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Abstract

We propose a new formulation to compute effective Hamiltonians for
homogenization of a class of Hamilton-Jacobi equations. Our formulation
utilizes an observation made by Barron-Jensen [3] about viscosity super-
solutions of Hamilton-Jacobi equations. The key idea is how to link the
effective Hamiltonian to a suitable effective equation. The main advan-
tage of our formulation is that only one auxiliary equation needs to be
solved in order to compute the effective Hamiltonian H̄(p) for all p. Error
estimates and stability are proved and numerical examples are presented
to show very encouraging results.

1 Introduction

Let Tn be the n dimensional flat torus. Assume that uε ∈ C(Rn × [0,+∞)) is
the viscosity solution of {

uεt +H(Duε, xε ) = 0
uε(x, 0) = g(x)

(1)

where g ∈ C(Rn) and H : Rn × Rn → R is Tn periodic in the second vari-
able. Under suitable assumptions, it was proved by Lions, Papanicolaou and
Varadhan in [19] that as ε→ 0, uε uniformly converges to the unique viscosity
solution u of the effective equation{

ut + H̄(Du) = 0
u(x, 0) = g(x).

(2)
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The function H̄ : Rn → R is called the effective Hamiltonian, which is defined
through the following cell problem [19].

Definition 1 (Theorem) For each p ∈ Rn, there exists a unique real number
H̄(p) such that the partial differential equation (PDE)

H(p+Dv(y), y) = H̄(p) (3)

has a T-periodic viscosity solution v.

There has been a lot of interest in developing efficient algorithms to compute
H̄. Let us mention two motivations.

• The homogenization result in [19] is not only interesting, but also can
be used to compute the homogenized solution from the x-independent effective
equation (2) without the need to resolve the small scale ε if H̄ is known. We
refer to [12] and [1] for instance.

• Recently, a program has been launched to use nonlinear PDEs to investi-
gate some integrable structures within a dynamical system. People believe that
the effective Hamiltonian encodes a lot of interesting dynamical information.
We refer to [14, 13] for more backgrounds.

Although the cell problem (3) gives an elegant mathematical description
of the effective Hamiltonian it is not easy to write out an explicit formula in
general, except for one dimension [19]. Numerically it is quite challenging to
compute the effective Hamiltonian based on the cell problem even though there
is no small scale involved. First each cell problem is difficult to solve due to
the periodic boundary condition, which means that there is no way to find out
where a characteristic starts and to follow it. Moreover, it requires to solve a
cell problem for each single p.

Two well-known algorithms to compute the effective Hamiltonian based on
the cell problem are the small-δ method and the large-T method, e.g. in [24].
They are essentially the same. The small-δ method uses the fact that under
appropriate assumptions, the viscosity solution of an approximate cell problem

δuδ(y) +H(p+Duδ(y), y) = 0

has the following property:

δuδ → −H̄(p) as δ → 0 uniformly in Rn.

The Large-T method uses the result that under appropriate assumptions, the
viscosity solution of an evolution problem{

ut +H(p+Du, y) = 0 in Rn × (0, ∞)
u = g in Rn × (t = 0)

has the following property:

H̄(p) = − lim
t→∞

u(y, t)
t

.
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When the Hamiltonian is convex in the gradient variable, Gomes and Ober-
man [17] proposed an approach to calculate H̄ based on the inf-max formula
(see Contreras-Iturriaga-Paternain-Paternain [7], Gomes [16], etc.)

H̄(p) = inf
φ∈C1(Tn)

max
Tn

H(p+Dφ, x). (4)

In order to compute H̄(p), all the above methods require the solution of the
cell problem or a variational problem for each p.

Recently, Oberman, Takei and Vladimirsky [21] proposed an interesting idea
to approximate H̄ when the Hamiltonian is convex and homogeneous of degree
one in the gradient variable. Their basic idea is to recover the effective Hamilto-
nian from a suitable effective equation. Precisely speaking, for such an H, owing
to the inf-max formula, the associated H̄ is also convex and homogeneous of de-
gree one. Therefore we may write

H̄(p) = max
|α|=1

{(p · α)c̄(α)}

where c̄(α) ∈ R. Hence to compute H̄ it suffices to determine c̄(α). Suppose
that u is a viscosity solution of the effective equation H̄(Du) = max

|α|=1
{(Du · α)c̄(α)} = 1

u(0) = 0

The Hopf-Lax formula implies that

c̄(α) =
1

u(α)
. (5)

And u can be approximated by solutions of the oscillatory equationH(Duε,
x

ε
) = max

|α|=1
{(Duε · α)c(

x

ε
, α)} = 1

uε(0) = 0

which can be numerically computed by well-established schemes. It is easy to
see that by taking proper powers this method actually works for homogeneous
Hamiltonian of any degree. The main advantage of this method is that only one
auxiliary equation needs to be solved to approximate the effective Hamiltonian
for all p ∈ Rn. However, the assumptions on the Hamiltonian H is too restricted
to include many interesting cases.

