the constraints into the 

minimization problem by logarithmic barrier penalties as 
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Next we solve a sequence of t -subproblems (12) with increasing t , where the solution tQ of 

(12) is no more than 2 /sN t -suboptimal which implies tQ converges to the optimal point of 

(11) as t→∞ . 



       In general, the computational time for (11) is longer than (9). To reduce the optimization 
time by (11), a preconditioned conjugate gradient method [45, 46, 53] is implemented to 
compute the search direction for backtracking line search. 

2.6. Multilevel reconstruction 
It is typical for an inverse problem to become significantly more difficult to solve as mesh is 
refined. This is because not only degrees of freedom are increased as a more underdetermined 
linear system but also more importantly the system becomes much more ill-conditioned. Even 
one can afford significant amount of measurements and computation cost, it is often that using 
a fine mesh does not necessary lead to a high-resolution reconstruction in practice. The key 
points for our multilevel approach for sparse source reconstruction for BLT are as follow. 

First, the inverse problem on the coarse mesh can be solved more efficiently and stably. 
Second, the solution from the coarse mesh provides not only a good initial guess but more 

importantly a good localization for the sparse source with l1 regularization. The localization 
will allow us to solve an inverse problem restricted to a small region on fine mesh with the 
significantly reduced degrees of freedom and improved stability. 

Last, the amount of measurements for this multilevel approach only needs to provide a 
good localization on coarse mesh and matches the degree of freedom in the confined region 
on fine mesh, which is determined by both sparsity of the source and resolution of the fine 
mesh. 

In our multilevel method, we assume the spatial meshes can be refined from one to 
another. First we describe a two-level algorithm including three steps: 

(1) minimize (10) on the coarse mesh : { ,1 }c

c i cT i Nτ= ≤ ≤ to obtain coarse source 

distribution : { ,1 }
c

c i cQ q i N= ≤ ≤ ; 

(2) identify the support cS of cQ on the coarse mesh by simple threshold of cQ , e.g., with 

respect to the maximal values, i.e.,
c

i cSτ ∈ if || ||c

i cq Qε ∞> , and interpolate the 

support cS from cT onto the fine mesh : { ,1 }f

f i fT i Nτ= ≤ ≤ to find the 

support : { ,1 }f

f i fS i Nτ ′= ≤ ≤ on the fine mesh; 

(3) minimize (10) within the support fS on fT to obtain : { ,1 }f

f i fQ q i N ′= ≤ ≤ . 

For sparse source reconstruction, (10) is preferred and usually we have f fN N′ << . In 

support detection, ε is between 0.01 and 0.05, and we actually extend the support a little bit 

by one or two grids according to the distance function between centers of grids. 
___________________________________________________________________________ 
Algorithm: multilevel approach for BLT 

FOR 
ii N=  to

fN  

Step 1:    if ii N= , :iS = Ω is set to be the whole domainΩ , 0iQ = ; 

otherwise, find iS by threshold of 1iQ − , and interpolate from 1iQ − to iQ . 

Step 2:   compute Jacobian with either (6) or (7). 

Step 3:   reconstruct iQ on iT by solving (8) or (10). 

END 
___________________________________________________________________________ 

Next, we describe our multilevel algorithm in detail, which also incorporates the 
flexibility from the dual-mesh scheme [54], i.e., the mesh for unknowns is not necessarily the 
same as the mesh for solving RTE in the reconstruction. The advantage of the dual-mesh 
scheme is that we not only improve the reconstruction stability by doing coarse reconstruction 
and also keep the accuracy of forward solver by solving it on fine mesh. 



We start to formulate our multilevel method by defining a sequence of 

meshes{( , , ), }i i i

a s q i fn n n N i N≤ ≤ , in which 
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an ,
i

sn ,
i

qn denotes angular mesh, spatial mesh 

for forward solver, spatial mesh for unknowns respectively with the convention that finer 

mesh has bigger value and
i i

q sn n≤ . Also we denote iQ as the solution and iS as the support 

of the solution. Then we have the above multilevel algorithm. 

