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Abstract:  In this paper we study the regularization with both l1 and total-
variation norm for bioluminescence tomography based on radiative transfer 
equation, compare l1 data fidelity with l2 data fidelity for different type of 
noise, and propose novel interior-point methods for solving related 
optimization problems. Simulations are performed to show that our 
approach is not only capable of preserving shapes, details and intensities of 
bioluminescent sources in the presence of sparse or non-sparse sources with 
angular-resolved or angular-averaged data, but also robust to noise, and thus 
is potential for efficient high-resolution imaging with only boundary data. 
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1. Introduction  
In bioluminescence tomography (BLT) [1-3] with proper discretization, boundary 

measurements : { ,1 }m m

jx j MΧ = ≤ ≤ are linearly dependent on the bioluminescent 



sources : { ,1 }i sQ q i N= ≤ ≤ . For conventional reconstruction methods for BLT, people use 

diffusion approximation (DA) [4] as forward model, and then formulate it as a standard least-
square problem, i.e., 

2 22
2 2|| || || ||

2
min

m

Q

JQ X Q
λ

− + ,    (1) 

in which J is the system matrix usually called Jacobian or sensitivity matrix corresponding to 

the forward model and 2λ is the l2-regularzation parameter. 

However the reconstructed images based on DA approximation from (1) are not 
satisfactory mainly for two reasons. First physically DA approximation may not be accurate, 
especially in the non-diffusive regime, e.g., close to the source, near the boundary, forward-
peaking scattering, discontinuous absorption or scattering, or when absorption is smaller or 
comparable with the scattering. Second, mathematically BLT with DA as forward model is 
severely ill-posed. Since the boundary measurement provides only angular-averaged data 
whose dimension does not match with that of the interior region, i.e., number of 

measurements M is much smaller than the total number of unknowns sN numerically, it was 

shown mathematically [3] that there is no unique solution for this inverse source problem 

based on DA. Moreover, J comes from a smoothing diffusion operator which destroys image 

singularities and features. In practice all the above means that one has to solve a very ill-
conditioned and underdetermined system for DA-based BLT. In general, one does not expect 
a good image quality with clean background from l2-regularized BLT with DA forward model 
alone without either more data or reduction of unknowns [5-12]. 

As a remedy for poor reconstruction due to forward modeling by DA, we use radiative 
transfer equation (RTE) [13-16] as the forward model. Physically, RTE is an accurate model 
for photon migration in tissues. Moreover, with RTE one can utilize much richer data, such as 
boundary angular-resolved measurements, whose dimension can match that in the interior 
region. Mathematically, it was shown [17, 18] that the RTE-based inverse source problem 
with angular-resolved boundary measurements almost always has a unique solution with 
certain stability. Numerically it means that a better conditioned and less underdetermined 
system resulted from RTE-based BLT than from DA-based BLT. So in those applications in 
non-diffusive regime, it is more appropriate to use RTE model and better image 
reconstruction is expected. 

A powerful and general framework in dealing with inverse problem is through variational 
formulation. It usually contains two key ingredients in the energy functional, data fidelity, 
which is to match the solution with measurements based on an appropriate forward model, 
and regularization, which is to regularize an ill-posed problem. With probability interpretation, 
the form of data fidelity should be determined by noise model and the form of regularization 
should be determined by a priori knowledge. The balance between this two is usually 
determined by signal to noise ratio of the data and the smallest scale one wants to resolve in 
the reconstruction. 

In general l2 regularization tends to penalize large elements and create spurious small 
elements which smears the reconstructed image and produces noisy background when the 
inverse problem is severely ill-posed. On the other hand, l1 regularization weights all 
elements equally and tends to produce a sparse solution with clean background which would 
be a suitable choice for sparse sources [19-22]. As a result, we studied l1-regularization 
strategy in a multilevel framework and showed its superiority over the conventional l2 
regularization for sparse sources in our previous work [23] in which we minimize  

2
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Q

JQ X Qλ− + .    (2) 

However, l1 regularization tends to find sparse solutions, which on one hand, makes it 
successful for sparse source reconstruction, but on the other hand, may shrink the support for 



non-sparse sources. Therefore, it is desirable to design more appropriate formulations for non-
sparse sources that also inherit the merits of l1 regularization. In this paper we propose and 
compare a few different choices of data fidelity and regularization combinations for RTE-
based BLT and justify their performances in different scenarios. 