In this paper, we propose a general formulation along this line to include
more important Hamiltonians. The main novelty is how to link the effective
Hamiltonian to a suitable effective equation. In general, there does not exist an
elegant relation like (5). Instead, we use an interesting observation made in [3]
of viscosity supersolutions for convex Hamilton-Jacobi equations. To make our
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presentation clear, we will focus on Hamilton-Jacobi equations with Hamiltonian
H(p, x) in the kinetic form

H(p, x) = ai,j(x)pipj + V (x)

where V : Rn → R is a Lipschitz continuous, T-periodic function. And ai,j(x)
satisfies the uniformly strict convexity condition

Λ|ξ|2 ≥ ai,j(x)ξiξj ≥ λ|ξ|2 for any ξ ∈ Rn (6)

with Λ > λ > 0. Such Hamiltonians are very important in the dynamical
system and the classical mechanics. Due to the presence of the potential V ,
the associated effective Hamiltonian is more complicated than those in [21]. For
example, it is not homogeneous of any degree and its graph might contain a
flat part near the origin which is related to trapping of trajectories (see [6] and
computational examples in section 3). Technically speaking, our formulation
works for all H which is convex and coercive in the gradient variable as long as
min H̄ is known (see step I in section 2).

Outline. In Section 2, we provide theoretical justifications for our approach
and error estimate. In Section 3, we first present the numerical algorithm to
compute effective Hamiltonians. Then numerical results are presented to show
both efficiency and accuracy of our method. Complexity of our method and
comparisons with other methods are also discussed. In section 4, we give con-
clusion remarks and discuss some future projects.

2 Theoretical results

The viscosity solutions, under appropriate assumptions, for Hamilton-Jacobi
equations

H(Du(x), u, x) = 0 x ∈ Ω ⊂ Rn

are defined as follows [8].

Definition 2 (viscosity solution) A function u(x) ∈ C(Ω) is a viscosity sub-
solution (resp. supersolution) of H(Du(x), u, x) = 0 if for any φ(x) ∈ C∞(Ω),
when u− φ attains a local maximum (resp. minimum) at point x0 ∈ Ω,

H(Dφ(x0), u(x0), x0) ≤ 0 (resp. ≥ 0).

A viscosity solution of H(Du(x), u, x) = 0 is a viscosity subsolution and super-
solution.

Our approach is strongly motivated by the following theorem in [3] .

Theorem 1 (Barron-Jensen) If the Hamiltonian H(p, u, x) is convex in p,
the inequality in the definition of viscosity supersolutions is actually an equality,
that is, for any φ(x) ∈ C∞(Ω), when u − φ attains a local minimum at point
x0 ∈ Ω,

H(Dφ(x0), u(x0), x0) = 0 (7)
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For readers’ convenience, we sketch the idea of proof. For K ⊂ Rn, denote
Co(K) as the convex hull of K, i.e, the smallest closed convex set containing
K. We denote Cr = Co({Du(x)| x ∈ Br(x0), Du(x) exists}) for r > 0. By
mollifying u, it is not hard to show that

Dφ(x0) ∈ ∩r>0Cr.

Then the convexity of H in the p variable implies

H(Dφ(x0), u(x0), x0) ≤ 0.

Combining with the definition of supersolution, the equality (7) holds.
Barron and Jensen’s observation allows us to recover H̄(p) from a suitable

effective equation. The following is our approach.

Step I: Consider the effective equation

(HJa)

{
H̄(Du) = f(x) in Ω\{0} ∈ Rn

u(0) = 0
(8)

For each p ∈ Rn, let w(x) = u − p · x. If w attains a local minimum at x0,
then H̄(p) = f(x0) according to equality (7). A tricky point here is that we
should choose f(0) = min H̄. Then 0 is a removable source point (see Lemma 1
below).

Step II: It might be impossible to find a local minimum point x0. To
overcome this issue, we prove a stability result (Theorem 4) which states that
if w(x1) ≤ minRn w + δ for some x1, then

|f(x1)− H̄(P )| = O(
√
δ).