Here we need to modify 
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3. Simulations 
In this section we use various numerical simulations to validate our l1-regularized multilevel 
imaging algorithm for BLT. Most simulations are performed in two dimensions (2D), which 
serves the purposes of this paper. Although we give an example (Fig. 11) in three dimensions 
(3D), we will study 3D in vivo BLT further in more practical setting in our future study. In all 
figures shown in this section, reconstructed images are plotted as what they originally are 
from reconstructions without further image processing, such as thresholding. As pointed out at 
the beginning, radiative transport equation (RTE) is used as the underlying model for both 
forward and inverse problem. Data for forward problem is generated on a fine mesh that is 
different from the fine mesh used for inverse problem. The fast forward solver developed in 
[18] is used to compute both the forward problem and the Green’s functions for inverse 
problem. In particular we design different simulations to demonstrate the following points. 

First, for sparse source, l1 regularization localizes the source better than l2 regularization, 
especially when there is noise and small amount of data. See Fig. 1, 2, 4 and 5. 

Second, our multilevel algorithm is more effective and efficient than solving the inverse 
problem directly on the fine mesh. See Fig. 6. 

Third, our l1-regularized multilevel algorithm works well with both angular-resolved data 
and angular-averaged data. Besides, reconstruction with angular-resolved data has the 
potential for high-resolution imaging. See Fig. 4 and 5. 

Fourth, RTE based model can reconstruct better than DA based model with the same 
amount of angular-averaged data. See Fig. 7 and 8. 

Last, when interior measurements are available, better and more stable reconstruction can 
be achieved. See Fig. 9 and 10. 

 
The following 2D simulations are performed on a square domain with 20mm side length 

with homogeneous optical properties 
1

0.01a mmµ −= and
1

1s mmµ −=  unless otherwise 

indicated.  
 
In the first example (Fig. 1), a small inclusion (c) with 1mm diameter is centered at (5mm, 

5mm). The simulated angular-averaged measurements with 12M = is generated with 64 
angular directions and a spatial mesh (a) of 697 nodes and 1312 elements, while the 
reconstruction (b) mesh is of 32 directions, 697 nodes and 1312 elements. 

The image from l2 reconstruction without noise is displayed in (d) in Fig. 1. While the 
images from l1 reconstruction without or with noise are displayed in Fig. 2 with the noise 



defined as (1 )m mX X Nσ′ = + , where σ is the signal to noise ratio, andN is a Gaussian 

random variable with unity mean and unity variation. In Fig. 2, we vary σ from 0 percent to 

50 percents with 10 percents increment and plot l1-regularized image. Comparing images 
from l2 and l1 regularization, we conclude that l1 regularization can efficiently localize the 
sparse source with a few measurements, even in the presence of large noise, while l2 
regularization fails to reconstruct the sparse source. 

 

Fig. 1. l2 reconstructions for a small object with twelve measurements. Figure (a) is the mesh 
for forward problem. Figure (b) is the mesh for inverse problem. Figure (c) is the true source 
distribution. Figure (d) is the image from l2 reconstruction. 

 

Fig. 2. l1 reconstructions for a small object with twelve measurements. Figures (a), (b), (c), (d), 
(e) and (f) are reconstructed images by l1 regularization with 0%, 10%, 20%, 30%, 40% and 
50% Gaussian noise respectively. 



 

Fig. 3. Meshes for forward and inverse problem. Figure (a) is the true source distribution. 
Figure (b) is the mesh for forward problem. Figures (c) and (d) are the coarse and fine mesh for 
inverse problem. 

 

 

Fig. 4. Reconstructions with boundary data when g=0.9. Figures (a), (c) and (e) are 
reconstructed images by l1 regularization with 120 angular-averaged measurements, 121 
angular-resolved measurements and 1320 angular-resolved measurements respectively. Figures 
(b), (d) and (f) are reconstructed images by l2 regularization with 120 angular-averaged 
measurements, 121 angular-resolved measurements and 1320 angular-resolved measurements 
respectively. 