For nearly piecewise-constant source distribution in BLT, a natural choice is to use total 
variation (TV) regularization, which was first proposed in [24], and has wide applications in 
various aspects in image processing. Now we consider the following minimization problem 

2

2
|| || || ||min

m

TV TV
Q

JQ X Qλ− + ,    (3) 

in which TVλ is the TV-regularization parameter and || ||TV⋅ denotes the TV norm that we shall 

specify in the next section. 
It is well known that TV regularization [25] tends to be effective for piecewise-constant 

reconstruction and can preserve the boundary of large object well while removing small 
features and thin or small objects such as small inclusions or sparse sources. Therefore we 
propose a combination of l1 and TV regularization which has an interesting geometric balance 
between them which will be explained in the next section. We shall call it l1+TV 
regularization, so that it combines the merits from both l1 and TV regularization in the sense 
that it successfully reconstructs piecewise-constant image that preserve both geometry and 
details with little background noise for both sparse and non-sparse sources.  The optimization 
problem becomes 

2
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m

TV TV
Q

JQ X Q Qλ λ− + + .   (4) 

However, if the source distribution is smooth, it is well known that H1 seminorm, which is l2 
norm of the gradient, is a good regularization. For example, H1 regularization with l2 data 
fidelity was used for RTE-based optical tomography in [26]. For comparison purpose, we 
present mathematical formulation and simulation results with H1 regularization in Section 3. 

Most often in practice the data may be contaminated by various types of noises. For 
Gaussian type of noise, the l2 data fidelity term is a good and natural choice. However, l2 data 
fidelity term does not handle outliers well since it is biased towards large residuals. On the 
other hand, nonsmooth data fidelity [27, 28] can reconstruct correct images under some 
assumptions. As a successful example of nonsmooth data fidelity, l1 data fidelity was first 
introduced in [29], and later found applications in medical imaging [30, 31], computer vision 
[32] and image processing [33]. Therefore, we consider the following optimization problem 
with l1 data fidelity to deal with practical noise involving outliers 

1 1 1
|| || || || || ||min

m

TV TV
Q

JQ X Q Qλ λ− + + .   (5) 

Besides, from our simulations, we find that l1 data fidelity with l1+TV regularization tends to 
reconstruct as good results as l2 data fidelity with H1 regularization for the smooth non-
piecewise-constant sources. 

Finally, our multilevel reconstruction developed in [23] can be implemented for all the 
above formulations. If the source is sparse, coarse mesh reconstruction, which costs much less 
computation effort and is better conditioned, not only provides a good initial guess but also a 
good localization for the fine mesh. Hence, the reconstruction on fine mesh can be restricted 
to the localized region, which again reduces the computation cost. As another consequence, 
the amount of measurements can be reduced. On the other hand, if  the source is not sparse, 
coarse mesh solution can still provide a good initial guess for the fine mesh and improves 
overall computational efficiency and stability.  Moreover, coarse mesh reconstruction can also 
help to choose better r to balance between l1 and TV norm for the fine mesh reconstruction. 

Here is the outline of this paper. In section 2, we shall first briefly introduce RTE-based 
BLT, define TV norm on triangular mesh and describe our interior-point methods for solving 
(4) and (5); in section 3, we shall validate our algorithms with simulations; in section 4, we 
shall conclude and comment on our future work. 



2. Methods 

2.1. RTE-based BLT 
In this paper, we use RTE as forward model for reasons described in the introduction. The 
details of an efficient solver of RTE can be found in [34]. Next we shall introduce notations 
for presentation purpose. 

For forward problem, in vivo light propagation is modeled by the following RTE with the 
vacuum boundary condition 

)ˆ,(ˆ)ˆ,()ˆ,ˆ()ˆ,()()ˆ,(ˆ
1ˆ

srqsdsrssfsrsrs
nS

ssa

rrrr
+′′Ψ′=Ψ++Ψ∇⋅ ∫ −

µµµ         (6) 

ˆ( , ) 0r sΨ =
r

, if 0ˆˆ <⋅ ns  

where the quantities in the equation are the photon fluxΨ which depends on both space r
r
and 

angle ŝ , the light source q , the Henyey-Greenstein scattering function f with anisotropic 

factor g , the absorption coefficient aµ , the scattering coefficient 
sµ , the outer normal n̂  at 

boundary and the angular space
1ˆ −nS , i.e., the unit circle in 2D or the unit sphere in 3D. 

After Discontinuous Galerkin discretization of (6), we numerically denote piecewise-

constant isotropic bioluminescent source by [ ]iQ q= and piecewise-linear photon flux 

by ,[ ]ij mφΦ =  with1 ,1 1,1s d ai N j n m N≤ ≤ ≤ ≤ + ≤ ≤ , where aN , sN and dn are the 

number of angles, the number of spatial mesh elements and problem dimension respectively. 

On the other hand, we use { ,1 }jP j M≤ ≤  to denote measure operators for reconstruction. 

In this paper, we shall use two types of measurements, i.e., boundary angular-resolved 

measurement Ψ and boundary angular-averaged measurement
ˆ ˆ 0

ˆ ˆ ˆ
s n
s n ds

⋅ >
⋅ Ψ∫ . For RTE 

based BLT, which is a linear inverse source problem, the Jacobian matrix J is composed of 

Green’s function of RTE. We refer readers to [23] for the computation of Jacobian J . 