Step III: The next task is to find at least one such x1. Let us turn to the
oscillatory equation

(HJa)ε

H(Duε,
x

ε
) = f(x) in Ω\{0} ⊂ Rn

uε(0) = 0
(9)

Since limε→0 u
ε = u, we may consider wε = uε − p · x. If

wε(x2) ≤ min
Rn

wε + δ2,

Step II implies

|f(x2)− H̄(p)| ≤ O(
√

max
BR(|p|)

|uε − u|+ δ2),

where R(|p|) is a constant that only depends on |p|. Formally, |uε − u| = O(ε).
This suggests that we may expect that

|f(x2)− H̄(p)| ≤ O(
√
ε+ δ2).
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This will be rigorously established in Theorem 5 below and it is the main the-
oretical result of our paper. Although Theorem 5 is not really based on step
I and II, it is strongly motivated by them and Jensen-Barron’s Theorem and
shares a lot of similarities in proofs.

Let’s start with (HJa) and (HJa)ε. With appropriate f(x), for any p ∈ Rn,
uε − p · x and u− p · x attain at least one global minimum in Rn.

In our discussion, f(x) = 4Λ|x|2 + maxx V (x) in (HJa)ε and (HJa). Note
that for the kinetic Hamiltonian, it is easy to deduce from the inf-max formula
that

min
p∈Rn

H̄(p) = H̄(0) = max
Tn

V.

Theorem 2 The viscosity solution uε of (HJa)ε has the following properties

1. uε(x) ≥ |x|2 for any x ∈ Rn.

2. |Duε|2 ≤ 4Λ
λ |x|

2 + 2
λ maxx |V |.

Therefore, for any p ∈ Rn, uε − p · x attains a local minimum at some point in
R
n. And if uε(x)− p · x for a fixed p ∈ Rn satisfies

uε(x0)− p · x0 = min
x
{uε(x)− p · x},

we have
|x0| ≤ |p|.

Proof:
First we prove v(x) = |x|2 is a viscosity subsolution. Plug v(x) into (HJa)ε,

ai,j(x)2xi2xj + V (x) ≤ 4Λ|x|2 + max
x

V = f(x)

So v(x) = |x|2 is a smooth viscosity subsolution, according to comparison
principle, uε(x) ≥ |x|2.

Next we prove part 2.

ai,j(x)uεxiu
ε
xj + V (

x

ε
) = 4Λ|x|2 + max

x
V

⇒
ai,j(x)uεxiu

ε
xj ≤ 4Λ|x|2 + 2 max

x
|V |

⇒
λ|Duε|2 ≤ 4Λ|x|2 + 2 max

x
|V |

⇒

|Duε|2 ≤ 4Λ
λ
|x|2 +

2
λ

max
x
|V |.
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Lastly, we see that

|x0|2 − |p||x0| ≤ x0 · x0 − p · x0 ≤ uε(x0)− p · x0 = min
x
{uε(x)− p · x} ≤ 0,

which implies
|x0| ≤ |p|.

This completes the proof. �
Owing to the inf-max formula, it is easy to deduce that

λ|p|2 + min
Tn

V ≤ H̄(p) ≤ Λ|p|2 + max
Tn

V.

Following the same proof as in Theorem 2, we have the following result.

Theorem 3 The viscosity solution u of (HJa) has the following properties

1. u(x) ≥ |x|2 for any x ∈ Rn.

2. |Du|2 ≤ 4Λ
λ |x|

2 + 2
λ maxx |V |.

Therefore, for any p ∈ Rn, u− p · x attains a global minimum at some point in
R
n. And if u(x)− p · x for a fixed p ∈ Rn satisfies

u(x0)− p · x0 = min
x
{u(x)− p · x},

we have
|x0| ≤ |p|.

We can further prove that the solution u is actually a viscosity solution in
the whole domain including the source point 0 ∈ Ω.

Lemma 1 Assume u is the viscosity solution of (HJa), then u is the viscosity
solution in the whole domain Ω. Therefore, for any p ∈ Rn, if u− p · x attains
a local minimum at 0 ∈ Ω, then H̄(p) = f(0) = H̄(0) = maxx V .

Proof: First we show that u is a viscosity supersolution. We only need to con-
sider the source point 0. For any φ ∈ C1(Ω) and u−φ attains a local minimum
at 0 ∈ Ω, we need to show that H̄(Dφ(0)) ≥ maxx V . This is automatically
true according to the fact that maxx V = minp H̄(p), which implies

H̄(Dφ(0)) ≥ min
p
H̄(p) = max

x
V.

Next we prove that u is a viscosity subsolution. This follows from a result in
Barron-Jensen [3] which says that if H is convex in the gradient variable, then
u is a viscosity subsolution of H(Du, x) = 0 in Ω if and only if that

H(Du, x) ≤ 0 for a.e x ∈ Ω.

