
Multigrid Narrow Band Surface Reconstruction
via Level Set Functions

J. Ye1, I. Yanovsky1,2, B. Dong3, R. Gandlin4,
A. Brandt1,5, S. Osher1

1 Department of Mathematics, University of California, Los Angeles, CA, USA
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

3 Department of Mathematics, University of California, San Diego, CA, USA
4 Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA, USA

5 Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel.

Email: ye@math.ucla.edu, igor.yanovsky@jpl.nasa.gov, b1dong@math.ucsd.edu,
rima121212@gmail.com, abrandt@math.ucla.edu, sjo@math.ucla.edu

Abstract. In this paper we propose a new method for implicit surface
reconstruction from unorganized point clouds. Our algorithm employs a
multigrid solver on a narrow band, which greatly improves the compu-
tational efficiency of surface reconstruction process. The new model can
reconstruct surfaces from noisy unorganized point clouds that also have
missing information. Comparing to traditional methods, our method is
significantly faster, generating surfaces that have detailed information
and preserved sharp features.

1 Introduction

The field of surface reconstruction from scattered point clouds has been develop-
ing rapidly in the past few years. It is a challenging problem since point clouds
lack ordering information and connectivity, and are often very noisy. There are
two ways of representing the reconstructed surfaces: explicit and implicit. Ex-
plicit representation usually gives the exact location of a surface in a physical
domain, while implicit representation defines the surface as the zero level set
of some scalar function. Common explicit representations include parametric
surfaces [15, 14] and triangulated surfaces [1–3, 6, 7]. Implicit surfaces are most
frequently represented using level set functions, typically signed distance func-
tions [13], and some recent ones [12, 16].

One of the traditional approaches for implicit surface reconstruction is via the
use of radial basis functions representation [5]: s(x) = p(x)+

∑n
i=1 λiφ(|x−xi|),

where p is a polynomial, φ is a global smooth function that allows fast summa-
tion, e.g. φ(r) = r, and (x1, ...,xn) is a set that includes the N given surface
points and a comparable number of off-surface points at each of which s(xi) is
prescribed as an estimated distance from xi to the surface. The iterative solver
for computation of the coefficients λi and the polynomial p requires C1N log N
computer operations, where C1 is a very large constant.

2

Another well-known method was introduced by Zhao et al. in [11, 10], where
the authors constructed a weighted minimal surface-like model. The energy is
defined as

E(Γ) =
∫

Γ

d(x)ds. (1)

Here Γ is an arbitrary surface and ds is the surface area. The unsigned distance
function d(x) is computed by solving the Eikonal equation (see [9]):

|∇d(x)| = 1 x ∈ Ω \ Γ, (2)
d(Γ) = 0.

If we represent the surface Γ by a level set function φ, the gradient flow of energy
(1) can be written as:

φt = |∇φ|∇ ·
[
d
∇φ

|∇φ|
]

= |∇φ|
[
∇d · ∇φ

|∇φ| + d∇ · ∇φ

|∇φ|
]
. (3)

The above partial differential equation (PDE) based method successfully recon-
structs the surface (see [11], [10] for more details). However, solving the above
PDE requires small time steps and hence longer computational time. Further-
more, the energy functional (1) is not convex, which makes the result sensitive
to the initialization and noise. Therefore, in order to avoid local minimizers, one
should start from an initial surface which is very close to the given point cloud.

Our method, as will be described in the following section, gives a faster
implicit surface reconstruction that is less sensitive to initialization and more
robust in the presence of noise (possibly nonuniform noise).