 

Fig. 5. Reconstructions with boundary data when g=0.0. Figures (a), (c) and (e) are 
reconstructed images by l1 regularization with 120 angular-averaged measurements, 121 
angular-resolved measurements and 1320 angular-resolved measurements respectively. Figures 
(b), (d) and (f) are reconstructed images by l2 regularization with 120 angular-averaged 
measurements, 121 angular-resolved measurements and 1320 angular-resolved measurements 
respectively. 

 
In the second example (Fig. 3), three letter inclusions (a) are put in the domain to evaluate 

our reconstruction algorithms; the forward mesh (b) has 1509 nodes and 2896 elements; the 
coarse mesh (c) for reconstructions has 365 nodes and 668 elements and the fine one (d) has 
1397 nodes and 2672 elements. 

In Fig. 4 and Fig. 5, the reconstructions with anisotropic factor g=0.9 and 0.0 respectively 
are carried out to demonstrate that l1 regularization ((a), (c) and (e) in Fig. 4 and Fig .5) in 
general reconstructs better images than l2 regularization ((b), (d) and (f) in Fig. 4 and Fig .5), 
especially when inverse problem is more severely ill-posed due to fewer available data, e.g., 
angular-resolved data. 

Comparing (a) and (c), we find that angular-resolved data are preferred over angular-
averaged data for the similar amount of data, especially in the forward-peaking regime with 
big anisotropic factor g since anisotropic angular information improves the probing ability. 
When a rich amount of angular-resolved data is available as in (e), our algorithm with l1 
regularization is able to reconstruct high-resolution images. 

A justification of this is that boundary angular-resolved data are essentially three-
dimensional in 2D, which is enough to match the dimensions of unknown sources. As a result, 
the reconstruction based on RTE has a great potential for high-resolution images even with 
only boundary data, while one does not expect a good image from DA-based reconstruction 
due to the dimension mismatch between the boundary data and unknowns since DA does not 
contain angular information. 

In conclusion, one needs RTE model to alleviate the ill-posedness of standard BLT when 
only boundary data are available; on the other hand, efficient algorithms and proper 



regularization, e.g., l1 regularization for sparse source, are essential to recover high-resolution 
images. Besides, one may already notice a noise dot in the middle of reconstructed images in 
(a), (c) and (e) in Fig. 5. due to the ill-posedness of inverse problem. However, this dot has 
small contrast on the coarse mesh, thus can be removed through our multilevel approach by 
choosing proper threshold since its value is much smaller than that of other sources. 

 

Fig. 6. Comparison of multilevel and single-mesh reconstructions with l1 regularization and 
boundary data when g=0.9. Figures (a) and (b) are reconstructed images through only the fine 
mesh with 120 angular-averaged measurements and 720 angular-resolved measurements 
respectively. Figures (c) and (e) are reconstructed images on the coarse and fine mesh 
respectively through the multilevel approach with 60 angular-averaged measurements. Figures 
(d) and (f) are reconstructed images on the coarse and fine mesh respectively through the 
multilevel approach with 360 angular-resolved measurements. 

 
Next, we shall validate the superiority of proposed multilevel approach over the single-

mesh reconstruction by two examples as shown in Fig. 6. The first example ((a), (c) and (e) in 
Fig. 6) is on the reconstructions with angular-averaged data wile the second example ((b), (d) 
and (f) in Fig. 6) is with angular-resolved data. In both examples, we performed the single-
mesh reconstruction with images (a) and (b), and then the multilevel reconstruction with 
images (c) and (d) on coarse mesh and images (e) and (f) on fine mesh. From Fig.6, we 
conclude that, with smaller amount of data, our multilevel approach gives better 
reconstruction than the single-mesh one. On the other hand, it implies that the multilevel 
approach is able to reduce the computational time for a given accuracy. Moreover, we may 
further accelerate the reconstruction by solving much less number of forward problems with 
the direct method (6) for Jacobian on the fine mesh when the sources are sparsely localized. 