This completes the proof. �
The following is a stability result.
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Theorem 4 Denote w(x) := u(x) − p · x where u is the viscosity solution of
(HJa). If for some point x1 ∈ Ω such that

u(x1)− p · x1 = w(x1) ≤ min
x
w(x) + δ = min

x
{u(x)− p · x}+ δ,

then,
H̄(p) = f(x1) +O(

√
δ)

Proof: If u is the viscosity solution of (HJa), denote

g(x) = u(x)− p · x− (δ − 2|x− x1|2).

We show that g(x) attains a local minimum in B(x1,
√
δ).

We have
g(x1) = u(x1)− p · x1 − δ ≤ min

x
w(x)

and
g(x) = u(x)− p · x+ δ > min

x
w(x) for any x ∈ ∂B(x1,

√
δ).

Therefore g(x) attains a local minimum at some point x0 ∈ B(x1,
√
δ), which

implies u(x)−(p·x+(δ−2|x−x1|2)) attains a local minimum at x0 ∈ B(x1,
√
δ).

According to Barron-Jensen’s observation and lemma above,

H̄(p− 4(x0 − x1)) = f(x0),

which is
H̄(p) +O(|x0 − x1|) = f(x1) +O(|x0 − x1|),

which implies

H̄(p) = f(x1) +O(|x0 − x1|) = f(x1) +O(
√
δ).

This completes the proof. �
Suppose |p| ≤M . Theorem 2 allows us to restrict the discussion within the

cube Ω = [−M, M ]n. Denote

eM = max
Ω
|uε − u|.

Assume that uε is the viscosity solutions of (HJa)ε. According to Theorem 4,
if

uε(x0)− p · x0 ≤ min
x
{uε(x)− p · x}+ δ

for some x0 in Ω, then

H̄(p) = f(x0) +O(
√
eM + δ).
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It is a subtle question that how fast the error eM → 0 as ε → 0. Heuristically,
εM = O(ε) due to the formal asymptotic expansion uε = u + εv(x, xε ), where
v = v(x, y) satisfies

H(Du(x), Dyv(x, y)) = H̄(Du(x)).

However, it is usually hard to derive this rigorously except in some very special
situations (for example, when u is a constant as in [11]). The main reason is
that the above v might not be regular enough to justify the above expansion.
Nevertheless, through a different approach, we are able to establish the following
result which is our main theorem to compute H̄.

Theorem 5 Assume uε is the viscosity solution of (HJa)ε. Suppose that |p| ≤
M and

uε(x0)− p · x0 ≤ min
x
{uε(x)− p · x}+ δ

for some x0 in Ω, then

H̄(p) = f(x0) +O(
√
ε+ δ).

Proof: For convenience, we assume that aij(x) and V (x) are all smooth. Such
assumptions can be easily removed by mollification and approximation. Let
w ∈W 1,∞(Tn) be a viscosity solution of

−H(p+Dw(y), y) = −H̄(p) in Tn

and satisfy that w(0) = 0. The existence of w is similar to Definition 1 (the cell
problem). See also [15]. It is clear that ||w||W 1,∞(Tn) ≤ C for a constant C ≥ 1
which only depends on M and H. Denote τ = δ + ε and

vε(x) = p · x+ εw(
x

ε
)− (2C + 1)|x− x0|2.

Note that
uε(x0)− vε(x0) ≤ min

Rn
(uε − p · x) + Cτ

and
uε(x)− vε(x) ≥ min

Rn
(uε − p · x) + (C + 1)τ if |x− x0| =

√
τ .

Hence there must exist x̄ ∈ B√τ (x0) such that

uε(x̄)− vε(x̄) = min
B̄√τ

(uε − vε).

Since aij and V are all smooth, according to [18] and [15], uε is semiconcave in
Rn\{0} and w is semiconvex in Rn.

Case 1: If x̄ 6= 0, then both uε and vε are differentiable at x̄. Hence

H(p+Dw(
x̄

ε
)− 2(2C + 1)(x̄− x0),

x̄

ε
) = f(x̄).
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Since |x̄− x0| ≤
√
τ and

H(p+Dw(
x̄

ε
),
x̄

ε
) = H̄(p),

we derive that
|f(x0)− H̄(p)| = O(

√
τ).