2 Proposed Model

Given a data set {xl}l=1,...,N ⊂ Rdim, i.e. a set of points with dim = 2 or 3, we
seek a function φ that is close to zero on this set and smooth elsewhere (see [8]).
For this purpose, we consider the following energy functional:

E(φ) =
∫

G(φ(x))dx +
J∑

l=1

βl(Plφ)2, (4)

where the projection operator Pl is some local averaging defined as

Plφ =
∫

pl(x)φ(x)dx,

∫
pl(x)dx = 1. (5)

The first term in (4) is the regularization term which imposes smoothness on
the level set function φ. The second term is the fidelity term which forces the zero
level set of φ align with the data set. If the data is uniformly distributed and the
surface is well-resolved in some region, we set G(φ(x)) = |∇φ(x)|2. Otherwise,

3

in regions that lack points, more sophisticated regularization is required, for
instance, defining G(φ(x)) = |∇ ·∇φ(x)|2. Furthermore, special regularization is
needed for the anisotropic case when the coefficient function varies in different
directions. For example in R2, when the coefficient function a1(x, y) in the x-
direction differs from the coefficient function a2(x, y) in the y-direction, we set
G(φ(x, y)) = a11|φx|2 + a12|φxφy| + a22|φy|2 = α1|φξ|2 + α2|φη|2 with some
proper change of variables (x, y) → (ξ, η). In this paper, we will focus on the
uniform regularization with G(φ(x)) = |∇φ(x)|2.

The values of the weight function βl should, in general, depend on the accu-
racy of data points, the density of data set, and the curvature of surface to be
reconstructed. As a starting point, a fixed β is used for all data points in this
paper.

We now provide the detailed formulation of the energy E(φ) and the projec-
tion operator Pl in the discrete setting. We first consider the two dimensional
case. The discretization of the projection operator (5) takes the following general
form:

Plφ =
∑

k,n

p̄l
k,nφk,n,

∑

k,n

p̄l
k,n = 1. (6)

The energy functional (4) is discretized as

Ē(φ) =
∑

i

∑

j

(φi+1,j − φi,j

h

)2

+
(φi,j+1 − φi,j

h

)2

+
∑

l

βl[P̄lφ]2. (7)

Then at the grid point (i, j), the Euler-Lagrange equation is given by

1
2

δĒ

δφi,j
= −φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j

h2
+

J∑

l=1

βlp
l
i,jPlφ = 0, (8)

where J is the total number of neighboring points of grid point (i, j). Operator
Pl is a linear interpolation operator, and Plφ represents the interpolated value
of function φ at a point xl. Figure 1 shows the l-th point inside a grid cell
associated to (i, j), with location determined by r1 and r2 (0 ≤ r1, r2 < h). The
interpolation coefficients are:

pl
i,j =

(h− r1)(h− r2)
h2

, pl
i,j+1 =

(h− r1)r2

h2
, (9)

pl
i+1,j =

r1(h− r2)
h2

, pl
i+1,j+1 =

r1r2

h2
,

Plφ = pi,jφi,j + pi,j+1φi,j+1 + pi+1,jφi+1,j + pi+1,j+1φi+1,j+1.

In three dimensions, the corresponding Euler-Lagrange equation at a point
(i, j, k) is given as

1
2

δĒ

δφi,j,k
= −φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k − 6φi,j,k

h3
+

J∑

l=1

βlp
l
i,j,kPlφ = 0.

(10)

4

Fig. 1. The illustration of 2D interpolation operator. Here r1 is the displacement in
vertical direction and r2 is the displacement in horizontal direction.

The natural choice for interpolation operator in three dimensions is bilinear
interpolation. In the following formulation, r1 and r2 are defined as above, with
r3 denoting the displacement in the z dimension. The interpolation coefficients
in three dimensions are given as:

pl
i,j,k =

(h− r1)(h− r2)(h− r3)
h3

, pl
i,j+1,k =

(h− r1)r2(h− r3)
h3

, (11)

pl
i+1,j,k =

r1(h− r2)(h− r3)
h3

, pl
i+1,j+1,k =

r1r2(h− r3)
h3

,

pl
i,j,k+1 =

(h− r1)(h− r2)r3

h3
, pl

i+1,j+1,k+1 =
r1r2r3

h3
,

pl
i+1,j,k+1 =

r1(h− r2)r3

h3
, pl

i,j+1,k+1 =
(h− r1)r2r3

h3
,

Plφ = pi,j,kφi,j,k + pi,j+1,kφi,j+1,k + pi+1,j,kφi+1,j,k

+ pi+1,j+1,kφi+1,j+1,k + pi,j,k+1φi,j,k+1 + pi,j+1,k+1φi,j+1,k+1

+ pi+1,j,k+1φi+1,j,k+1 + pi+1,j+1,k+1φi+1,j+1,k+1.