 

Fig. 7. Comparison of RTE-based and DA-based reconstruction with homogenous background. 
Figure (a) is the reconstructed image with RTE when g=0.0. Figure (b) is the reconstructed 
image with DA when g=0.0. Figure (c) is the reconstructed image with RTE when g=0.9. 
Figure (d) is the reconstructed image with DA when g=0.9. 

 

Fig. 8.Comparison of RTE-based and DA-based reconstruction with heterogeneous background. 
Figure (a) is the mesh for forward problem. Figure (b) is the true source. Figure (c) is the 
reconstructed image with DA when g=0.0. Figure (d) is the reconstructed image with RTE 
when g=0.0. 

In Fig. 7 and 8, we compare the RTE-based reconstructions with DA-based 
reconstructions in diffusive or non-diffusive regime, for which l1-regularized reconstructions 
based on either RTE or DA are performed with 120 boundary angular-averaged measurements. 
To avoid the biased model error, for DA-based reconstructions, the simulation measurements 
are generated with DA as well. 

In Fig. 7, we use the same meshes ((b) and (d) in Fig. 3) respectively for data generation 
and inverse problem for DA. In DA, we have the reduced scattering coefficient 

(1 )
s s

gµ µ′ = −  with g=0.0 and 0.9 respectively. From reconstruction results, we conclude 

that BLT with DA does not produce as good images as with RTE. Actually with anisotropic g 
or within the domain of a few mean free paths, BLT with RTE produces much better results 
than with DA. Besides, RTE may utilize angular-resolved data for high-resolution images 
while DA is unable to incorporate the angular information. 



In Fig. 8, we compare on a domain with 20mm side length with heterogeneous optical 

parameter. The optical parameters are as follow: 
101.0 −= mmaµ and

11 −= mmsµ for the 

background, 
11 −= mmaµ and

11 −= mmsµ for a circular inclusion centered at (4mm, 4mm) 

with diameter 6mm, 
101.0 −= mmaµ and

101.0 −= mmsµ for a circular inclusion centered 

at (10mm, 10mm) with diameter 6mm, 
101.0 −= mmaµ and

11.0 −= mmsµ for a circular 

inclusion centered at (16mm, 16mm) with diameter 6mm. The unit source ((b) in Fig. 8) is 
located at six smaller circular inclusions with diameter 2mm centered at (4mm, 10mm), (4mm, 
14mm), (4mm, 18mm), (10mm, 4mm), (14mm, 4mm), (18mm, 4mm) respectively. g=0.0 in 
this case. The forward mesh ((a) in Fig. 8) has 3792 elements and 1961 nodes; the 
reconstruction mesh ((d) in Fig. 3) is used. 

Clearly the reconstruction is in non-diffusive regime containing both strong absorbing 
region and void-like region. From reconstruction results as in Fig. 8, we conclude that RTE-
based BLT performs better DA-based BLT in the presence of non-diffusive regions. On the 
other hand, reconstruction with l1 norm tends to give sparse solution, which may have smaller 
support than the original support as shown in (d). In our next paper, we shall introduce the 
methods to resolve this issue. 

 
As the last simulations in 2D, we compute two examples in Fig. 9 and 10 when internal 

angular-averaged data are available. 

 

Fig. 9. Comparison of l1-regularized reconstructions with boundary angular-averaged data and 
internal angular-averaged data when g=0.9. Figure (a) is the true object. Figure (b) is the mesh 
to generate the forward data. Figure (c) is the result with 120 boundary angular-averaged data. 
Figure (d) is the result with 120 random internal angular-averaged data. 

In Fig. 9, an L-shaped source inclusion (a) is embedded at the center of the square domain 
with the forward mesh (b) of 1469 nodes and 2816 elements. The fine mesh in the second 
example above ((d) in Fig. 3) is used for reconstruction. We randomly pick up 120 internal 
angular-averaged measurements and plot the reconstruction result in (d) while (c) is with 120 
boundary angular-averaged measurements. Clearly, internal angular-averaged data give better 
reconstruction image than boundary angular-averaged data in reconstructing sources in depth. 