Case 2: If x̄ = 0, as in the proof of Barron-Jensen’s theorem, we first mollify
uε. Then by comparing the mollification with the semiconvex function vε, it is
not hard to show that there exists a sequence xm → 0 as m → +∞ such that
vε is differentiable at xm and

H(p+Dw(
xm
ε

)− 2(2C + 1)(xm − x0),
xm
ε

) ≤ f(xm) + o(1),

where o(1)→ 0+ as m→ +∞. Again, since

H(p+Dw(
xm
ε

),
xm
ε

) = H̄(p),

we have that
H̄(p) ≤ f(0) +O(

√
τ) = min

Rn
H̄ +O(

√
τ).

Accordingly,
|H̄(p)− f(0)| ≤ O(

√
τ).

Note that |x0| = |x0 − x̄| ≤
√
τ . So

|H̄(p)− f(x0)| ≤ O(
√
τ).

�

Remark 1 The δ in the above Theorem 5 could be the numerical error in com-
puting uε. So a good guideline for the balance between numerical error, denoted
by δ(h) for a mesh size h, and the asymptotic error is δ(h) ∼ ε, which will be
used in our numerical examples in Section 3.

When δ = 0, the error estimate from the above theorem is
√
ε. However,

computational examples suggest that the optimal error estimate might be O(ε).
When n = 1, we are able to rigorously derive that. For simplicity, let us look
at the mechanical Hamiltonian H(p, x) = 1

2 |p|
2 + V (x). According to [19, 15],

the effective Hamiltonian H̄ is explicitly given by{
H̄(p) = maxT1 V if |p| ≤ p0

|p| =
∫ 1

0

√
2H̄(p)− 2V (y) dy otherwise,

where

p0 =
∫ 1

0

√
2(max

T1
V − V (y)) dy.

Without loss of generality, we may assume that maxT1 V = 0. Then the follow-
ing theorem holds.
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Theorem 6 Suppose that n = 1, H̄(p) > maxT1 V and uε is the viscosity
solution of (HJa)ε. Suppose that for some x0 ∈ R1

uε(x0)− p · x0 = min
R1
{uε − p · x}.

Then
|f(x0)− H̄(p)| ≤ O(ε).

Proof: Without loss of generality, we assume that p > 0. Then for x ≥ 0,

uε(x) =
∫ x

0

√
2f(y)− 2V (

y

ε
) dy.

Since uε − px attains minimum at x0, for any ∆x > 0, we have that∫ x0+∆x

x0

√
2f(y)− 2V (

y

ε
) dy ≥ p∆x.

Choose ∆x = ε and x = y
ε . We derive that∫ xε+1

xε

√
2f(εx)− 2V (x) dx ≥ p,

where xε = x0
ε . According to Theorem 5, f(x0) > maxT1 V when ε is small.

Hence it is clear that∫ xε+1

xε

√
2f(εx)− 2V (x) dx =

∫ xε+1

xε

√
2f(x0)− 2V (x) dx+O(ε).

Since V is periodic,

p =
∫ 1

0

√
2H̄(p)− 2V (x) dx =

∫ xε+1

xε

√
2H̄(p)− 2V (x) dx.

Then we have that∫ xε+1

xε

√
2f(x0)− 2V (x) dx ≥

∫ xε+1

xε

√
2H̄(p)− 2V (x) dx−O(ε).

This implies that
f(x0) ≥ H̄(p)−O(ε).

Similarly, we can deduce that

f(x0) ≤ H̄(p) +O(ε)

by considering the inequality∫ x0

x0−∆x

√
2f(y)− 2V (

y

ε
) dy ≤ p∆x.

for ∆x = ε. �
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Remark 2 The above theorem can be easily generalized to convex Hamiltonian
in 1D using control interpretation. We believe that the above theorem should also
hold for n > 1 in proper sense. However, when n > 1, the situation becomes
much more complicated due to the lack of explicit relation between the H̄(p) and
the potential V . So far, we do not have any clue about how to approach it.

2.1 A scaling property of H̄

Here we point out a simple scaling property of H̄ which will be useful for com-
puting H̄(p) with large p. This scaling property allows us to avoid solving
(HJa)ε on a large domain Ω = [−M, M ]n with |p| < M .

The cell problems

H(Du+ p, x) = ai,j(x)(uxi + pi)(uxj + pj) + V (x) = H̄(p)

and

H(
Du+ p

M
, x) = ai,j(x)

(uxi + pi)
M

(uxj + pj)
M

+
V (x)
M2

=
H̄(p)
M2

are equivalent.
Denote

HM (Dv, x) = ai,j(x)vxivxj +
V (x)
M2

, v(x) =
u

M
,

we have

HM (Dv +
p

M
, x) = H̄M (

p

M
) =

H̄(p)
M2

,

which implies
H̄(p) = M2H̄M (

p

M
).