In the next section, we will describe an efficient numerical implementation
for solving (8) and (10).

3 Numerical Implementation

In this section, we consider two dimensional case and describe the process of
obtaining a numerical solution of equation (8). The treatments for three dimen-
sional case (10) are similar.

5

3.1 Initialization

In order to solve equation (8) numerically, we define a suitable computational
domain. First, given the coordinates of the data {xl}, we find the smallest rect-
angular box that contains the data. Since extra space should be allocated at
the boundaries of the computational domain, we extend the rectangular box by
some factor ρ. The typical choice for extension is ρ = 1.2. In case data set has a
large hole (i.e. a large region with missing information), the value ρ is increased.

To make the algorithm efficient, we can restrict our computations within
a narrow band containing the data. To construct the narrow band, we first
calculate the unsigned distance function to the data set S by solving the Eikonal
equation (See Equation (3)). For the boundary conditions for (3), if the data
point is not on the grid, we set the unsigned distance function d to zero at
the nearest neighboring grid point to the data point in consideration. We then
solve Equation (3) using fast sweeping method [9, 17], an efficient algorithm with
a computational cost of O(N). The narrow band is obtained by thresholding
unsigned distance function at value ε = 1

2mhh, where h is the mesh size and mh

is the band width. Here, we denote Ω1 = {x : d(x) < ε} to be the set of grid
points within the narrow band.

Once the narrow band is obtained, we need to find the grid points for the
outer and inner boundaries in order to set up the boundary conditions for (8).
Outer and inner boundary grid points are denoted as Γin and Γout, respectively,
and are obtained using the Breadth-First Search (BFS) algorithm. In graph
theory, breadth-first search (BFS) is a graph search algorithm that begins at
the root node and explores all the neighboring nodes. Then for each of those
nearest nodes, it explores their unexplored neighbors, and so on, until it finds
the goal. In order to find outer and inner grid points, first, we take a thin narrow
band Ω2, which is directly connected to Ω1, such that the band width is equal
to one grid point. Specifically, Ω2 = {x : ε ≤ d(x) ≤ ε + h}. Second, we select
an arbitrary outer boundary grid point (i, j) ∈ Ω2. This can be easily done by
taking the first grid point in Ω2 since the outer boundary of the narrow band is
usually reached while traversing the grid points. This grid point is then assigned
to Γout. Third, we use BFS algorithm to find all the connected grid points among
(i± 1, j), (i, j ± 1) which are assigned to Γout. The algorithm stops when there
are no new grid points to be added into Γout. The complementary set of Γout
is the inner boundary Γin = Ω2/Γout.

If the data has spurious noise, e.g. contains points far from the meaningful
data points, the noise and the data set would be disconnected. In this case,
all connected components are obtained using the BFS algorithm as described
above. We first select one starting point and find the maximally connected com-
ponent. Then, we select another point in the complementary set and find another
maximally connected component. The process is repeated until all data points
are traversed once. Since spurious noise is usually composed of relatively few
data points, we let Γout and Γin be the largest and second largest connected
components, respectively.

6

Once exterior and interior boundary grid point sets Γin and Γout are ob-
tained, we can specify boundary conditions for φ(x). For the exterior boundary
Γout, we set φ(x) = d(x); for the interior boundary Γin, we set φ(x) = −d(x);
and for the points within the narrow band, we simply set φ(x) = 0.

Fig.(2a) shows the initialization of the narrow band associated with the given
data set. The red dots and black dots enclose the blue data points with the equal
distance ε = 5h. The unsigned distance function at the red outer boundary and
the black inner boundary points is equal to 5h and −5h, respectively. The grid
points inside the narrow band are all set to zero.

outer boundary
inner boundary
data points

Fig. 2. The band width parameter ε = 5h. The red dots are outer boundary points,
the black dots are inner boundary points, and the blue dots are the data points.