2.2. Regularization by TV 
Although l1 regularization performs well for sparse sources and is capable of recovering high-
resolution details as demonstrated in [23], it tends to shrink the support of large or non-sparse 
sources, especially in the isotropic scattering regime or diffusive regime. To overcome this, 

we introduce the regularization by TV norm || ||TVQ  for nearly piecewise-constant source 

reconstruction. 
Since our algorithm is discretized on triangular mesh instead of Cartesian grid, we shall 

use a discretized version of TV coarea formula [35] for piecewise-constant Q . 

Let{ ,1 }k ek NΓ ≤ ≤ be edges, then we have 

, ,

1

|| || | |
eN

k l k r

TV k
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Q L q q
=
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in which kL denotes the length of the k th edge, and 
,k lq and

,k rq represent the left element 

and the right element with respect to the k th edge with the convention that the spatial index 

of the left element
,k lq is always smaller than that of right element

,k rq to avoid the repetitive 

counting of edges. For TV on the domain boundary, we let
,k lq be the corresponding boundary 

element and 
,k r
q be empty, i.e., 

,
| |
k l

kL q . 



2.3. Optimization Algorithm for l1 and TV regularization 
In this section, we shall describe an interior-point method [36] for solving (4), which can be 
easily modified for minimization problem (2) and (3).  

First we recast (4) as a constrained convex optimization problem 
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|| || ( )min
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m
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Q i k

JQ X Au r L vλ
= =
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with constraints ,1i i i su q u i N− ≤ ≤ ≤ ≤ and 
, , ,1k l k r

k k ev q q v k N− ≤ − ≤ ≤ ≤ . Here 

iA is area of the i th element and
1: /TVr λ λ= . Here we incorporate area weights

iA and edge 

weights
kL into the scheme to account for non-uniformity of the mesh, which is not necessary 

on a uniform mesh. 

Next we transform (8) into an sequence of t -dependent unconstrained convex 
optimization problems 

2
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by penalizing the element and edge constraints corresponding with logarithmic barrier 

functions 
1
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i i iu u q+ = + , i i iu u q− = − , 
, ,k l k r

k kv v q q+ = + − and 
, ,k l k r

k kv v q q− = − + .. 

The standard interior point method for solving constrained convex problem (8) is through 
minimizing a sequence of unconstrained convex problems (9), for which the solution 

converges as t→∞ . Actually the solution of (9) is no more than 2( ) /s eN N t+ -

suboptimal. This algorithm is what so called barrier method (algorithm 11.1) [36]. 
For subproblems (9), a simple gradient descent method (algorithm 9.3) [36] is 

implemented with the efficient computation of the search direction by a preconditioned 
conjugate gradient method (PCG) [37-39] and backtracking line search algorithm [36, 40]. 

Next we shall describe our PCG method for computing the search direction by solving 

2

t t

Q

u

v
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Before that, we first compute t∇Φ and the Hessian
2

t∇ Φ , i.e.,  

1 1

1
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t u TV v TVJ JQ X A L
t
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Note the equality above should be understood in the sense the left hand side is assembled 
from the matrices on the right hand side with correct ordering of unknowns. 

Here[ ]uA denotes the element area vector for unknownu and[ ]vL for the edge length vector 

for unknownv . (11) and (12) can be easily implemented numerically. 

For the convenience of presentation, we define
2 2( , ) : 1/ 1/f a b a b+ = + ，

2 2( , ) : 1/ 1/f a b a b− = − , ( , ) : 1/ 1/g a b a b+ = + and ( , ) : 1/ 1/g a b a b− = − . And then 



we assemble the following local vectors and matrices corresponding to each pair of 
constraints for either some element or edge into both sides of (10). 

First, with the first column or row for iq and the second for iu , the local vector and 

matrix for the pair of constraints corresponding to the i th element are 
1

1 2
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Second, with the first column or row for 
,k lq , the second for

,k rq and the third for kv , 

the local vector and matrix for the pair of constraints corresponding to the k th edge 

are
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It is easy to see that the Hessian (12) is positive symmetric definite. In order to make 

PCG method work, we need to find a precondition matrix P which is not only fast to invert, 
but also a good approximation of the Hessian. Here we choose the sparse matrix 

2 2

1

1
2diag( ) ( )T

TVJ J
t

φ φ+ ∇ +∇ as P , which is also symmetric positive definite, and thus 1M g−  

can be efficiently solved by Gauss-Seidel method for any vector g . 