 

Fig. 10. l1-regularized reconstructions with internal angular-averaged data when g=0.9. Figures 
(a) and (b) are reconstructed images through the multilevel approach with 668 measurements 
on the coarse mesh and 324 measurements on the fine mesh respectively. 

In Fig. 10, we perform the multilevel method when full internal angular-averaged data are 
available. However, only partial data are necessary on the fine reconstruction. Again it indeed 
confirms the superiority of l1-regularized multilevel reconstruction: we first efficiently 
localize the support of unknowns through l1 minimization on coarse mesh, and then resolve 
the high-resolution image on fine mesh by optimization only in the region of interest while 
computing much less number of forward problems than the single-mesh reconstructions.  

In conclusion, the internal data will better-pose the inverse problem, which motivates us 
to explore in the future the potential imaging modality to generate internal data, such as one 
similar to photoacoustic tomography [55]. 

 

Fig. 11. 3D reconstruction. Figure (a) is the geometry. Figure (b) is the true source. Figure (c) 
is the reconstructed source. 



Last, we give a 3D example with g=0.0 in Fig. 11 on a cube (a) of side length 20mm with 

background
101.0 −= mmaµ and

11 −= mmsµ . A strong absorbing cubic inclusion of side 

length 5mm is centered at (15.5mm, 15.5mm, 10mm) with
11 −= mmaµ and

11 −= mmsµ ; a 

void-like cubic inclusion of side length 5mm is centered at (4.5mm, 4.5mm, 10mm) 

with
101.0 −= mmaµ and

101.0 −= mmsµ ; two isotropic sources are embedded into two 

cubes with side length 2mm centered at (4mm, 18mm, 7mm) and (10mm, 4mm, 13mm) 
respectively. The forward mesh for data generation has 258 angular directions and a spatial 
mesh (b) of 3500 nodes and 17683 elements; the reconstruction mesh has 66 angular 
directions and a spatial mesh (c) of 2837 nodes and 14592 elements; 128 boundary angular-
averaged measurements are used for the reconstruction, and thus 128 adjoint RTE solvers are 
computed in the reconstruction, which takes roughly three hours in total on a desktop with 
Intel CPU E6850 (3.00GHz). Comparing true source (b) and reconstructed source (c), we 
conclude that our algorithm is able to reconstruct the source in a 3D non-diffusive regime, e.g., 
high absorbing and void-like region. As an extension of the proposed methods in this paper, 
we shall study 3D RTE-based BLT in details in the more practical setting in our future work. 
Besides, although our algorithm is pretty efficient even in 3D, it can be accelerated further by 
parallelizing RTE  forward solvers in both forward and inverse problem. 

4. Conclusions and discussions 
In this paper, we first introduce l1-regularized reconstruction, which is proven to perform 

in general better than l2-regularized reconstruction, especially for sparse sources with less 
accessible data and large noise. Second, we propose a multilevel reconstruction approach, 
which reconstructs better and takes less computational time than the single-mesh 
reconstruction. With the combination of both, our RTE-based l1-regularized multilevel 
approach has the potential for high-resolution images with even only boundary data. 

On the other hand, we compare reconstructions with boundary angular-average data, 
boundary angular-resolved data and internal angular-averaged data. With either rich angular-
resolved data or internal data, we are able to reconstruct almost the exact light sources. As a 
result, we shall explore on the potential imaging modalities which make those data accessible. 

As a similar problem to BLT, linearized optimal tomography based on perturbation of a 
priori background can be turned into an inverse source problem exactly as BLT, to which the 
algorithms here can be directly extended. 

It is also worthy of mentioning another benefit from multilevel approach: that is coarse 
reconstruction is able to provide a good initial guess for fine reconstruction, which is crucial 
for nonlinear inverse problem, such as optical tomography [56]. 

Last, the l1 regularization can be very efficient for sparse source reconstruction. However, 
in many interesting cases, the total variation instead of unknowns itself is sparse. Thus we 
shall consider regularizing total variation instead in our next paper. 
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