3.2 Multigrid Narrow Band Solver

The problem defined by (8) with boundary conditions is a well-posed elliptic
problem and can be efficiently solved using multigrid method. The Full Approx-
imation Scheme (FAS) [4] solves equation (8) on multiple grids, starting with
the coarsest and finishing at the finest grid. On coarser levels, a single cell may
contain multiple data points. Since high resolution results are not required on
coarser grids, mean coordinates of all data points in a given cell can be used to
represent all such points for the purpose of calculating the interpolation opera-
tor Pl. After the equation is solved on a coarser level using a few Gauss-Seidel
relaxations [4], the obtained solution is linearly interpolated onto the finer level.
At the finest level, all data points within each cell are considered to be carry-
ing equal weights. The solution obtained on the finest level is the desired final
reconstruction.

We usually use three level construction method with the band width mhh.
Here, mh = 5, and h is the mesh size for the corresponding level.

7

We are now ready to give an algorithm for the Multigrid Narrowband Surface
Reconstruction:

Algorithm 1 Multigrid Narrow Band Surface Reconstruction
1: Given a set {xl}l=1,...,N , solve Eikonal equation (3) to find an unsigned distance

function d(x) for the data set.
2: Find a narrow band with band width ε to enclose the data set. Record all the grid

points inside narrow band as Ω1.
3: Find the outer boundary Γout and inner boundary Γin of the narrow band.
4: Assign the values of φ(x) to ε at the outer boundary and to −ε at the inner

boundary.
5: Denote l to be the coarsest level.
6: Solve equation (8) on level l within narrow band. If l is the finest level, then stop.
7: Linearly interpolate the solution from level l to a finer level l + 1.
8: Set l := l + 1 and go to Step 6.

4 Experimental results

In this section, we show the two and three dimensional results obtained using
the proposed Multigrid Narrow Band surface reconstruction model to solve (8)
and (10). In our numerical examples, we found that β = 0.5 produces desirable
results for most data sets. The value of β may change somewhat with changes
in noise level and density for a given data set. Fig. (3) shows a two-dimensional
point cloud and multigrid surface reconstruction results at four consecutive steps
on different levels. The reconstruction captures additional details as the grid is
refined, with the finest level having the most information.

Fig. 4 shows a two-dimensional numerical result for a man made hand with
Gaussian noise. The hand shape has long and thin concave regions which are
difficult to reconstruct using traditional methods. However, our method recovers
the detailed information. We observe some inaccuracy at the ends of the fingers,
which may be attributed to the use of uniform β for high curvature places.

Next we consider some three dimensional examples. Fig. 5 shows 3D multi-
grid surface reconstruction results for “bunny” point cloud on different levels.
The difficulty of reconstructing this point cloud lies in the presence of several
holes. We observe that finer features are recovered as the mesh size becomes
smaller, and the holes are filled automatically. On 257 × 257 × 201 mesh, the
total computational time to obtain the final result on 2.93 GHz Intel Core 2 Duo
CPU is 6.5 seconds (see Table 1).

Fig. 6 shows 3D surface reconstruction result from “dragon” point cloud.
Since this data set contains numerous regions with missing information (i.e.
small holes in the point cloud), it is difficult to reconstruct the corresponding
surface. The proposed model is successful in capturing fine details and filling the
holes in the surface.

8

Fig. 3. Two-dimensional multigrid narrow band surface reconstruction results are
shown on grids of different resolution. Contours reconstructed on different levels, from
coarsest to finest, are displayed in yellow, green, blue, and black colors.

Fig. 4. Two-dimensional multigrid narrow band surface reconstruction of a man made
hand with Gaussian noise is shown. A noisy point cloud (in blue) and the reconstructed
shape (in red) are displayed.

9

(a) (b)

(c) (d)

Fig. 5. Three dimensional multigrid narrow band surface reconstruction for bunny. (a)
Original point cloud. The results are obtained on (b) 65x65x51, (c) 129x129x101, and
(d) 257x257x201 grids.