 

We summarize our minimization algorithm below. With ε between 0.00001 and 0.001 as 

stopping criterion, 1λ between 0.01 and 1, and r between 0.1 and 10 as the ratio of TV norm 

over l1 norm, our barrier method gives good results from our numerical tests. Also one needs 

to increase values of ε and
1λ  when noise level is high. Note in backtracking line search, we 

check the constraint condition for (8) for feasibility. 

_______________________________________________________________________ 
 
Algorithm: barrier method for optimization problem (8) 

given tolerance 0ε > ,
1λ and r . 

Initialize 2µ = , 
11/t λ= ,

1TV rλ λ= , 0q = , 1u = , 1v = . 

Repeat optimization of subproblems (9) 

1. compute the search direction ( , , )Q u v∆ ∆ ∆ by (12) through PCG with 

preconditioner P ,  the relative tolerance 
pcg min(0.1,0.01( ) / )s eN N tε = + and 

the relative tolerance
gs 0.0001ε = for Gauss-Seidel iterations in PCG. 

2. compute step size s by backtracking line search with 0.01α = , 0.5β = , 0 1s = . 

3. update: ( , , ) ( , , ) ( , , )Q u v Q u v s Q u v= + ∆ ∆ ∆  

4. quit if 2( ) /s eN N t ε+ <  

5. t tµ=  

_______________________________________________________________________ 



Next, we consider the balance between l1 and TV regularization. For source distribution 

that is piecewise constant with uniform intensity I ，TV norm is approximately IC when 

C is the perimeter of boundary of the support and l1 norm is approximately AI , where A is 

the area of the support. So in this case a good choice of ratio r , should be roughly 
proportional to CA / . Note /A C can be independent of the length unit since one can always 

nondimensionalize RTE (6) so that CA / is dimensionless, to which r should be equal. This 
implies that ratio r gives a geometric balance of l1 norm and TV norm. For example, l1 
regularization should weight more than TV regularization for sources with smaller 

ratio /A C , e.g., sources with small or thin support, which corresponds to sparse sources. As 

a result, with sparse sources as a priori, one should put more weights on l1 regularization by 
choosing small r in the algorithm to get better results. We use numerical experiments to 
demonstrate our rule of optimal choices for different configurations in Section 3. On the other 
hand, our tests seem to suggest that the results are not very sensitive to the choice of r . From 
our numerical experiments, the value of r is typically between 0.1 and 10. 

Last but not the least, we normalize J by columns to get J ∗ , and then actually solve the 
following instead of (8) 

2
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m

i i TV k k
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J Q X Au L vλ λ
∗

∗ ∗

= =
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This is crucial for the successful reconstruction. Physically this means the total energy of 
measurements with respect to each unknown is on the same level, while mathematically 

diag( )TJ J∗ ∗ is equal to identity matrix, which makes problem isotropic to all unknowns. After 

solving (13), we need to change correspondingly from Q∗ toQ , which reflects the sensitivity 

of each unknown on measurements. This is also equivalent to optimization in weighted norm. 

2.4. Optimization Algorithm for  l1 Data Fidelity 
To simplify the discussion, we will only present the treatment of l1 data fidelity term in the 
optimization problem (5), and the l1 or TV regularization can be easily adapted to the problem 
(5) in the same way as what we have done for (4) by (8) in the previous subsection. 

Following the standard interior-point method, we first transform the problem 

1|| ||min
m

Q

JQ X−     (14) 

into the following constrained convex optimization problem 

1
min

M

j
Q j

y
=
∑      (15) 

with constraints 

1
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j ij i j j

i

y J q X y j M
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Similarly, (15) can be recasted as a sequence of unconstrained convex optimization 
problems as 

1

1
( , ) ( , )

M

t j

j

Q y y Q y
t
φ

=

Φ = +∑ .   (16) 

by penalizing the constraints with the logarithmic barrier 

function

1

( , ) (log log )
M
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=
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sN
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i

y y J q X+
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sN
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=
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To find the search direction, we need to compute 
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for which we have 
5

6

diag( ) /

[ ] / [1]

T

t

y y

J t

t

α
α

 
∇Φ = −  

−  

and the Hessian 
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with 5 ( , )j j jg y yα − + −= , 6 ( , )j j jg y yα + + −= , 5 ( , )j j jf y yσ + + −= and 

6 ( , )j j jf y yσ − + −= , 1 j M≤ ≤ . Here [1]y is the unit vector for y , 
6[ ]yα is the constraint vector 

for y and diag( )⋅ is the diagonal matrix with diagonal elements in the bracket. 

       To invert (17) efficiently, we use a similar PCG method with a sparse symmetric positive 

definite preconditioner 
5

5

diag( diag( ) ) 0
=

0 diag( )

T
J J

P
σ

σ

 
 
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. 