Therefore, we only need to compute H̄M (p) with small p, which requires to solve
(HJa)ε only on a small domain.

3 Numerical Method and Examples

In this section we first present our numerical method to compute the effective
Hamiltonians. Then we test a few computational examples and use careful
error analysis to verify our method. For notational simplicity, the method is
illustrated with examples in one or two dimensions, but generalization to higher
dimension is straightforward. Complexity and accuracy for computing the ef-
fective Hamiltonian will be discussed.

The first and key step in our numerical method is to solve the fast oscil-
latory Hamilton-Jacobi equation (HJa)ε to obtain a numerical approximation
uεh, where h is the mesh size. Then for each p ∈ RN , we find the minimum of
uεh − p · x approximately on a mesh point x0. Finally, H̄(p) is approximated by
Theorem 5.
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3.1 Numerical Solution of Hamilton-Jacobi equations

Although the equation (HJa)ε contains fast oscillations it is a convex Hamilton-
Jacobi equation with a given source point, for which several fast algorithms
with optimal complexity are available. In this work we use the fast sweeping
method [4, 28] to solve (HJa)ε. The fast sweeping method is an efficient iter-
ative method using Gauss-Seidel iteration with monotone upwind scheme and
alternating orderings. The method is very easy to implement, especially for
general convex Hamilton-Jacobi equation [22] and has the optimal complexity
O(N), where N is the number of grid points. Although the constant in the
complexity estimate for the original fast sweeping method depends on how fast
characteristics change direction [23], which implies that the number of iteration
for (HJa)ε will depend on ε. Here we adopt the improvement proposed in [2]
using locking and queuing techniques, which dramatically reduces the compu-
tational cost for (HJa)ε in which fast variation is present. As shown in [2], the
CPU time is almost always linear in N with a fixed constant no matter how fast
the oscillation is. We point out that other fast algorithms such as fast marching
method [27, 25] for isotropic Eikonal equation and ordered upwind method [26]
for anisotropic Eikonal equation can also be used here. Our main goal here is
to show that if one can solve (HJa)ε efficiently then one can approximate the
effective Hamiltonians H̄(p) for all p easily using our formulation.

3.2 Numerical error

The total approximation error to the effective Hamiltonian is composed of
asymptotic error, which depends on ε, and numerical error, which depends on
the grid size h. Theoretically, the total error is O(

√
ε+ δ(h)) according to The-

orem 5, where δ(h) = |uε − uεh| is the numerical error. So a good balance is to
have numerical error δ(h) comparable to ε. However, the above theoretical esti-
mate usually provides a quite conservative lower bound in practice. Numerical
results suggest that the total error is O(ε), which is proved for one dimensional
case in Theorem 6. In high dimension, we suspect that it is related to the
integrability of the Hamiltonian system.

Numerically, although we are solving the uε from (HJa)ε, which contains
fast oscillation, the key point is that we only need to approximate u(x), which is
the solution to the effective equation (HJa) without fast oscillation, to the order
of ε and approximate the cell solution v(xε ) to O(1) according to the asymptotic
expansion

uε(x,
x

ε
) = u(x) + εv(x,

x

ε
) + . . . (10)

If the potential V is regular, the numerical error in maximum norm for monotone
upwind scheme is typical O(|h log h|) when there are isolated source points [28,
23, 22, 20], where the constant is proportional to the size of the computation
domain. Hence we may choose h ∼ O(ε).
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3.3 Computational Examples

In this part, we present a few 1-d and 2-d examples to demonstrate our new
method. In particular we show computational study of convergence as ε →
0. As discussed above, we choose our grid size h =

ε

W
for some number W

independent of ε. For |p| ≤M , Theorem 2 allows us to restrict the computation
within the cube Ω = [−M, M ]n. If |p| is large we show an example using the
scaling argument presented in section 2.1.

3.3.1 1-d Example

The Hamiltonian is

H(p, x) =
1
2
p2 + cos(2πx), f(x) = 2x2 + 1.

H̄(p) is exactly known [19]. We will compute H̄(2) = 2.0637954.
First we show the accuracy for the fast sweeping method for solving (HJa)ε.

The computational domain is [0, 1]. The grid size h is chosen to resolve ε with
h =

ε

20
. Table 1 shows the maximum error of the fast sweeping method. The

numerical solution is converging in O(ε).