Fig. 7 shows 3D surface reconstruction result from Buddha point cloud. Even
though this data set contains no holes, it has small bridges. We observe that all
fine features are captured well using the proposed surface reconstruction model.

5 Conclusion

The two and three dimensional curve/surface reconstruction results presented
in this paper demonstrate that our method is among the fastest surface recon-
struction methods. Furthermore, the proposed method is robust to noise and can
easily recover surfaces from point clouds with missing information. The compu-
tational time is O(N3) where N is the grid size of final level reconstruction.

10

Fig. 6. Three dimensional multigrid narrow band surface reconstruction for dragon on
301× 213× 133 grid. The point cloud contains 437645 data points.

Fig. 7. Three dimensional multigrid narrow band surface reconstruction for Buddha
on 149× 365× 149 grid. The point cloud contains 144647 points.

11

Table 1. Computational times for 3D data sets.

data set size time (in seconds)

bunny 257x257x201 6.5

dragon 301x213x133 7.2

buddha 149x365x149 6.7

Acknowledgements

This work was supported in part by NIH GRANT, P20 MH65166, NSF GRANT,
DMS-0714807, and NIH GRANT, U54 RR021813. The research of Igor Yanovsky
was carried out in part at the University of California, Los Angeles, and in part
at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

References

1. N. Amenta, M. Bern, and D. Eppstein, “The crust and the β-skeleton: Combinato-
rial curve reconstruction,” Graphical Models and Image Processing, vol. 60, no. 2,
pp. 125–135, 1998.

2. N. Amenta, M. Bern, and M. Kamvysselis, “A new Voronoi-based surface recon-
struction algorithm,” pp. 415–421, 1998.

3. J. Boissonnat, “Geometric structures for three dimensional shape reconstruction,”
ACM Trans. Graphics 3, pp. 266–286, 1984.

4. A. Brandt, “Multigrid techniques: 1984 guide with applications to fluid dynamics,”
1984.

5. J. Carr, W. Fright, and R. Beatson, “Surface interpolation with radial basis func-
tions for medical imaging,” IEEE Transactions on Medical Imaging, vol. 16, no. 1,
pp. 96–107, 1997.

6. H. Edelsbrunner, “Shape reconstruction with Delaunay complex,” Lecture Notes
in Computer Science, pp. 119–132, 1998.

7. H. Edelsbrunner and E. P. Mucke, “Three dimensional α shapes,” ACM Trans.
Graphics 13, pp. 43–72, 1994.

8. R. Gandlin, “Multigrid solvers for inverse problems,” 2004, ph.D. thesis, Depart-
ment of Computer Science and Applied Mathematics, The Weizmann Institute of
Science.

9. H.K.Zhao, “A fast sweeping method for eikonal equations,” Mathematics of Com-
putation, vol. 74, no. 250, pp. 603–627, 2004.

10. H.K.Zhao, S.Osher, B.Merriaman, and M.Kang, “Implicit and nonparametric
shape reconstruction from unorgazied data using a variational level set method,”
Computer Vision and Image Understanding, vol. 80, no. 3, 2000.

11. H.K.Zhao, S.Osher, and R.Fedkiw, “Fast surface reconstruction using the level set
method,” 2001.

12. S. Leung and H. Zhao, “A grid based particle method for moving interface prob-
lems,” Journal of Computational Physics, vol. 228, no. 8, pp. 2993–3024, 2009.

13. S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces.
Springer, 2003.

12

14. L. Piegl and W. Tiller, The NURBS book. Berlin, Germany: Springer-Verlag,
1996.

15. D. Rogers, An Introduction to NURBS. Morgan Kaufmann, 2003.
16. S. Ruuth and B. Merriman, “A simple embedding method for solving partial dif-

ferential equations on surfaces,” Journal of Computational Physics, 2007.
17. Y. Tsai, L. Cheng, S. Osher, and H. Zhao, “Fast sweeping algorithms for a class of

Hamilton-Jacobi equations,” SIAM journal on numerical analysis, vol. 41, no. 2,
pp. 673–694, 2004.