       Last, we want to emphasize in our algorithm we actually minimize (5) with normalized 
Jacobian instead of (14), i.e.: we solve a sequence of subproblems coming from the 
combination of (9) and (16) except l2 data fidelity term; in the barrier method, we compute 

2

t tx∇ Φ ∆ = −∇Φ with. [ ]:
T

x Q u v y∆ = ∆ ∆ ∆ ∆ for search direction. 

3. Simulations 
For comparison purpose, besides (1) for l2 regularization, we also consider H1 regularization 

by a discrete version of, but not exactly, H1 seminorm
1

2 , , 2

1

| | : ( )
eN

k l k r

H

k

Q q q
=

= −∑ , with the 

same definition as in (7), i.e.,  

1

2 22
2|| || | |

2min
m

H
Q

JQ X Q
λ

− + ,   (18) 

or by both
1

2| |HQ and the usual discrete l2 norm
2 2
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Q q
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=∑ , i.e., 
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where
2r is the parameter to balance between l2 norm and H1 norm. 

 (1) and (18) can be solved through Levenberg-Marquardt method [41-43], in which we 
iteratively solve 

1 1

2,( ) ( ( ))k k T T k m

kQ Q J J D J JQ Xλ+ −= + + − .   (20) [41-43] 

D in (20) comes from l2 or H1 regularization. For l2-regularized problem (1), simplyD I= ; 

for H1-regularized problem (18), D comes from H1 norm and can be assembled from the 

local matrix 1 1
[ ]

1 1
kD

− 
=  − 

 for each edge. The detailed implementation can be found in 

Algorithm 3.16 in [43] with one modification of the gain predicted by linear model 

as
1 2, 1

1
( ) [ ( ) ]

2

T T m

k k k k k
Q Q D Q Q J Xλ+ +− − −  to guarantee a successful automatic adjust 

of 2λ adaptively. Also (20) can be inverted with a similar PCG method in the previous section. 

 
In this section we use various numerical simulations to validate our novel l1+TV 

regularization strategy for BLT and compare l1 data fidelity with l2 data fidelity. In all figures 



shown in this section, reconstructed images are plotted as what they originally are from 
reconstructions without further image processing, such as thresholding. As pointed out at the 
beginning, radiative transport equation (RTE) is used as the underlying model for both 
forward and inverse problem. Data for forward problem is generated on a fine mesh that is 
different from the fine mesh used for inverse problem. The fast forward solver developed in 
[34] is used to compute both the forward problem and the Green’s functions for inverse 
problem. The methods for solving l2-regularized BLT can be found in [23]. In the following 
figures for l2 regularization except Fig. 14 and 15, we only plot results from (1) since l2 
regularization (18) and (19) give the similar results. In particular we design different 
simulations to demonstrate the following points. 

First, with a priori knowledge of the rough size information of bioluminescent source, 
one can choose the ratio r between TV norm and l1 norm to optimize reconstruction results. 
On the other hand, from our numerical experiments, it seems that the reconstruction images 
are not very sensitive to r in the sense that l1+TV regularization with the ratio around unity in 
general produces satisfactory images. See Fig. 1. 

Second, with angular-averaged or angular-resolved data for non-sparse or sparse source, 
our l1+TV regularization reconstruct better than either l1 or TV regularization. Moreover, all 
of these perform better than the conventional l2 regularization. See Fig. 2-13. 

Fourth, for the reconstruction of non-piecewise-constant images, with l2 data fidelity, l2 
regularization (1) or H1 regularization (18) may give better results than l1+TV regularization 
(4). On the other hand, l1 data fidelity (5) with l1+TV regularization gives as good results as 
l2 data fidelity with l2 or H1 regularization. We show examples in Fig. 14 and 15. 

Last, l1 data fidelity is capable of dealing with noise containing outliers while l2 data 
fidelity fails to handle it. See Fig. 16. 

 
The following simulations are performed on a square domain with 20mm side length with 

anisotropic factor g = 0.9 or 0.0, homogeneous 10.01
a

mmµ −= and 11
s
mmµ −= . The 

reconstruction mesh has 32 angular directions, 1397 nodes and 2672 elements. To avoid 
inverse crime, all forward data for various simulations are generated with 64 angular 
directions on the corresponding spatial mesh, which is different from reconstruction mesh. All 
the reconstruction results are either with 120 boundary angular-averaged data or 900 boundary 

angular-resolved data. For all simulations with l1+TV regularization, 01.01 =λ and 1=r  unless 

otherwise indicated. 
The purpose of simulations in Fig. 1 is to demonstrate the dependence of the choice of the 

ratio r between TV norm and l1 norm on /A C . In Fig. 1, we put in the square domain three 

inclusions sequentially with the increasing side length of the ratio 3: a square inclusion (a) 
with side length 1.6mm and the forward mesh with 1401 nodes and 2680 elements, a square 
inclusion (b) with side length 4.8mm and the forward mesh with 1423 nodes and 2720 
elements and a square inclusion (c) with side length 13.4mm and the forward mesh with 1355 
nodes and 2584 elements. The simulations are performed in each case with 0.2, 1 and 5 for 
r with angular-averaged data and g=0.9. For the smallest inclusion (a), the reconstruction (d) 

with 0.2r =  gives the best result. For the inclusion (b), the reconstruction (h) with 

1r = gives the best result. For the largest inclusion (c), the reconstruction (l) with 

5r = gives the best result. In conclusion, the results are not very sensitive to r , however the 
optimal choice does need a priori knowledge. 