Error of fast sweeping method for (HJa)ε in domain [0, 1]
Mesh (ε, h = ε

20 ) ε = 1
2 ε = 1

4 ε = 1
8 ε = 1

16 ε = 1
32 ε = 1

64

Error |uε − uεh| 0.0307068 0.0162982 0.0084036 0.0042489 0.0021060 0.0010217

Table 1: 1-d example: the exact solution
∫ 1

0

√
2(f(x)− cos( 2πx

ε ))dx is approxi-
mated with a much smaller h = 10−5.

Next we compute H̄(2) with our new method. The computational domain
for solving (HJa)ε is [−2, 2]. We choose h =

ε

20
. Table 2 shows the maximum

error, which appears to be O(ε).

Error of H̄(2)
Mesh (ε, h = ε

20 ) ε = 1
10 ε = 1

1000 ε = 1
100000

Error of H̄(2) 0.0269954 0.00033012 0.000003

Table 2: 1-d example: accuracy of numerically computing H̄(2).

3.3.2 2-d Examples

We present a few 2-d examples to illustrate our method.
Example 1: The Hamiltonian is

H(p, q, x, y) =
1
2

(p2 + q2)− 1
2

((2 + cos(2πx) sin(2πy))2 + (sin(2πx) cos(2πy))2),

f(x, y) = 2(x2 + y2)− 1
2
.
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Especially, H̄(2, 0) = 0. We verify our method by computing H̄(2, 0). The
computational domain is set on [−2, 2] × [−2, 2]. We choose h =

ε

10
. Table

3 shows the maximum error, which appears to be O(ε).

Numerical error of H̄(2, 0), exact H̄(2, 0) = 0
Mesh (ε, h = ε

10 ) ε = 1
2 ε = 1

4 ε = 1
8 ε = 1

16 ε = 1
32

Error -0.235000 -0.133750 -0.070937 -0.036484 -0.018496

Table 3: 2-d example 1: Numerical error for H̄(2, 0).

Example 2: The Hamiltonian is

H(p, q, x, y) =
1
2

(p2 + q2)− cos(2πx)− cos(2πy), f(x, y) = 2(x2 + y2) + 2.

Especially, H̄(1.4006, 1.1205) = 2.1241. Table 4 shows the maximum error for
computing H̄(1.4006, 1.1205) with our new method. We choose computational
domain to be [−2, 2]× [−2, 2] and h =

ε

10
. The numerical solution appears

to converge by O(ε). We would like to mention that this example was also
calculated in [1] using the Large-T method, with a semi-implicit scheme. By
choosing T = 500, ∆t = 1 and h = 1

200 , the error was 0.0014 which is almost
the same as what we get when ε = 1

128 . Our methods takes 8 iterations to
converge for computing uεh for the standard fast sweeping method. So the overall
complexity is of 8 × O(51202) + O(51202), although the second part, which is
the complexity for finding the global minimum, is very cheap compared to the
first part. The Large-T methods in [1] takes 500 × O(2002) operations to get
H̄(1.4006, 1.1205). Although CFL condition for time step is relaxed by using
semi-implicit scheme, a large system of linear equations has to be solved at each
time step. So the coefficent depends on the method used to solve the large
system of linear equations. More importantly, our method can compute various
p easily once the (HJa)ε is solved.

Numerical error of H̄(1.4006, 1.1205), exact H̄(1.4006, 1.1205) = 2.1241
Mesh (ε, h = ε

10 ) ε = 1
8 ε = 1

16 ε = 1
32 ε = 1

64 ε = 1
128

Error 0.022537 0.014334 0.007596 0.003568 0.001389

Table 4: 2-d example 2: Numerical error for H̄(1.4006, 1.1205).

Example 3: The Hamiltonian is

H(p, q, x, y) =
1
2

(p2+q2)+cos(2πx)+cos(2πy)+cos(2π(x−y)), f(x, y) = 2(x2+y2)+3.

Figure 1 shows the plots of H̄(p). We choose ε =
1
20

and h =
ε

10
. The

computational domain is [−4, 4]× [−4, 4]. The domain of H̄(p) is [−4, 4]×
[−4, 4] with a resolution of 81× 81 points.
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Figure 1: 2-d example 3: H̄(p)–surf plot and contour plot.

The flat region in Figure 1 (blank region in contour plot) corresponds to
H̄(p) = maxx,y V (x, y) = maxx,y cos(2πx) + cos(2πy) + cos(2π(x − y)) = 3.
Simple computation with Large-T method in [24] by forward Euler first order
Godunov scheme gives H̄(−4, 4) = 16.0400 with spatial discretization h = 0.1,
time step 4t = 0.001 and terminal time Tf = 100. It is close to the one
computed with our method, which gives H̄(−4, 4) = 16.0682.