In Fig. 2, Source I (a) is composed of three objects with the forward mesh (b) of 1445 
nodes and 2768 elements; Source II (c) is composed of three letters with the forward mesh (d) 
of 1509 nodes and 2896 elements. Regarding the relative size of sources, Source I is non-
sparse and Source II is sparse. We present below in Fig. 3-10, 12 and 13 that l1+TV 
regularization (4) in general gives the best results of l2 regularization (1), l1 regularization (2) 
or TV regularization (3) for both Source I and II. 



 

Fig. 1. l1+TV regularized reconstructions of different square inclusions. Figures (a), (b) and (c) 
are true sources. Figures (d), (g) and (j) are reconstruction results of (a) with r=0.2, 1 and 5 
respectively. Figures (e), (h) and (k) are reconstruction results of (b) with r=0.2, 1 and 5 
respectively. Figures (f), (i) and (l) are reconstruction results of (c) with r=0.2, 1 and 5 
respectively. 

 

Fig. 2. Sources and meshes for non-sparse and sparse reconstructions. Source I and II are in 
Figure (a), (c) respectively with the corresponding meshes in Figure (b) and (d). 

For non-sparse source with g=0.9 as shown in Fig. 3 and 4, regularization by l1+TV norm 
indeed gives better results than that with l2, l1 or TV norm. In Fig. 3, regarding the 
reconstruction with angular-averaged data as a severely ill-posed inverse problem, l1+TV 
method (d) is still able to separate three objects and roughly preserve image boundaries with 
acceptable background noise, while l1 norm (b) shrinks the support significantly and produces 
high intensity, TV norm alone (c) gives the blurred image with some noise in between objects, 
and one can hardly see anything through l2 norm (a). In Fig. 4, with angular-resolved data, 
l1+TV norm (d) still gives the most accurate reconstruction of image edges, details and 
intensities. Similarly, reconstruction results with g=0.0 are shown in Fig. 5 and 6, which are in 
diffusive regime. Here l1+TV is even more impressive for angular-averaged data in Fig. 5. 



 

Fig. 3. Reconstructions with angular-averaged data for Source I with g=0.9. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 

 

Fig. 4. Reconstructions with angular-resolved data for Source I with g=0.9. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 

 

Fig. 5. Reconstructions with angular-averaged data for Source I with g=0.0. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 



 

Fig. 6. Reconstructions with angular-resolved data for Source I with g=0.0. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 

 

 

Fig. 7. Reconstructions with angular-averaged data for Source II with g=0.9. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 

 

Fig. 8. Reconstructions with angular-resolved data for Source II with g=0.9. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 



 

Fig. 9. Reconstructions with angular-averaged data for Source II with g=0.0. Figures (a), (b), (c) 
and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 

 

Fig. 10. Reconstructions with angular-resolved data for Source II with g=0.0. Figures (a), (b), 
(c) and (d) are reconstructed images by l2, l1, TV and l1+TV regularization respectively. 

Next, we evaluate the reconstruction performance for sparse sources with g=0.9 as shown 
in Fig. 7 and Fig. 8. Regarding the reconstruction with angular-averaged data in Fig. 7, the 
conclusion is still the same as that for non-sparse sources: l1+TV method (d) gives the best 
result. However, since in this case not only three letters are too small, but also the data are 
limited, even l1+TV method is unable to resolve the image details. On the other hand, with 
angular-resolved data in Fig. 8, l1 norm (b) gives the best details although with nonsmooth 
intensities and l1+TV (d) is the second best although it blurs the image a little bit. This makes 
sense since l1 is the most appropriate choice for sparse sources. Similarly, reconstruction 
results with g=0.0 are shown in Fig. 9 and Fig. 10. 

Then, we compute an example of our multilevel approach for Source I ((a) in Fig. 2) with 
g=0.0 as shown in Fig. 11. The single-level reconstruction (a) is done on the reconstruction 
mesh specified at the beginning of this section with 360 angular-resolved measurements. With 
the same reconstruction mesh as the fine mesh, the two-level reconstruction with 180 angular-
resolved measurements also has a coarse mesh with 365 nodes and 668 elements. Both use 
l1+TV regularization. The results in Fig. 11 show that our multilevel approach is more 
efficient than single-level reconstruction with saving of at least half of the computational time. 

In our multilevel approach [23] with l1, TV or l1+TV regularization, we choose l1+TV 
regularization for the coarse reconstruction, since it localizes the source with proper boundary 



and little background noise for both sparse and non-sparse sources. On the other hand, 
although l1 regularization is favorable for sparse sources, it is not necessary to use it on the 
coarse mesh since it is difficult to get high-resolution images through coarse reconstruction 
anyway. Next on the fine mesh, the element edges in (7) are restricted within the support 

ofQ found through coarse reconstruction with the support boundary as the boundary for 

unknowns. Meanwhile, coarse reconstruction also helps to choose a proper ratio r in (8) to 
balance between l1 and TV norm for the fine reconstruction, i.e., more TV norm for non-
sparse sources or more l1 norm for sparse sources. 

 

Fig. 11. Single-level reconstruction and two-level reconstruction for Source I with g=0.0. 
Figures (a) is from single-level reconstruction with 360 angular-resolved measurements. 
Figures (b) is from two-level reconstruction with 180 angular-resolved measurements. 

 

Fig. 12. Reconstructions with angular-resolved data for Source I with different intensities with 
g=0.9. Figures (a), (b), (c) and (d) are reconstructed images by l2, l1, TV and l1+TV 
regularization respectively. 

 

Fig. 13. Reconstructions with angular-resolved data for Source I with different intensities with 
g=0.9. Figure (a) is the true source. Figure (b) is the reconstructed image by l1+TV 
regularization. 

Last, we do the reconstruction for Source I with g=0.9 and varying intensities, i.e., 1 for 
hexagonal inclusion, 2 for square inclusion and 4 for triangular inclusion with reconstruction 
results in Fig. 12 and 13, which show that our algorithms can successfully reconstruct sources 
with different intensities. 



 

Fig. 14. Reconstructions with angular-resolved data for non-piecewise-constant source with 
g=0.9. Figure (a) is the true source. Figure (b), (c), (d), (e) and (f) are for l2 data fidelity with l2, 
H1, l1, TV, l1+TV regularization respectively. Figure (g), (h) and (i) are for l1 data fidelity 
with l1, TV, l1+TV regularization respectively. 

 

Fig. 15. Reconstructions with angular-resolved data for non-piecewise-constant source with 
g=0.0. Figure (a) is the true source. Figure (b), (c), (d), (e) and (f) are for l2 data fidelity with l2, 
H1, l1, TV, l1+TV regularization respectively. Figure (g), (h) and (i) are for l1 data fidelity 
with l1, TV, l1+TV regularization respectively. 

 
In Fig. 14 and 15 we show an example with g=0.0 or 0.9 that l2 regularization gives 

better results than l1 or TV regularization for non-piecewise-constant source with angular-
resolved data. In the simulations, an elliptic source inclusion  (a) is centered at (10mm, 10mm) 
with major radius 8mm and minor radius 4mm, the axis which is 45 degrees from x direction, 
and the compactly supported smooth 
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 where ( , )x y′ ′ is the coordinate of 

( , )x y after 45 degree rotation. The forward mesh has 64 angular directions, 1421 nodes and 

2720 elements. 
From Fig. 14 and 15, with l2 data fidelity, H1 seminorm (c) gives the best result, while l1 

regularization (d) significantly sparsifies the source distribution, TV regularization (e) and 



l1+TV regularization (f) tend to generate the piecewise-constant solution; on the other hand, 
l1 data fidelity (g), (h) and (i) tends to alleviate the tendency for the piecewise-constant 
solution and l1 data fidelity with l1+TV norm can reconstruct as good as l2 data fidelity with 
H1 norm. 

 

Fig. 16. Comparison of l2 data fidelity with l1 data fidelity with l1 regularization. Figures (a), 
(c), (e) and (g) are reconstruction results with l2 data fidelity with 0% Gaussian noise, 10% 
Gausisan noise, 10% Gausisan noise and 20% salt-and-pepper noise, 10% Gausisan noise and 
33% salt-and-pepper noise respectively. Figures (b), (d), (f) and (h) are reconstruction results 
with l1 data fidelity with 0% Gaussian noise, 10% Gausisan noise, 10% Gausisan noise and 
20% salt-and-pepper noise, 10% Gausisan noise and 33% salt-and-pepper noise respectively. 

In Fig. 16 we compare the performance of l1 data fidelity with that of l2 data fidelity with 
respect to Gaussian noise, salt-and-pepper noise or both. Five small inclusions with 1mm 
diameter are centered at (5mm, 5mm), (5mm, 10mm), (5mm, 15mm), (10mm, 5mm) and 
(15mm, 5mm) and the forward spatial mesh is of 1917 nodes and 3696 elements. The 
simulations are performed through l1 regularization with angular-resolved data with g=0.9 

and 11 =λ . We add two different types of noise: one is Gaussian noise and the other is salt-

and-pepper noise. For the salt-and-pepper noise, we randomly pick up certain number of 
measurements and set the value to a totally irrelevant one, e.g., 0. 