Example 4: Double pendulum. The Hamiltonian for the double pendu-
lum is

H(p, q, x, y) =
1
2
p2 − 2pq cos(2π(x− y)) + 2q2

2− cos2(2π(x− y))
+ 2 cos(2πx) + cos(2πy).

with
f(x) = 6(x2 + y2) + 3.0.

Figure 2 shows the plots of H̄(p). We choose ε =
1
20

and h =
ε

10
. The

computational domain is [−4, 4]× [−4, 4]. The domain of H̄(p) is [−4, 4]×
[−4, 4] with a resolution of 81× 81 points.

The flat region in Figure 2 (blank region in contour plot) corresponds to
H̄(p) = maxx,y V (x, y) = maxx,y 2 cos(2πx) + cos(2πy) = 3. Simple computa-
tion with Large-T method in [24] by forward Euler first order Godunov scheme
gives H̄(4, 4) = 18.0970 with spatial discretization h = 0.1, time step4t = 0.001
and terminal time Tf = 100. It is close to the one computed with our method,
which gives H̄(4, 4) = 17.9532.
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Figure 2: 2-d example 3: H̄(p)–surf plot and contour plot

3.3.3 Examples of H̄(p) with large p

In this part, we compute H̄(100) for the above 1-d example and H̄(100, 100)
for the above 2-d Example 2. We rescale the problem as discussed above by
choosing M = 100. Therefore we only need to compute H̄M (1) and H̄M (1, 1)
respectively.

1-d Example: H(p, x) = 1
2 |p|

2 +cos(2πx), and HM (p, x) = 1
2 |p|

2 + cos(2πx)
M2 .

We choose f(x) = 2x2 + 1.0
M2 , compute H̄M (1), and get H̄(100) = M2H̄M (1).

Table 5 shows the results.

H̄(100)
Mesh (ε, h = ε

20 ) ε = 1
4 ε = 1

8 ε = 1
16

H̄(100) 5001.00 4876.78 4938.70

Table 5: 1-d example: computing H̄(100) with rescaling.

2-d Example: H(p, q, x, y) = 1
2 (p2+q2)−cos(2πx)−cos(2πy), andHM (p, q, x, y) =

1
2 (p2 + q2)− cos(2πx) + cos(2πy)

M2
.

We choose f(x) = 2x2 + 2.0
M2 , compute H̄M (1, 1), and get H̄(100, 100) =

M2H̄M (1, 1). Table 6 shows the results.
For the above two examples, theoretically, H̄(100, 100) (2-d) is the sum of

H̄(100) + H̄(100) (1-d) dimension by dimension, which is verified as shown in
Table 5 and 6.
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H̄(100, 100)
Mesh (ε, h = ε

20 ) ε = 1
4 ε = 1

8 ε = 1
16

H̄(100, 100) 9508.25 9753.56 9877.39

Table 6: 2-d example: computing H̄(100, 100) with rescaling.

4 Conclusion and future problems

We present a new approximation for the effective Hamiltonians, which has ac-
curacy and efficiency verified by numerical examples with encouraging results.
The key point is that only one auxiliary PDE needs to be solved for all p.
Unfortunately, our method can not deal with nonconvex Hamiltonians, since
the ”equality” for the definition of viscosity supersolution is no longer valid.
Considering that most interesting Hamiltonians are convex, such a restriction
is acceptable. Besides, different formulations with the same idea can be used,
which we remark here.

For example, instead of using the Eikonal type equation (HJa)ε and (HJa),
we can also employ the following PDEs (HJb)ε and (HJb), e.g. in infinite
horizon problems,

(HJb)

{
H̄(Du) + u = f(x) in Ω\{0} ∈ Rn

u(0) = 0
(11)

and the corresponding oscillatory equation

(HJb)ε

H(Duε,
x

ε
) + uε(x) = f(x) in Ω\{0} ⊂ Rn

uε(0) = 0
(12)

All procedures are similar except that we need to use f(x0) − u(x0) instead of
f(x0) to calculate H̄(p) if u−p·x attains local minimum at x0. One advantage of
using (HJb) and (HJb)ε is the possibility to derive some rigorous error estimates
between uε and uεh as in [5, 9, 10]. Meanwhile, we would like to point out that
theoretical error estimates are usually too conservative compared to the real
numerical errors.

As we mentioned in the introduction, one of the motivations to compute H̄
is to provide a more efficient way to solve equation for general initial data g.
An interesting future project is to find a good approach to solve equation based
on H̄ derived with our method. Similar work has been done in [1] using the
large-T method.
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