With l2 data fidelity, the result without noise is shown in (a) while the result with 10% 
Gaussian noise is shown in (c). Adding salt-and-pepper noise, we plot the results in (e) and (g) 
for randomly setting 180 and 300 measurements to zero respectively from 900 measurements 
with 10% Gaussian noise. Similarly, we plot images (b), (d), (f) and (h) with l1 data fidelity. 
From the reconstruction results, we conclude l1 data fidelity has good performance for both 
Gaussian noise and the pepper-and-salt noise while l2 data fidelity handles pepper-and-salt 
noise poorly. Therefore, l1 data fidelity (5) instead of l2 data fidelity (4) is strongly 
recommended in practice with outliers, such as salt-and-pepper noise. 

Last we give the rough estimate of the computational storage and time for our algorithms 

on a typical reconstruction problem with 32aN = directions, 2672sN = elements and 

900M = measurements. 

Regarding the memory storage, in our forward solver [34], the relaxation scheme needs 

two vectors of individual length 3a sN N⋅ ⋅  for the residual and the solution respectively, 



where 3 is from our spatial piecewise-linear DG discretization, and multigrid methods double 

the amount for one relaxation, which comes to a total of 12 a sN N⋅ ; on the other hand, the 

main storage for inverse problem is for : TB J J= , i.e.,
2

sN . Thus the total memory is 

around 70 megabytes if each value takes 8 bytes. 

Regarding the computational time, our forward solver is roughly
2( )s aO N N⋅ for a fixed 

set of parameters. In the reconstruction, we need to compute B , which takes
2

sM N⋅ . Let 

n be either the number of subproblems (9) or iteration (20). With l2 data fidelity, each 

subproblem (9) for l1+TV regularization takes roughly
2( )sO N  and one iteration (20) for l2 

or H1 regularization takes roughly
2( )sO N as well, that both comes from the multiplication 

of B with another vector; as a result, the computation for l2 data fidelity is 

roughly 2 2( )s sO N n M N⋅ + ⋅ . On the other hand, with l1 data fidelity, each subproblem (16) 

for optimization with or without l1+TV regularization takes 2 2( )s sO N M N+ ⋅ since one 

needs to computeB for each subproblem, and thus the total is roughly 2 2( ( ) )s sO N M N n+ ⋅ ⋅ . 

Note each set of Gauss-Seidel iterations takes roughly ( )sO N due to the sparse and positive-

definite precondition matrixP . Finally, on a desktop with Intel CPU E6850 (3.00GHz), each 
forward solver takes 3 to 4 seconds and 900 measurements take around 50 minutes for adjoint 

method to compute Jacobian J ; optimization with l2 data fidelity takes 3-5 minutes while 

optimization with l1 data fidelity takes 10-15 minutes. In summary, the major computational 

time is spent on the computation of Jacobian J  while the optimization with l2 data fidelity 

takes usually less than ten percents of the computational time of J and that with l1 data 

fidelity takes around twenty percents. On the other hand, computation of the Jacobian can be 
easily parallelized to reduce the computation time significantly. Also there are some other 
potentially efficient methods for problems (4) or (5), such as [44-46], which may improve a 
lot on optimization time. 

With our multilevel approach, we may reduceM and sN substantially, especially for 

sparse sources, and thus to reduce both memory storage and computational time. However, 
note that the memory for forward solver does not reduce and the computational time of each 
forward solver does not decrease. 

4. Conclusions and discussions 

In this paper, we have introduced l1+TV regularization strategy for BLT and developed novel 
optimization algorithm for solving l1+TV-regualrized BLT based on RTE. Simulations have 
validated that, for nearly piecewise-constant sources, of regularizations by 12, l1, TV or 
l1+TV norm, l1+TV gives the best results in the sense that it combines merits from both l1 
and TV and is in general able to reconstruct image details, edges and intensities for both 
sparse and non-sparse images with boundary angular-averaged or angular-resolved data. We 
have also studied optimization with l1 data fidelity and developed the corresponding 
optimization algorithm. Simulations have shown that l1 data fidelity is preferred over l2 data 
fidelity to deal with outliers. On the other hand, for non-piecewise-constant sources, l1 data 
fidelity with l1+TV regularization is able to reconstruct as good results as l2 data fidelity with 
H1 regularization, and both in general are better than other strategies. Besides, our 
optimization method with either l1+TV regularization or l1 data fidelity is quite general in the 
sense that it can be easily adapted to other problems similar to (4) and (5). 
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